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We propose a novel modeling of the dielectric cubic corner, that is suitable for inclusion in a standard
electromagnetic (EM) simulator. The model starts from a consideration of the equivalent current
densities on the cube facets. It proceeds by employing a classical multipole expansion of the Green’s
function at the corner and introduces the novel principle of Simultaneous Transverse Resonance
Diffraction (STRD) in order to determine the singularity of the EM field. The novel STRD approach
considers the analogy between the EM field in proximity of the 90 deg. dielectric corner and resonant
transmission lines. We combined the analytical and the numerical approaches in order to obtain
an efficient numerical procedure. The theory is validated by standard finite element method (FEM)
simulation, yielding information about the accuracy of the near field around the dielectric corner.
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1. INTRODUCTION

Recent technological developments in integrated optics
have made possible, even common, the realization of
quasi-planar structures with 3D dielectrics corners for
nanoscale applications. These involve integrable sharp sin-
gularities of the electromagnetic (EM) field, localized
around the corners,1–6 which, in turn, cause considerable
difficulties for the numerical electromagnetic simulators as
they force to have recourse to finer or variable meshing.1�2

Full-wave numerical techniques in time/frequency-domain
like the Finite Difference in Time/Frequency Domain
(FD-TD/FD) are efficient and flexible techniques for the
analysis of a large class of electromagnetic problems. One
of the main limitations of these and other numerical tech-
niques is that the space-time discretization scheme fails
to accurately describe the singularities of the electromag-
netic field and the complex optical diffraction problems,3�4

which occur near sharp dielectric edges. Unless a very fine
mesh is used, the singular behaviour around the corner is
poorly represented and the frequency domain character-
istics of the structure will typically be shifted. For these
reasons, it is very advantageous to treat analytically with
accuracy the EM field configuration in proximity of a 3D
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dielectric corner (see Fig. 1(a)). In order to obtain a work-
able analytical model of this configuration, we employ a
classical multipole expansion of the field near the corner,
where the field can be considered as quasi-static7 and can
be expressed by the Green’s function.8–10 Moreover, for
the first time, we employ the novel principle of Simulta-
neous Transverse Resonance Diffraction (STRD) in each
of the three orthogonal coordinates around the corner. The
latter principle determines univocally the order of the sin-
gularity to be used in the multipole expansion. The STRD
model provides an equivalent circuit shown in Figure 1(b),
suitable for inclusion in a standard full-wave electromag-
netic solver in order to accurately describe structures with
sharp dielectric singularities. By combining the analyti-
cal approach which gives the possibility to understand the
physical aspects, and the numerical one which can pro-
vide more geometric variants of the scattered structure,
we obtain an efficient numerical procedure that decrease
the computational cost with a good solution accuracy. In
the present contribution the new theory is validated by the
use of a commercial simulators based on Finite Element
Method (FEM) approach.

2. STRD TRANSMISSION LINE MODEL

In order to combine the diffraction of the 3D dielec-
tric corner with the transmission line equivalent circuit of
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Fig. 1. (a) Equivalent electric and magnetic current densities, and
(b) transmission line equivalent circuits of a 3D cubic dielectric corner.

Figure 1(b) we consider a transverse electric TE (Hz, E�,
E�) polarized field defined in cylindrical coordinates as

E� =−j	
1
�

��

��
E� = j	


��

��
Hz = k2� (1)

where � is a suitable Hertzian magnetic potentials which
satisfies Helmholtz equation in cylindrical coordinates.
The field reported in Eq. (1) is TE with respect to the
z-direction, briefly TEz, but is also transverse magnetic
TM with respect to the �-direction (thus TM�). When a
several dielectrics are present the field must be described
by two potentials11 unless the potentials are taken in the
direction normal to the stratification. In this case the strat-
ification is normal to the �-direction. Hence, we describe
the field in our structure as just TM� or TE�. Since for
a two-dimensional case TEz coincides with TM�, we may
refer to this field by either of these names. Near the edge
we assume a potential solution of the form11

������= 1

k2
i

���Ai sin����−Bi cos����� (2)

which gives the following expression for the fields

E� =− j�

	�i
��−1�Ai cos����+Bi sin�����

Hz = ���Ai cos����−Bi sin�����

(3)

We note that the Eq. (3) represents a pair of fields
transverse to the �-direction; their ratio provides the
TM� characteristic impedance which may describe the
�-dependence by means of an equivalent transmission
line. In particular the following equivalent voltages and
currents

