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Abstract 

This paper proposes an approach of sensitivity analysis for LCA of building retrofit measures aiming to establish the impact of 
input data uncertainties on the output variance. The approach includes the quantification of data input uncertainties in terms of 
their Probability Distribution Functions (PDFs), their sampling and the uncertainty propagation through Monte Carlo (MC) 
methods. A sensitivity analysis through Variance based decomposition (Sobol’ method) techniques are used to point out the key 
parameters uncertainties that mostly affect the LCA results distributions. The paper presents a building case-study where the MC-
based uncertainty and sensitivity analysis method is applied considering different design options (XPS and Cork internal 
insulation measures) and different scenarios for the assessment of the building energy need (use phase). Results obtained 
highlight that the differences on the Climate change environmental impact between the two design options is quite limited (about 
12%) and this is mainly due to the use phase which is the more relevant input parameter on the overall result. Concerning the 
Sensitivity Analysis, when the building energy need is considered as a “deterministic” input in the LCA assessment, the unitary 
impacts of the design options materials uncertainties are the most influential parameters. On the other hands, when the building 
energy need is represented by a PDF, the quantity of energy carrier consumed and its unitary environmental impact are the most 
influential parameters on the output variance. 
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1. Introduction 

The building sector accounts for 40% of the energy use within Europe. Energy efficiency and the use of 
sustainable materials are then key aspects to be considered to meet the European climate change and energy 
objectives for the 2020 [1]. The 2010 Energy Performance of Buildings Directive (EPBD recast) [2] clearly 
established that all new buildings must be nearly Zero Energy Buildings (nZEB) by 31 December 2020 (public 
buildings by 31 December 2018), with great benefits in energy and environmental terms during the building use 
phase. Nevertheless, European buildings turnover rate is quite low (annually estimated at around 1-1,5% of the 
housing stock [1]), and 30% of actual buildings are historical buildings that ought to last for decades. Consequently, 
there is a great potential to reduce energy use and greenhouse gas emissions related to building renovation sector 
[3][4] and retrofit into Nearly Zero-Energy level is more and more recommended by European Commission [5].  

In this context, building environmental performances need to be deeply evaluated taking into account a lifecycle 
perspective, considering not only building use energy needs but also the environmental aspects related to renovation 
design choices [6]. 

2. Background on LCA probabilistic approaches in building sector 

Life cycle assessment (LCA) is a consolidated methodology for evaluating the environmental loads of products 
and services and it addresses the potential environmental impacts over the life cycle [7][8]. LCA has been used in 
the building sector from early ‘90s and it is an important tool for assessing environmental buildings performances 
[9][10]. However, the practical application of LCA methodologies is often carried out with many simplifications 
related to data inputs and forecasting, that could increase the result uncertainty [11]. For this reason, LCA could 
have practical limitations as a decision-making tool in the analysis of the retrofitting measures, if the user is not 
aware of these inherent limitations and does not have proper tools to assess them [12]. 

In the last decades, several works have been issued on the characterization of uncertainties for LCA. In general, 
uncertainties can be categorized as either aleatory or epistemic. Epistemic uncertainties can be reduced by gathering 
more data or by refining the model. Uncertainties categorized as aleatory do not foresee the possibility to be reduced 
[13]. From an engineering point of view, only epistemic sources can be managed as LCA data input. According to 
Chouquet et al. uncertainty sources in building LCA models can be defined as follows: (i) environmental data 
quality (incomplete, inaccurate, obsolete), (ii) building description (incomplete, inaccurate), (iii) building lifespan 
and components service life (assumptions on lifespan, degree of refurbishment) and (iv) building operation 
(performance of heating equipment, long term evolution of costs and resource depletion, etc.) [14]. 

Environmental data quality is generally estimated using the pedigree matrix approach [15][16][11], introduced 
into LCA repositories (e.g. Eco-invent). Other than that, statistical methods have been used to a limited extent in 
LCAs to characterize the data quality [17][18]. Amongst them, Monte Carlo simulation have been included into 
commercial LCA software (e.g. SimaPro) [19]. Building context and description uncertainties are related to the 
amount of data available for the project under evaluation. Service life of materials and components used in buildings 
is usually shorter than the building lifespan [20][21]. The effective service life of these elements and the related 
uncertainty are affected by many factors and operative condition (e.g. humidity, UV, temperature, etc.) and for these 
reasons maintenance and/or complete substitution is necessary in most of the cases. Data collection can be 
performed by a critical literature review of materials typically used in building and their service life [22]. Building 
operations are affected by a huge uncertainty. Building Performance Simulation software’s provide relevant design 
information by indicating the primary energy consumptions [23][24], but it also deals with a large variety of 
parameters and complexity of factors affected to uncertainties themselves. Furthermore, during the use phase, the 
advent of new technologies, the nature of energy carriers and their associated environmental impact can drastically 
change [25][26]. This topic is particularly relevant for existing buildings, whose energy performance is more 
affected to uncertainties related to existing building features, equipment, use. The above-described uncertain data, 
identified in a typical LCA building model, affect the result in different way. Sensitivity analysis (SA) is a 
systematic procedure which aids to assess the effects of the chosen methods and data on the outcome of a study [27]. 
It can be used in LCA to provide a meaningfulness of uncertainties and their impact on the result.  
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[9][10]. However, the practical application of LCA methodologies is often carried out with many simplifications 
related to data inputs and forecasting, that could increase the result uncertainty [11]. For this reason, LCA could 
have practical limitations as a decision-making tool in the analysis of the retrofitting measures, if the user is not 
aware of these inherent limitations and does not have proper tools to assess them [12]. 

