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1. Introduction

The appearance of quark matter in the interior of massive neutron stars (NS) is one of the
mostly debated issues in the physics of these compact objects. Many equations of state (EoS) have
been used to describe the interior of NS. If we consider only purely nucleonic degrees of freedom
and the EoS is derived within microscopic approaches [1], it turns out that for the heaviest NS,
close to the maximum mass (about two solar masses), the central particle density reaches values
larger than 1/ f m3. In this density range the nucleon cores (dimension ≈ 0.5 fm) start to touch
each other, losing their identity, and quark degrees of freedom are excited at a macroscopic level.
Unfortunately, while the microscopic theory of the nucleonic EoS has reached a high degree of
sophistication [2, 3, 4, 5, 6], the quark matter (QM) EoS is still poorly known at zero temperature
and at the high baryonic density appropriate for NS. In fact the essential theoretical tool, i.e. lattice
formulation of the quantum chromodynamics (QCD) is inapplicable at large baryon densities and
small temperature due to the so-called Sign Problem [7], and this is due to its complicated nonlinear
and nonperturbative nature. On the other hand, in the large temperature and small density region
lattice QCD simulations have provided controlled results for the EoS as well as for the nature of
the transition [8, 9].

Unfortunately it is not straightforward to predict the relevance of quark degrees of freedom in
the interior of NS for the various physical observables, like cooling evolution, glitch characteris-
tics, neutrino emissivity, and so on. The value of the maximum mass of NS is probably one of the
physical quantities that is most sensitive to the presence of quark matter in NS. The recent obser-
vation of a large NS mass in PSR J0348+0432 with mass M = 2.01± 0.04M⊙ (M⊙ = 2× 1033g)
[10] implies that the EoS of NS matter is stiff enough to keep the maximum mass at these large
values. Purely nucleonic EoS are able to accommodate such large masses [1]. Since the presence of
non-nucleonic degrees of freedom, like hyperons and quarks, tends usually to soften considerably
the EoS with respect to purely nucleonic matter, thus lowering the mass value, their appearance
would in this case be incompatible with observations. The large value of the mass could then be
explained only if both hyperonic and quark matter EoS are stiffer than expected.

Many models of quark matter do exist, and they all contain a high degree of uncertainty. The
best one can do is to compare the predictions of different models and to estimate the uncertainty
of the results for the NS matter as well as for the NS structure and mass. In this paper we use the
Field Correlator Model (FCM) for the quark EoS [11], which in principle is able to cover the full
temperature-chemical potential plane. The FCM EoS contains ab initio the property of confine-
ment, which is expected to play a role as far as the stability of a neutron star is concerned [12].
This model can be also tested against NS observations [13], which could seriously constrain the
model parameters, i.e. the quark-antiquark potential V1 and the gluon condensate G2. Recently,
we found that the FCM model can be expressed in the language of the "Constant Speed of Sound"
(CSS) parametrization [14, 15], and we showed how its parameters can be mapped on to the CSS
parameter space. We remind that the CSS scheme is a general parametrization suitable for express-
ing experimental constraints in a model-independent way, and for classifying different models of
quark matter and establishing connections among them. It is applicable to high-density equations
of state for which: (a) there is a sharp interface between nuclear matter and quark matter, (b) the
speed of sound in the high-density matter is pressure-independent in the range between the first-
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order transition pressure up to the maximum central pressure of neutron stars. Given the nuclear
matter EoS εNM(p), the high-density EoS can be expressed as

ε(p) =

{
εNM(p) p < ptrans

εNM(ptrans)+∆ε + c−2
QM(p− ptrans) p > ptrans

(1.1)

where the three parameters: the pressure ptrans at the transition, the discontinuity in energy density
∆ε at the transition, and the speed of sound cQM characterize completely the high-density phase.

As far as the hadronic phase is concerning, we use two definite EoS, based on the Brueckner-
Hartree-Fock many-body theory for nuclear matter, both in its non-relativistic and relativistic ver-
sion. Those are briefly reviewed in the next Section. In Sect. 3 we illustrate the FCM at finite
temperature and density, with the inclusion of the color-flavour locking effect. Sect. 4 contains
numerical results, with some general results on the hadron-quark phase transition as described by
the CSS parametrization. In Sect.5 we discuss the FCM mapping onto the CSS parametrization and
the consequent mass-radius-central density relation for hybrid stars. Effects due to the inclusion of
hyperons are also briefly mentioned. Conclusions are reported in Sect.6.