Vi =
1
�i
�Ai cos���i�+Bi sin���i��

Ii = �Ai sin���i�−Bi cos���i�� i = 1�2

(4)

gives the EM field components, where ��i represent the
electrical length related to the transmission line traveled
by voltage/current signal (E, H field), by rotating a ref-
erence point P (in which the EM field is defined) around
the dielectric corner. In Figure 2 we report the equiva-
lent position on the equivalent transmission line model,
related to the EM field defined at a distance � = �r− r′�,
and by rotating of an angle equal to �� around the dielec-
tric corner. Figure 2(a) indicates three reference planes
related to the EM field position: the first one (position
Ref. [1]) is defined on the dielectric interface, the second
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Fig. 2. TEz field: (a) EM field components and symmetry plane (metal-
lic wall); (b) EM field position on the equivalent transmission line.
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one on a generic position defined by � (position Ref. [2]),
and finally the last one (position Ref. [3]) on the metal-
lic wall symmetry plane. Figure 2(b) shows the equiva-
lent position of the three reference planes defined above
on the equivalent transmission line model. We observe
that Figure 2(b) represents the equivalent transmission line
model with short circuit stub, obtained by the even prop-
erty of the Hz component related to a TEz field. By mak-
ing use of the continuity of the EM field for the TE case
(continuity of the Hz and E� component) one derives the
following ABCD representation11

(
Vi+1

Ii+1

)
=
(

cos���i� �i sin���i�

�−1
i sin���i� cos���i�

)(
Vi

Ii

)
(5)

where �i = 1/� is the normalized TM� characteristic
impedance. By introducing the load impedance Zi = Vi/Ii
and Ti = tan���i�, and by using the standard formula for
the impedance transformation along a transmission line

Zi = �i
Zi−1 + j�iTi
�i+ jZi−1Ti

i = 1�2 (6)

we can evaluate the resonance condition,11�12 and therefore
the singularity � of the electromagnetic field, by comput-
ing the total impedance of the transmission line circuit of
Figure 2(b). In this case the transverse resonance condi-
tion, which provides the � value, can be expressed by the
following transcendental equation

T1

�1

+ T2

�2

= 0 (7)

By applying Eq. (7) to the configuration of the equivalent
circuit of Figure 2(b) we obtain

� = 2
�

cos−1

[
�2 −�1

2��2 +�1�

]
(8)

It is essential to note that, for the cubic symmetry, the three
transmission lines produce the same resonance condition
of Eq. (7). In fact, all the lines are connected at the same
reference section and so they are characterized by the same
electrical lengths �i.

3. NEAR FIELD: MULTIPOLE EXPANSION OF
THE VECTOR GREEN’S FUNCTION

The electric and magnetic fields at an external point P of
Figure 1 are expressed as9�10

E�P�

= 1
j	4��c

"P×"P×
(∫

V
Ji
e−$�

�
dVQ+

∫
S
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dSQ

)

− 1
4�
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V
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�
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∫
S
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�
dSQ

)
− Ji
j	�c

(9)
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= 1
4�
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(∫

V
Ji
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dVQ+

∫
S
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dSQ

)
+ 1
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V
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�
dVQ+

∫
S
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�
dSQ

)
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The electric field of Eq. (9) can be rewritten as

E�P� = 1
j	4��c

"P ×"P

×
(∫

V
JiG�r� r

′�dVQ+
∫
S
�H× n̂�G�r� r′�dSQ

)

− 1
4�

"P ×
(∫

S
�n̂×E�G�r� r′�dSQ

)
− Ji
j	�c

= 1
j	4��c

"P ×"P ×
(
G�r�P0 +

∫
S
JsG�r� r

′�dSQ

)

− 1
4�

"P ×
(∫

S
MS�G�r� r

′��dSQ

)
− Ji
j	�c

(11)

The equivalence theorem9�11 provides on each facet the
equivalent density currents Jsi =H×ni, and Msi = ni×E
reported in Eq. (11) and in Figure 1(a). These density cur-
rents take into account the singularity factor � evaluated
through the STRD transmission line modeling. In the cal-
culus of Eq. (11) we consider a multipole expansion of the
Green G�r� r′� function in spherical harmonics is9�10–16

G�r� r′�=∑
l�m

gl�r� r
′�Y ∗

l�m�0
′�1′�Yl�m�0�1� (12)

where the functions Yl�m are defined as

Yl�m�0�1�=
[

2l+1
4�

· �l−m�!
�l+m�!

]1/2

Pm
l �cos0�ejm1 (13)

and Pm
l are the Legendre functions9�17–18 given by

P
�m�
l �x�= �−1�m

2ll! �1−x2�m/2 d
l+m

dxl+m
�x2 −1�l

m=−l� 3 3 3 �+l (14)

We observe that the expansion of Eq. (12) satisfies the
orthogonality condition:

�∑
0

l

+l∑
−l

mY
∗
l�m�0

′�1′�Yl�m�0�1�

= 4�cos0− cos0′�4�1−1′� (15)

Index l represents the order of the expansion and, in the
case of three planar sources, its acceptable minimum value
is l= 3 (corresponding to three electric dipoles). Moreover
the terms gl�r� r