In the last decades, several works have been issued on the characterization of uncertainties for LCA. In general, 
uncertainties can be categorized as either aleatory or epistemic. Epistemic uncertainties can be reduced by gathering 
more data or by refining the model. Uncertainties categorized as aleatory do not foresee the possibility to be reduced 
[13]. From an engineering point of view, only epistemic sources can be managed as LCA data input. According to 
Chouquet et al. uncertainty sources in building LCA models can be defined as follows: (i) environmental data 
quality (incomplete, inaccurate, obsolete), (ii) building description (incomplete, inaccurate), (iii) building lifespan 
and components service life (assumptions on lifespan, degree of refurbishment) and (iv) building operation 
(performance of heating equipment, long term evolution of costs and resource depletion, etc.) [14]. 

Environmental data quality is generally estimated using the pedigree matrix approach [15][16][11], introduced 
into LCA repositories (e.g. Eco-invent). Other than that, statistical methods have been used to a limited extent in 
LCAs to characterize the data quality [17][18]. Amongst them, Monte Carlo simulation have been included into 
commercial LCA software (e.g. SimaPro) [19]. Building context and description uncertainties are related to the 
amount of data available for the project under evaluation. Service life of materials and components used in buildings 
is usually shorter than the building lifespan [20][21]. The effective service life of these elements and the related 
uncertainty are affected by many factors and operative condition (e.g. humidity, UV, temperature, etc.) and for these 
reasons maintenance and/or complete substitution is necessary in most of the cases. Data collection can be 
performed by a critical literature review of materials typically used in building and their service life [22]. Building 
operations are affected by a huge uncertainty. Building Performance Simulation software’s provide relevant design 
information by indicating the primary energy consumptions [23][24], but it also deals with a large variety of 
parameters and complexity of factors affected to uncertainties themselves. Furthermore, during the use phase, the 
advent of new technologies, the nature of energy carriers and their associated environmental impact can drastically 
change [25][26]. This topic is particularly relevant for existing buildings, whose energy performance is more 
affected to uncertainties related to existing building features, equipment, use. The above-described uncertain data, 
identified in a typical LCA building model, affect the result in different way. Sensitivity analysis (SA) is a 
systematic procedure which aids to assess the effects of the chosen methods and data on the outcome of a study [27]. 
It can be used in LCA to provide a meaningfulness of uncertainties and their impact on the result.  
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This paper proposes an approach to conduct a sensitivity analysis in the case of LCA analysis of building retrofit 
measures aiming to establish the impact of input data uncertainties on the output variance. The approach includes 
the quantification of data input uncertainties in terms of their Probability Distribution Functions (PDFs), their 
sampling and propagation through Monte Carlo (MC) methods and finally a sensitivity analysis through Variance 
based decomposition (Sobol’ method) techniques to point out the key parameters uncertainties that mostly affect the 
LCA results distributions. 

The paper presents a building case-study where the MC-based uncertainty and sensitivity analysis method is 
applied considering different approaches for the uncertainties on the building energy performance. Specific results 
obtained are shown and debated, underlining the potentials of the approach. 

3. Methodology 

3.1. Building case-study and retrofit measures 

The case study is a single-family detached house with two floors and an attic of early 1900s, located in Cattolica, 
a coastal town in the centre of Italy (average heating degree days: 2165). The gross volume of the building is about 
467 [m3], the net floor area 178 [m2], for a surface/volume ratio of 0.82. The original walls are made by plastered 
brick masonry (29 [cm] thickness, U-value of 1.76 [W/m2K]), while floors and roof structure consist of the wooden 
joists with respectively pavements (U-value 1.29 [W/m2K]) or clay tiles (U-value 1.68 [W/m2K]). In this exemplary 
case, two alternative internal insulation solutions for the building walls are selected as energy efficiency measures: 

Design option A (Table 1): 11 [cm] XPS coupled with plasterboard, without vapour barrier, directly fixed to the 
wall through a specific mortar; 

Design option B (Table 2): 12 [cm] Cork coupled with plasterboard, with vapour barrier, fixed to the wall 
through a metallic frame. 