2. Hadronic Phase: EoS in the Brueckner-Bethe-Goldstone theory

The BHF method for the nuclear matter EoS is based on the Brueckner-Bethe-Goldstone
(BBG) many-body theory, which is the linked cluster expansion of the energy per nucleon of nu-
clear matter (see Ref.[16], chapter 1 and references therein). In this approach one systematically
replaces the bare nucleon-nucleon (NN) interaction V by the Brueckner reaction matrix G, which
is the solution of the Bethe-Goldstone equation

G(ρ ;ω) =V +V ∑
kakb

|kakb⟩Q⟨kakb|
ω − e(ka)− e(kb)

G(ρ ;ω), (2.1)

where ρ is the nucleon number density, ω is the starting energy, and |kakb⟩Q⟨kakb| is the Pauli
operator. e(k) = e(k;ρ) = h̄2k2

2m +U(k;ρ) is the single particle energy, and U is the single-particle
potential,

U(k;ρ) = ∑
k′≤kF

⟨kk′|G(ρ ;e(k)+ e(k′))|kk′⟩a (2.2)

The subscript “a” indicates antisymmetrization of the matrix element. In the BHF approximation
the energy per nucleon is

E
A
(ρ) =

3
5

h̄2 k2
F

2m
+

1
2A ∑

k,k′≤kF

⟨kk′|G(ρ ;e(k)+ e(k′))|kk′⟩a (2.3)

The nuclear EoS can be calculated with good accuracy in the Brueckner two hole-line approxima-
tion with the continuous choice for the single-particle potential, since the results in this scheme are
quite close to the calculations which include also the three hole-line contribution.

3



P
o
S
(
M
P
C
S
2
0
1
5
)
0
0
8

Hadron-quark Phase Transition in Hybrid Stars with the Field Correlator Method G. F. Burgio

However, as it is well known, the non-relativistic calculations, based on purely two- body
interactions, fail to reproduce the correct saturation point of symmetric nuclear matter and one
needs to introduce three- body forces (TBFs). In our approach the TBF’s are reduced to a density
dependent two-body force by averaging over the position of the third particle [2]. In this work
we choose the Argonne v18 nucleon-nucleon potential [17], supplemented by the so-called Urbana
model [18] as three-body force. This allows to reproduce correctly the nuclear matter saturation
point ρ0 ≈ 0.16 fm−3, E/A ≈ −16 MeV, and gives values of incompressibility and symmetry
energy at saturation compatible with those extracted from phenomenology. For completeness we
will show results obtained with the relativistic counterpart, i.e. the Dirac-Brueckner-Hartree-Fock
scheme [19] where the Bonn A potential is used as NN interaction. In the low density region
(ρ < 0.3 fm−3), both BHF+TBF binding energies and DBHF calculations are very similar, whereas
at higher densities the DBHF is slightly stiffer [1]. This discrepancy can be understood by noticing
that the DBHF treatment is equivalent to introducing in the nonrelativistic BHF the three-body
force corresponding to the excitation of a nucleon-antinucleon pair, the so-called Z-diagram, which
is repulsive at all densities.

The BBG approach has been extended to the hyperonic sector in a fully self-consistent way
[20, 21], by including the Σ− and Λ hyperons, but in this paper we mainly consider stellar matter
as composed by neutrons, protons, and leptons in beta equilibrium, and only at the end we shall
briefly discuss an example that includes the hyperonic degrees of freedom.

The chemical potentials of each species are the fundamental input for solving the equations of
chemical equilibrium, charge neutrality and baryon number conservation, yielding the equilibrium
fractions of all species. Once the composition of the β -stable, charge neutral stellar matter is
known, one can calculate the equation of state, i.e., the relation between pressure P and energy
density ε as a function of the baryon density ρ . It can be easily obtained from the thermodynamical
relation

P = −dE
dV

= PB +Pl (2.4)

PB = ρ2 d(εB/ρ)
dρ

, Pl = ρ2 d(εl/ρ)
dρ

(2.5)

with E the total energy and V the total volume. The total nucleonic energy density εB is obtained
by adding the energy densities of each species εi. As far as leptons are concerned, at those high
densities electrons are a free ultrarelativistic gas, whereas muons are relativistic. Hence their energy
densities εl are well known from textbooks [22]. The numerical procedure has been often illustrated
in papers and textbooks, and therefore it will not be repeated here.