′� of Eq. (12), given by

gl�r� r
′�=

{−ikjl�kr�h�2�l �kr ′� r < r ′

−ikjl�kr ′�h�2�l �kr� r > r ′
�i =−j�

(16)
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present a discontinuity peak of the first derivative at
the point Q (point of singularity reported in Fig. 1(a)).
Moreover the Eq. (16) satisfies the Sommerfeld condition
(rgl → 0 for r →�). The spherical Bessel functions9�19 in
Eq. (16) are given by

jl�x�=
(
�

2x

)1/2

Jl+�1/2��x� (17)

and the spherical Hankel functions9�20 are defined by

h
�2�
l �x�=

(
�

2x

)1/2

�Jl+�1/2��x�− iNl−�1/2��x�� (18)

that for a distance r 
 : (Refs. [7, 8]) are of the type

h2
l �x�� i

1 ·3 ·5 · · · · �2l−1�
xl+1

(19)

Regarding the contribution of the impressed currents Ji
reported in Figure 1(a) we consider the three dipole
moments generated by a cubic current wave source13

according to the 3D dielectric corner geometry. The three
dipole moments in each direction are

Pi0 =
∫
Ji dV = niJiL

3 sin�kL/2�
�kL/2�

(20)

where ni is the unit vector normal to the coordinate
planes and L is the side of the dielectric cube. The dipole
moments values are obtained by applying the following
impressed currents in the dielectric cube centre.

Jix �r�= n3Jie
−jkx Jiy �r�= n2Jie

−jky

Jiz �r�= n1Jie
−jkz (21)

4. ANALYTICAL AND NUMERICAL RESULTS

By applying the STRD for a 90 deg. dielectric cor-
ner embedded in air ��2 = 1) we obtain the analytical
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Fig. 3. Analytical behaviour of the singularity � respect to the index �1.
The index �2 is equal to 1 (air dielectric permittivity).
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behaviour of the singularity � (see Fig. 3). In order to eval-
uate the electric field in a point P near a Si ��1 = 10349)
dielectric cube corner we consider the Green G�r� r′� func-
tion expanded by the Legendre functions Pm

l . In Figure 4
we show the analytical Legendre functions used in the
Green’s expansion. The expanded Green’s function in
air material at working wavelength of :0 = 1355 
m is
reported in Figures 5 and 6. Figure 7 shows the electric
near field �E�P�� along the Si cube diagonal by using the
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Fig. 5. (a) Analytical Green’s function by varying the cylindrical coor-
dinates 1 and � = �r− r′ �, (b) analytical Green’s function for different
values of 1 angles.
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Fig. 6. Analytical Green’s function by varying the cylindrical coordi-
nates 0 and �= �r− r′ �.

multipole expansion and the singularity � evaluated by the
STRD approach: a Si cubic dielectric corner (L= 1 
m)
at working wavelength of :0 = 1355 
m is considered.
In order to validate STRD approach, we model a 3D
dielectric corner by the FEM method. The model takes
into account the Si dielectric cube (L= 10 
m) embedded
in an air cube (cubical spatial domain closed by absorb-
ing plates), each side of the dielectric cube is excited
by surface currents Js and Ms obtained from the internal
impressed currents Ji at :0 = 1355 
m defined in the ana-
lytical model. Through this model we evaluate the near
field in proximity of the dielectric corner along Si cube
diagonal. In order to obtain a good numerical resolution
we use in the commercial FEM solver a large number of
tetrahedral elements (total number of 612455 elements).
In order to compare the results we consider a spatial
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Fig. 7. Analytical and numerical electric near field �E�P��: the elec-
tric field is evaluated along the diagonal of the Si dielectric cube. Inset:
cylindrical coordinates.
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Fig. 8. Comparison between the near field development E�r − r ′� the
3D FEM (commercial solver) model and the STRD model along the cube
diagonal.

discretisation of the STRD method of the same length
of tetrahedral elements used in the 3D FEM simulation.
We observe from Figure 8 the comparison between the
near field obtained by the 3D FEM modeling and by the
STRD model: in both cases after few nanometers (sin-
gularity region) the field becomes stable by confirming
the accuracy of the STRD model. Moreover the numeri-
cal STRD results oscillates around the analytical solution
with a low numerical error. The efficiency of the STRD
model is proved by the low computational cost of the
numerical STRD approach: the multipole expansion order
(l = 3) provides a good convergent solution by allowing
to decrease the computational time of 12 times respect
to the traditional FEM numerical modeling (1 hour is the
computational time for the STRD model, and 12 hours is
the computational time of the commercial FEM solver).
We compared the central processing unit time (CPU) for
a 1-GHz 512/M-RAM personal computer.

5. CONCLUSION

We present a simple and accurate analysis of the
3D-dielectric cube corner obtained by the joint use
of a multipole expansion and the Simultaneous Trans-
verse Resonance Diffraction (STRD) approach. The STRD
method can be also applied to a generic dielectric dis-
continuity, by providing a good characterization of the
field scattered around a discontinuous region. The theory
is validated by means of a numerical FEM simulation.
The proposed model is suitable for inclusion in a standard
full-wave numerical technique, (e.g., FDTD and FEM),
in which a typical drawback is the accurate modeling of
singularities that occur close to sharp edges.
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