Table 1 Design option A 

Materials Thickness 
[m] 

Density 
[kg/m3] 

Thermal conductivity 
[W/mK] 

Mass 
[Kg] 

 
 

Skim coat and Paint - 1200 0.7 27.6 

Stucco - 1970 0.9 64.4 

Plasterboard 0.0125 760 0.20 1748 

XPS insulating mat. 0.11 30 0.035 608 

Fixing screws - 7800 - 25.4 

Table 2 Design option B 

Materials Thickness 
[m] 

Density 
[kg/m3] 

Thermal conductivity 
[W/mK] 

Mass 
[Kg] 

 

D (mm) 

Skim coat and Paint - 1200 0.7 27.6 

Stucco - 1970 0.9 64.4 

Plasterboard 0.0125 760 0.20 1748 

Vapour barrier - 2700 204 74.6 

Cork insulating mat. 0.12 100 0.039 2229.5 

Metal frame and 
fixing screws  - 7800 36 236.7 

 

 Author name / Energy Procedia 00 (2017) 000–000 

The two internal insulation measures allow to reach almost the same U-value for the wall based on the actual 
requirements (U ≤ 0.30 [W/m2K] imposed by Italian Ministerial Decree 26/06/2015 for second level renovation 
interventions in the Italian climatic zone “E (the most widespread in Italy). In particular, 0.28 [W/m2K] for design 
option A and 0.29 [W/m2K] for design option B. The slight different values depend on the commercial insulation 
thicknesses available in the market. The building energy performance for heating has been assessed according to 
national technical standard UNI TS 11300 [28] (that implemented at national level the European standard EN 
13790). The assessment has been performed with the following assumptions: ventilation rate at 0.5 [h-1], simplified 
approach for the calculation of internal heat gains, building internal heat capacity, temperature of unconditioned 
spaces, and thermal bridge effects (percentage increase of the transmission heat transfer), global heating efficiency 
0.8, conversion coefficient to primary energy fixed at 1.05 for fossil fuels. 

3.2. LCA model and PDFs of calculation inputs  

Principles and guidelines provided by the UNI EN ISO 14040 and 14044 have been used for the definition of the 
proposed LCA calculation method. Specifically, the European standard EN 15978 has been followed for the 
consistency in terminology and specificity in building sector. 

The functional equivalent is defined as the insulation intervention needed to cover an area of 184 m2 providing an 
average thermal transmittance of 0,30 [W/m2K] for a service life of 30 years. The definition of this functional unit 
covers both design options previously described and fits with the Italian Ministerial Decree 26/06/2015.  

The system boundaries are limited to the production stage (A1-3), transportation (A4) and operational energy use 
stage (B6) in accordance with the EN 15978 [29]. The construction-installation process (A5) and end-of-life stage 
(C1-4) fall outside the system boundaries according to [12]. Maintenance, replacement and refurbishment (B1-5) 
have not been considered in reference to the components service lives [30]. 

The LCI (Life Cycle Inventory) have been carried out using primary data for the LCA analysis whenever 
available and secondary data from EcoInvent 3.1 database. 

The following LCIA (Life Cycle Impact Assessment) methods have been used for the calculation of the 
environmental impacts: 

• ReCiPe mid-point - Hierarchist (H) version - Europe [31]. 
• Cumulative Energy Demand (CED) [32]. 

Since this study is addressed to building retrofit measures, energy and natural resources are of primary 
importance. To address these perspectives, this study uses Human Health (HH) and Resources (RA) mid-point 
impact categories from the internationally accepted method ReCiPe (H) [31]. The climate change impact category 
within the ReCiPe mid-point (H) method includes all greenhouse gases specified in the Kyoto Protocol using global 
warming potentials from the IPCC Fourth Assessment Report with a 100-year time horizon [33]. The cumulative 
energy demand (CED) method [32] is used, additionally, as a single-issue indicator to evaluate energy demand 
associated with a product’s life cycle. The default ReCiPe mid-point method perspective used is the Hierarchist (H) 
version referred to the normalisation values of Europe. Perspective H is based on the most common policy 
principles with regards to 100 [year] timeframe (as referenced in the ISO 14044 standard). 

The LCA approach proposed in this work is based on an uncertainty and sensitivity analysis (UA and SA) 
through Monte-Carlo method, to build the output probability density function and to assess global uncertainty and 
sensitivity [34]. The output distribution is obtained running the LCA model N times, where N is the dimension of 
the vectors obtained by drawing samples from the LCA input distributions. Once the UA is performed, SA allow to 
determine which of the input parameters influence more the model output uncertainty. In order to perform UA and 
SA, it is therefore necessary to define the PDFs for the model inputs, assumed here to be independent, which will be 
propagated to obtain the probability density of the output variable [22]. PDFs are defined based on different sources: 
literature analysis, existing database, time series from national and international organizations, etc. 