3. Quark Matter EoS : the Field Correlator Method

The approach based on the FCM provides a natural treatment of the dynamics of confinement
in terms of the Color Electric (DE and DE

1 ) and Color Magnetic (DH and DH
1 ) Gaussian correla-

tors, being the former one directly related to confinement, so that its vanishing above the critical
temperature implies deconfinement [11]. The extension of the FCM to finite temperature T and
chemical potential µq = 0 gives analytical results in reasonable agreement with lattice data thus
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allowing to describe correctly the deconfinement phase transition [23, 24]. In this work, we are
interested in the physics of neutron stars, and therefore the extension of the FCM to finite values of
the chemical potential [23] allows to obtain the Equation of State of the quark-gluon matter in the
range of baryon density typical of the neutron star interiors.

Within the FCM, the quark pressure for a single flavour is simply given by [23]

Pq/T 4 =
1

π2 [ϕν(
µq −V1/2

T
)+ϕν(−

µq +V1/2
T

)] (3.1)

where

ϕν(a) =
∫ ∞

0
du

u4
√

u2 +ν2

1
(exp [

√
u2 +ν2 −a]+1)

. (3.2)

being ν = mq/T , and V1, which is the result of the integration of a fundamental QCD correlator

V1 =
∫ 1/T

0
dτ(1− τT )

∫ ∞

0
dχχDE

1 (
√

χ2 + τ2) , (3.3)

indicates the large distance limit of the static qq̄ potential : V1 ≡ limx→∞V1(x). Therefore its value
is an effective measure of the strength of the interaction when the particles are infinitely separated.
Incidentally, this means that a change of sign of V1 does not imply a change in the attractive or
repulsive nature of the interaction which is instead related to the sign of the derivative of V1(x) and,
on the same footing, V1 = 0 does not exclude a finite interaction at short distance. The potential V1

in Eq.(3.3) is assumed to be independent on the chemical potential, and this is partially supported
by lattice simulations at very small chemical potential, as will be discussed below.

The EoS is completely specified once the gluon contribution is added to the quark pressure,
i.e.

Pg/T 4 =
8

3π2

∫ ∞

0
dχχ3 1

exp(χ + 9V1
8T )−1

(3.4)

and therefore
Pqg = Pg + ∑

j=u,d,s
P j

q +∆εvac (3.5)

where Pg and P j
q are respectively given in Eq. (3.1) and (3.4), and

∆εvac ≈−
(11− 2

3 N f )

32
G2

2
(3.6)

corresponds to the difference of the vacuum energy density between deconfined and confined phase,
being N f the flavour number (N f = 3 in this paper). G2 is the gluon condensate whose numerical
value, determined by the QCD sum rules, is known with large uncertainty [25]

G2 = 0.012±0.006 GeV4 (3.7)

Therefore the EoS in Eq.(3.5) essentially depends on two parameters, namely the quark-antiquark
potential V1 and the gluon condensate G2. It is interesting to notice that G2 appears only in the
vacuum contribution to the pressure (3.6), and plays the same role of the bag constant in the MIT
bag model. In addition, if one turns V1 off, Pq becomes the pressure of free quarks, and in this
case the FCM reduces to the simplest version of the bag model. Therefore V1 can be regarded as
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the main correction to the free quarks dynamics inside the bag. Then, as the effect of confinement
in the MIT bag model is accounted for by the presence of the bag constant, correspondingly in
the FCM it is signaled by a negative vacuum pressure, and the transition to the deconfined phase
corresponds to a change in the value of the bag or of the vacuum pressure.

To describe the deconfinement transition, we want to compare the hadronic pressure that by
definition corresponds to the confined phase, and the quark matter pressure of the deconfined phase.
To this purpose we only have to use the value of the vacuum pressure of the latter phase that is given
in Eq.(3.6), as estimated in [23, 24]. This is the main ingredient that governs the transition, while
the inter-particle interaction V1 provides a smaller correction to the deconfinement picture.

At finite temperature and vanishing baryon density, a comparison with the available lattice
calculations of the Wuppertal-Budapest [26], and hotQCD collaborations [9], provides clear indi-
cations about the specific values of the two parameters of the FCM, and in particular their values at
the critical temperature Tc. These estimates are related to the values of the parameters at T = µB = 0
which, in turn, can be used as an input to study the EoS at T = 0 and finite µB > 0.