In stage A1-3, the parameters considered as stochastics are the mass of the material and the unitary 
environmental impacts. For the components mass used in the insulation measures, a triangular PDF has been 
assumed with a min = -5% and a max = +10% based on [22]. For the unitary environmental impacts (materials, 
transport, and natural gas energy), the Eco-Invent DB 3.1 has been used to characterize the uncertainties of the 
secondary data [35]. 
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importance. To address these perspectives, this study uses Human Health (HH) and Resources (RA) mid-point 
impact categories from the internationally accepted method ReCiPe (H) [31]. The climate change impact category 
within the ReCiPe mid-point (H) method includes all greenhouse gases specified in the Kyoto Protocol using global 
warming potentials from the IPCC Fourth Assessment Report with a 100-year time horizon [33]. The cumulative 
energy demand (CED) method [32] is used, additionally, as a single-issue indicator to evaluate energy demand 
associated with a product’s life cycle. The default ReCiPe mid-point method perspective used is the Hierarchist (H) 
version referred to the normalisation values of Europe. Perspective H is based on the most common policy 
principles with regards to 100 [year] timeframe (as referenced in the ISO 14044 standard). 

The LCA approach proposed in this work is based on an uncertainty and sensitivity analysis (UA and SA) 
through Monte-Carlo method, to build the output probability density function and to assess global uncertainty and 
sensitivity [34]. The output distribution is obtained running the LCA model N times, where N is the dimension of 
the vectors obtained by drawing samples from the LCA input distributions. Once the UA is performed, SA allow to 
determine which of the input parameters influence more the model output uncertainty. In order to perform UA and 
SA, it is therefore necessary to define the PDFs for the model inputs, assumed here to be independent, which will be 
propagated to obtain the probability density of the output variable [22]. PDFs are defined based on different sources: 
literature analysis, existing database, time series from national and international organizations, etc. 

In stage A1-3, the parameters considered as stochastics are the mass of the material and the unitary 
environmental impacts. For the components mass used in the insulation measures, a triangular PDF has been 
assumed with a min = -5% and a max = +10% based on [22]. For the unitary environmental impacts (materials, 
transport, and natural gas energy), the Eco-Invent DB 3.1 has been used to characterize the uncertainties of the 
secondary data [35]. 
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Table 3 Probabilistic input parameters for the case study 

LCA 
Phase LCA parameter 

Design 
Option 
A 

Design 
Option 
B 

Quantity Impact 

PDF* Reference for 
PDF PDF Reference for 

PDF 

A1-
A3 

Plasterboard X X Tri (1662.9; 1925.5; 
1750.5) [kg] [22] [35] Nor (0.401;0.055) [CO2 

eq/kg] 
Eco-Invent DB3.1 
with MC analysis 

XPS X  
Tri (577.6; 668.8; 
608.1) [kg] [22] [35] Nor (3.98; 0.489) [CO2 

eq/kg] 
Eco-Invent DB3.1 
with MC analysis 

Cork  X Tri (2118.1; 2452.5; 
2229,5) [kg] [22] [35] Nor (1.59; 0.168) [CO2 

eq/kg] 
Eco-Invent DB3.1 
with MC analysis 

Vapour barriers  X Tri (70.9; 82.1; 74.6) 
[kg] [22] [35] Nor (5.02; 0.913) [CO2 

eq/kg] 
Eco-Invent DB3.1 
with MC analysis 

Fixing screw 
(carbon steel) X X Tri (45.2; 52.3; 47,5) 

[kg] [22] [35] Nor (2.01; 0.412) [CO2 
eq/kg] 

Eco-Invent DB3.1 
with MC analysis 

Hook       
(carbon steel)  X Tri (13.13; 15.20; 

13.82) [kg] [22] [35] Nor (2.01; 0.412) [CO2 
eq/kg] 

Eco-Invent DB3.1 
with MC analysis 

C-shape frame 
(carbon steel)  X Tri (131.9, 152.8, 

138.9) [kg]  [22] [35] Nor (2.01;0.412) [CO2 
eq/kg] 

Eco-Invent DB3.1 
with MC analysis 

U-shape frame 
(carbon steel)  X Tri (34.6; 40.1; 36,5) 

[kg] [22] [35] Nor (2.01;0.412) [CO2 
eq/kg] 

Eco-Invent DB3.1 
with MC analysis 

Stucco X X Tri (61.27; 70.94; 
64.49) [kg] [22] [35] Nor (0.104; 0.0117) 

[CO2 eq/kg] 
Eco-Invent DB3.1 
with MC analysis 

Skim coat X X Tri (26.26; 30.40; 
27,64) [kg] [22] [35] Nor (2.23; 0.518) [CO2 

eq/kg] 
Eco-Invent DB3.1 
with MC analysis 

Paint X X Tri (26.26; 30.40; 
27,64) [kg] [22] [35] Nor (6.02; 7.97) [CO2 

eq/kg] 
Eco-Invent DB3.1 
with MC analysis 

A4 Transport X X Tri (50; 300; 120) [km] [12] 
Nor (0.00017; 
0.000013) [kg CO2 
eq/kmkg] 

Eco-Invent DB3.1 
with MC analysis 

B6 
Energy needs 
for heating 
(natural gas) 

X X 

A: Det (921.14) 
[m3/year] Energy 

Building 
Simulation 

A-B: Nor 
(0.539,0.0825) [kgCO2 
eq/m3] 

Eco-Invent DB3.1 
with MC analysis B: Det ( 975.09) 

[m3/year] 
A: Nor (921.14; 149.14) 
[m3/year] [36][37]  A-B: Nor 

(0.539,0.0825) [kgCO2 
eq/m3] 

Eco-Invent DB3.1 
with MC analysis B: Nor (975.09; 158.71) 

[m3/year] [36][37]  

A: Uni (736.9; 1105.4) 
[m3/year] [36][37][38] A-B: Nor 

(0.539,0.0825) [kgCO2 
eq/m3] 

Eco-Invent DB3.1 
with MC analysis B: Uni (780.1; 1170.1) 

[m3/year] [36][37][38] 

* Uni (a,b): uniform distribution between a and b. Nor (µ,σ): normal distribution with mean value µ and standard deviation σ. Tri (a,b,c): 
triangular distribution with lower limit a, upper limit b and mode c, where a < b and a ≤ c ≤ b. Det (a): deterministic value a. 
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The ReCiPe LCIA method has been adopted using a MC analysis with 500 runs for the definition of each PDF. 
In stage A4, the uncertainty on the distance covered by lorry to bring the insulation materials to the building site has 
been assumed based on literature analysis [12]. 

Concerning the use stage (B6), the amount of energy consumed for building heating was considered in 3 different 
ways, leading to three alternative assessment scenarios. In the first scenario (1), energy was fixed at its 
“deterministic” value, coming from the building energy simulation performed according to technical standard UNI 
TS 11300 [28], then in scenarios 2 and 3, specific PDFs were considered according to author judgment and expertise 
and literature suggestions [36][37][38]. The related environmental impact to the Italian energy grid mix is 
represented by a normal distribution in the 3 scenarios (according to Eco-Invent DB3.1 with MC analysis approach). 
All other input parameters required for the analysis are considered deterministic and fixed in single value.  

The material quantities and a summary of the PDFs of the LCA input distributions considered in this study are 
reported in Table 3. Concerning the unitary impacts, for simplicity, it has been reported only the Climate Change 
indicator [kg CO2 eq.] but all the indicators in the ReCiPe method were considered and assessed. 

 

3.3. Uncertainty propagation and Sensitivity Analysis 

The distributions of the LCA input variables are then propagated through MC methods considering this specific 
LCA model to assess the global environmental impact. As a consequence of this procedure, the resulting impact is 
evaluated based on its probability distribution. 

The quality of the output PDF is dependent on the number of simulations performed. Generally, in MC methods, 
a high number of runs is necessary to ensure the accuracy of the result. A minimisation of this number can be 
obtained through an efficient sampling strategy [39]. Therefore, in this study, Sobol’s sequences are used as quasi-
random sampling technique in order to generate samples as uniformly as possible. The sample size needed depends 
on the number of input variables and was calculated as n(2k+2) [40], where n takes the value of 16, 32, 64, etc…; k 
is the number of variables. The efficiency of the sampling strategy was assessed by comparing the deviations of the 
outcome at increasing runs (until approx. 6912 runs) compared to a reference solution with MC Basic Random 
samples (BRS) at 20000 runs. 

Finally, Sensitivity Analysis through Variance based decomposition (Sobol’ method) techniques was performed 
to obtain the sensitivity indices, which allow to establish which input uncertainties are more influential on output 
result. Through this method, it is possible to obtain two sets of indices: the “first-order” and the “total-order” 
indices. The “first-order” sensitivity index (Si) represents the main contribution of each input factor to the variance 
of the output. The “total-order” index measures the contribution to the output variance due to each input, including 
all variance caused by its interactions with any other input variables. The higher the value of the sensitivity indices, 
the most influential are the related parameters of the model. Therefore, since SA allow establishing which 
parameters need accurate distributions and which parameter variations can be neglected, the model can then be 
updated to improve the calculation efficiency or limit data gathering activities. The probabilistic methodology 
developed has been implemented in R, a free software environment for statistical computing. 

4. Results and discussion 

The LCA output PDFs of the two design options, A (XPS) and B (cork), in the three energy scenarios for the 
Climate change indicator [kg CO2 eq.] are reported in Fig. 1. They have been calculated using 6912 model runs, 
once assessed that this was to minimum sample size to guarantee the quality of the outcome. As example, looking at 
the design option A, scenario 2 (compared to the BRS simulation at 20000 runs) the normalized mean and standard 
deviation of the output sample are respectively: 0.03% and 0.4%. In the Fig. 1, the red line represents the PDF of the 
output coming from the BRS simulation.  

For design option A (black lines – XPS), the median value of the impact is respectively 23079.7 [kg CO2 eq.] for 
scenario 1 (with a standard deviation of 397.3), 22836.4 [kg CO2 eq.] for scenario 2 (with a standard deviation of 
4394.9) and 22872.6 [kg CO2 eq.] for scenario 3 (with a standard deviation of 3780.3). Similarly, for design option 
B (gray lines – Cork), the median value of the impact is respectively 26231.7 [kg CO2 eq.] for scenario 1 (with a 
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standard deviation of 478.7), 25952.8 [kg CO2 eq.] for scenario 2 (with a standard deviation of 4685.4) and 26004.3 
[kg CO2 eq.] for scenario 3 (with a standard deviation of 4010.6). 

 

Fig. 1 PDFs of the environmental impact for the design options A and B in the energy scenarios 1-2-3 and convergence assessment. 

Results obtained highlight that the differences on the Climate change environmental impact among the two 
design options is quite limited (about 12%) and this is mainly due to the use phase (B6) which is the more relevant 
input parameter on the overall result. Furthermore, focusing on the outcomes of the assessment performed in the 
alternative energy scenarios (within the same design option), it is evident how the differences among the median 
values are quite low, while the standard deviations vary widely. This is mainly due to the higher uncertainty range 
that characterizes the energy PDFs (both normal and uniform) compared to the deterministic case, considering also 
that the major contribution to the global impact mainly comes from the use phase. Finally, the shape of the output 
PDFs is only slightly influenced by the energy distributions shapes of scenarios 2 and 3: the results obtained with 
normal and uniform distributions are similar. 

Concerning the Sensitivity Analysis, the first-order indices (Si), calculated through Sobol method, are reported in 
Fig. 2 for design option A and in Fig. 3 for the design option B. These graphs provide an idea on the input ranking 
and an estimate of their influence on the output variance. For both design options, the ranking based on the Si in the 
three energy scenarios is similar. In particular, when the building energy need is fixed in its “deterministic” value 
obtained by the energy simulation and the related impact is also considered deterministic (scenario 1), the unitary 
impacts of the design options materials uncertainties are the most influential parameters.  

The contribution of insulation and painting impacts uncertainties on the variance of the output is about 89% for 
design option A (XPS) and 85% for design option B (cork), as obtaining by summing the related Si. On the contrary, 
when we consider the energy need represented by PDFs with wide uncertainty margins (normal or uniform 
distributions), the Si related to the use phase (B6) are much higher. Therefore, in scenarios 2 and 3, the quantity of 
natural gas consumed and its unitary environmental impact are the most influential parameters on the output 
variance. In both scenarios and for both design options, the related Si contribute until 98% on the outcome. 
Consequently, the other parameter uncertainties (concerning material and transport phases) in scenarios 2 and 3 are 
never influential. These results highlight the importance of the correct characterization of the input PDFs, since their 
influence on the output variance can be noteworthy. 
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Fig. 2 Results of SA for design option A (scenarios 1-2-3) 

 

Fig. 3 Results of SA for design option B (scenarios 1-2-3) 

5. Conclusions  

LCA is a consolidated methodology in the building sector. Nevertheless, especially in building refurbishments 
interventions, LCA is often carried out with many simplifications and assumptions on data inputs -as the building 
energy-needs that actually increase the result uncertainty, even if this aspect is not highlighted by the results, usually 
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presented as “deterministic” single values. LCA could be a more effective decision-making tool in the analysis of 
retrofitting measures, if the user is more aware of these inherent limitations and has the possibility to quantify them. 
Coupling together LCA and LCC probabilistic approaches, it will be possible to providing a more robust decision 
support about energy efficiency projects, including building retrofitting measures. Indeed, the same potential has 
been demonstrated for the life cycle cost analysis using a probabilistic LCC approach [41]. 

The paper proposes a Monte Carlo-based approach applied to an LCA analysis of building retrofit measures, 
including the characterisation of data inputs as probability distributions, the uncertainty propagation and a sensitivity 
analysis through variance based decomposition methods to establish the impact of input data uncertainties on the 
output distribution. The probabilistic methodology is applied to a building case-study refurbished through two 
alternative internal insulation solutions (XPS and Cork), also considering several scenarios for the characterisation 
of the building energy needs. 

Results obtained highlighted a quite limited difference on the environmental impact distributions due to the two 
design options considered, mainly because the impact of the use phase is the same for the two measures and this 
phase is the most relevant on the overall impact result. Nevertheless, the study outcomes point out how the model 
inputs deeply influence the output variance depending on the specific assumptions made on their PDFs. In 
particular, in this study we addressed the building energy need, which represents the most impacting phase in usual 
building refurbishment projects, underlying how fixing it at its deterministic value as obtained by energy simulation 
software on characterizing it through PDFs could have a strong impact on result uncertainty.  

Future work on this research context will be the investigation of other insulation materials using the same 
methodology to address if other insulation materials highly affect the final result compared with the two analysed 
measures (XPS and Cork). The SA conducted on a wide range of insulation measures will provide the evidence of 
the most important input parameters which affect the result and to consider only these latter for the definition of a 
robust standardized methodology. In addition, it is of interest, in this context, the investigation of other lifecycle 
phases, which have been neglected in this study such as maintenance, replacement, end-of-life, etc. Indeed, these 
phases are affected by high uncertainties, which can propagate on the final result. 

Therefore, the development of a standardized methodology will be useful to analyse different case studies and to 
support engineers and architects in the decision making process for the selection of the most sustainable internal 
insulation measure in building retrofit. 

Acknowledgements 

 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under 
grant agreement No 637268. 

References 

[1] European Commission - Ad-hoc Industrial Advisory Group, Energy-Efficient Buildings PPP Multi-Annual roadmap and longer term 
strategy, 2010. http://www.ectp.org/cws/params/ectp/download_files/36d1191v1_eeb_roadmap.pdf. 

[2] Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast), 
Official Journal of the European Union. 53 (2010) 13–35. 

[3] Ferrante A, Technologies and Socio-economic Strategies to nZEB in the Building Stock of the Mediterranean Area, in: Energy Performance 
of Buildings, Springer International Publishing, Cham, 2016: pp. 123–163. doi:10.1007/978-3-319-20831-2_8. 

[4] Ferrante A, Energy retrofit to nearly zero and socio-oriented urban environments in the Mediterranean climate, Sustainable Cities and 
Society. (2014) 1–17. doi:10.1016/j.scs.2014.02.001. 

[5] Commission Recommendations (EU) 2016/1318 of 29 July 2016 on guidelines for the promotion of nearly zero-energy buildings and best 
practices to ensure that, by 2020, all new buildings are nearly zero-energy buildings, (n.d.). http://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX%253A32016H1318&from=EN (accessed September 29, 2016). 

[6] Säynäjoki A, Heinonen J, Junnila S, A scenario analysis of the life cycle greenhouse gas emissions of a new residential area. Environmental 
Research Letters 2012;7(3). 

[7] ISO 14040:2006 Environmental management – Life cycle assessment – Principles and framework; 2006. 
[8] BS EN 15978:2011 Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method; 

2011. 

 Author name / Energy Procedia 00 (2017) 000–000 

[9] Ortiz O, Castells F, Sonnemann G. Sustainability in the construction industry: a review of recent developments based on LCA. Construction 
and Building Materials 2009;1: 28-39. 

[10] Chau C.K., Leung T.M., Ng W.Y. A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions 
assessment on buildings. Appl. Energy 2015;143: 395-413. 

[11] Huijbregts MAJ, Norris G, Bretz R, Ciroth A, Maurice B, von Bahr B, et al. Framework for modelling data uncertainty in life cycle 
inventories. International Journal of Life Cycle Assessment 2001;6: 127-32. 

[12] Oregi X, Hernandez P, Gazulla C, Isasa M. Integrating Simplified and Full Life Cycle Approaches in Decision Making for Building Energy 
Refurbishment: Benefits and Barriers. Buildings 2015;5: 354-380. 

[13] Der Kiureghian A, Ditlevsen O. Aleatory or epistemic? Does it matter? Structural Safety 2009;31: 105-112. 
[14] Chouquet J, Bodin O, Kohler N. Dealing with sensitivity and uncertainty analysis in integrated building LCA model, The International 

Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, 2003; Weimar, Germany. 
[15] Weidema BP, Wesnaes MS. Data quality management for life cycle inventories-an example of using data quality indicators. Journal of 

Cleaner Production 1996;4: 167-174. 
[16] Huijbregts MAJ. Application of uncertainty and variability in LCA, part I: a general framework for the analysis of uncertainty and 

variability in life cycle assessment. International Journal of Life Cycle Assessment 1998;3(5): 273-280. 
[17] Guo M., Murphy RJ. LCA data quality: Sensitivity and uncertainty analysis. Science of the Total Environment 2012;435–436: 230-243. 
[18] Frischknecht R, Rebitzer R. The ecoinvent database system: a comprehensive web-based LCA database. Journal of Cleaner Production 

2005;13: 1337-1343. 
[19] http://www.simapro.co.uk/ accessed on 25/01/2017. 
[20] Ashworth A. Estimating the life expectancies of building components in lifecycle costing calculations. Structural Survey 1996;14(2): 4-8. 
[21] Kellenberger D, Althaus HJ, Relevance of simplifications in LCA of building components. Building and Environment 2009;44: 818-825. 
[22] Hoxha E, Habert G, Chevalier J, Bazzana M, Le Roy R. Method to analyse the contribution of material’s sensitivity in buildings’ 

environmental impact. Journal of Cleaner Production 2014;66: 54-64. 
[23] Hopfe CJ, Hensen JLM. Uncertainty analysis in building performance simulation for design support. Energy and Buildings 2011;43: 2798-

2805. 
[24] Nguyen AT, Reiter S, Rigo P. A review on simulation-based optimization methods applied to building performance analysis. Applied Energy 

2014;113: 1043-1058. 
[25] de Vries, B.J.M., van Vuuren, D.P., Hoogwijk, M.M., 2007. Renewable energy sources: their global potential for the first-half of the 21st 

century at a global level: an integrated approach. Energy Policy 35, 2590e2610. 
[26] Tian W, de Wilde P. Uncertainty and sensitivity analysis of building performance using probabilistic climate projections: a UK case study. 

Automation in Construction 2013;20: 1096-1109. 
[27] Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisna M, Tarantola S. Global Sensitivity Analysis. The Primer. 

Chichester: Wiley, 2008. 
[28] UNI/TS 11300-1:2014 Prestazioni energetiche degli edifici - Parte 1: Determinazione del fabbisogno di energia termica dell’edificio per la 

climatizzazione estiva ed invernale, (n.d.). 
[29] European Standard, EN 15978 Sustainability of construction works - Assessment of environmental performance of buildings - Calculation 

method, 2011 (2011) 1–61. 
[30] EeBGuide Guidance Document. Part B: Buildings. Operational Guidance for Life Cycle Assessment Studies of the Energy-Efficient 

Buildings Initiative 2011. 
[31] Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R. ReCiPe 2008: A life cycle impact assessment method which 

comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation - First edition - VROM–Ruimte 
en Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer. 2009, (Available from http://www.lcia-recipe.net). 

[32] Jungbluth N, Frischknecht R. Implementation of life cycle impact assessment methods—chapter 2: cumulative energy demand, Ecoinvent 
report No. 3, Swiss Centre for LCI, Dübendorf, CH. 2010, (Available from http://www.ecoinvent.org). 

[33] IPCC. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M. et al (eds). Cambridge University Press, Cambridge, UK, and 
New York, USA, 2007. 

[34] Janssen H, Roels S. Annex 55 Reliability of Energy Efficient Building Retrofitting- Probability Assessment of Performance and Cost 
Probabilistic Tools. 2015. 

[35] Heijungs R, Frischknecht R. Representing statistical distributions for uncertain parameters in LCA: relationships between mathematical 
forms, their representation in EcoSpold, and their representation in CMLCA. Int. J. Life Cycle Assess. 2005;10(4): 248-254. 

[36] Juodis et al., Inherent variability of heat consumption in residential buildings. Energy Buildings, 1999;11:1188-1194. 
[37] Crowther P. Design for Disassembly to Recover Embodied Energy. In Proceedings of the 16th International Conference on Passive and 

Low-Energy Architecture, Melbourne, Australia, 1999. 
[38] Oregi X., Hernandez P., Hernandez R. Analysis of life-cycle boundaries for environmental and economic assessment of building energy 

refurbishment projects, Energy and Buildings. 2017;136:12–25. doi:10.1016/j.enbuild.2016.11.057. 
[39] Janssen H. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence, Reliability Engineering & System 

Safety. 2013;109:123–132. doi:10.1016/j.ress.2012.08.003. 
[40] Nguyen AT., Reiter S. A performance comparison of sensitivity analysis methods for building energy models, Building Simulation. 

2015;8:651-664. doi:10.1007/s12273-015-0245-4. 
[41] Di Giuseppe E, Iannaccone M, Telloni M, D’Orazio M, Di Perna C. Probabilistic life cycle costing of existing buildings retrofit 

interventions towards nZE target: Methodology and application example, Energy and Buildings, 2017; 144:416-432. 



	 Claudio Favi et al. / Energy Procedia 134 (2017) 394–403� 403 Author name / Energy Procedia 00 (2017) 000–000  

presented as “deterministic” single values. LCA could be a more effective decision-making tool in the analysis of 
retrofitting measures, if the user is more aware of these inherent limitations and has the possibility to quantify them. 
Coupling together LCA and LCC probabilistic approaches, it will be possible to providing a more robust decision 
support about energy efficiency projects, including building retrofitting measures. Indeed, the same potential has 
been demonstrated for the life cycle cost analysis using a probabilistic LCC approach [41]. 

The paper proposes a Monte Carlo-based approach applied to an LCA analysis of building retrofit measures, 
including the characterisation of data inputs as probability distributions, the uncertainty propagation and a sensitivity 
analysis through variance based decomposition methods to establish the impact of input data uncertainties on the 
output distribution. The probabilistic methodology is applied to a building case-study refurbished through two 
alternative internal insulation solutions (XPS and Cork), also considering several scenarios for the characterisation 
of the building energy needs. 

Results obtained highlighted a quite limited difference on the environmental impact distributions due to the two 
design options considered, mainly because the impact of the use phase is the same for the two measures and this 
phase is the most relevant on the overall impact result. Nevertheless, the study outcomes point out how the model 
inputs deeply influence the output variance depending on the specific assumptions made on their PDFs. In 
particular, in this study we addressed the building energy need, which represents the most impacting phase in usual 
building refurbishment projects, underlying how fixing it at its deterministic value as obtained by energy simulation 
software on characterizing it through PDFs could have a strong impact on result uncertainty.  

Future work on this research context will be the investigation of other insulation materials using the same 
methodology to address if other insulation materials highly affect the final result compared with the two analysed 
measures (XPS and Cork). The SA conducted on a wide range of insulation measures will provide the evidence of 
the most important input parameters which affect the result and to consider only these latter for the definition of a 
robust standardized methodology. In addition, it is of interest, in this context, the investigation of other lifecycle 
phases, which have been neglected in this study such as maintenance, replacement, end-of-life, etc. Indeed, these 
phases are affected by high uncertainties, which can propagate on the final result. 

Therefore, the development of a standardized methodology will be useful to analyse different case studies and to 
support engineers and architects in the decision making process for the selection of the most sustainable internal 
insulation measure in building retrofit. 
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