In ref.[27] the EoS at zero baryon density has been derived, by explicitly assuming a temper-
ature dependence of the gluon condensate G2 as found in lattice simulations [28, 29], namely an
almost constant G2(T ) for 0 < T < Tc, with a sudden drop around Tc to one half of its value, fol-
lowed by the constant behavior G2(T ) = G2(T = 0)/2, for T > Tc. In addition, an indication on the
value of V1(Tc) has been extracted in [30], starting from the expression of the critical temperature
obtained in [27, 31]

Tc =
a0G1/4

2
2

(
1+

√
1+

V1(Tc)

2a0G1/4
2

)
, (3.8)

where a0 = (3π2/768)1/4. In fact, once the values of G2 and Tc are fixed, one immediately gets
V1(Tc) from Eq. (3.8), and in ref. [30] it has been shown that, for G2(T = 0) = 0.012GeV4, the crit-
ical temperatures found in [32, 33], respectively Tc = 147±5 MeV and Tc = 154± 9 MeV, corre-
spond to rather small values of V1 (V1(Tc)≲ 0.15 GeV), while the optimum value indicated in [31],
V1(Tc) = 0.5 GeV, reproduces those temperatures for small values of G2, i.e. G2 ≃ 0.004GeV4.
However, one should recall that Eq.(3.8) is not extremely accurate, being obtained by neglecting
the hadron pressure at the transition, which in [31] is estimated as a 10% uncertainty. Hence a check
of the EoS focused on the critical point T = Tc only, could be too restrictive, as the numerical data
on lattice cover a large temperature range above Tc.

For that, we compare in Fig.1 the predictions of the FCM with the available lattice data around
and above the critical temperature. In Fig.1 we concentrate on the interaction measure (ε−3p)/T 4,
which is particularly significant because it depends both on the energy density and on the pressure
of the system and shows, around the critical temperature, large deviations from zero, i.e. the
value of the interaction measure of a free gas of massless particles. The predictions of the FCM
are checked against the lattice data for different parametrizations of V1(T ), and also for constant
V1 = 0.01GeV and V1 = 0.1GeV. From Fig. 1 it is evident that these two constant values are too
small, and higher values of V1 must be considered. As suggested in ref.[31], we take

V1(T ) = c0 +V1

(
T
Tc

)
= c0 +0.175

(
1.35

T
Tc

−1
)−1

GeV (3.9)
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Figure 1: The interaction measure (ε −3p)/T4 as a function of the temperature as obtained in the FCM for
three values of c0 in Eq.(3.9) : c0 = 0.07, 0,−0.05 GeV (respectively: dashed (red), solid (green) and dot-
dashed (brown) curve), compared with the lattice data of ref.[26] (orange circles) and [9] (black, diamonds).

with respectively c0 = 0.07, 0,−0.05 GeV (corresponding to V1(Tc) = 0.57, 0.5, 0.45 GeV ). The
results, displayed by the dashed (red), solid (green) and dot-dashed (brown) curves, show a much
better agreement with the data, and in particular the dashed (red) curve with V1(Tc) = 0.57 GeV
gives a good fit to the data of [26], represented by full circles (orange), whereas V1(Tc) = 0.45 is
preferable for the data in [9] from the hotQCD collaboration, and shown as full diamonds (black).
However, we warn that, more recently, the hotQCD collaboration is converging toward a smaller
peak for (ε −3P)/T 4 close to the Wuppertal-Budapest one. It is important to notice that there is no
direct relation of these values with the potential at finite µB. One would expect that an increasing
baryon density could produce a screening effect that reduces the intensity of the quark-antiquark
potential, and at large density the quark-quark interaction should become more and more relevant.
Given those results, in our analysis we choose to keep V1 as a free parameter, and check what kind
of indications on V1 can be extracted from the determination of the maximum mass of neutron stars.

Let us now turn to the other parameter of the FCM model, namely the gluon condensate G2.
It is interesting to notice that G2 appears only in the vacuum contribution to the pressure, and it
has the same role of the bag constant of the MIT bag model. As mentioned above, G2(T ) at zero
baryon density has been computed on lattice [28, 29] but, due to technical difficulties, analogous
calculations in full QCD at large µB are precluded. In any case, because of the large uncertainty
both on the value of this parameter and on its dependence on the chemical potential, we prefer to
treat G2 as the second free parameter of the FCM, as already done for V1.

Typical effects that could induce changes with respect to the FCM picture are due to the colour
superconductivity pairing mechanism, which is expected to take place for extremely large values
of the chemical potential. These effects can be easily included in our analysis [34]. In particular
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the possible additional contribution due to the new CFL phase, associated to quark-quark pairing,
can be taken into account by adding the CFL pressure contribution to the full FCM pressure Pqg.
The presence of color-flavour locked quark matter is expected at very high µB, and it is realized
through quark-quark pairing under the constraint that the densities of the three flavors, up, down
and strange, are equal [35, 36, 37, 38]. The global effect of this pairing on the pressure is the
presence of the additional term

Pc f l =
∆2µ2

B

3π2 (3.10)

only when the chemical potential is greater than µB = 3m2
s/(4∆) because, as discussed for instance

in [38], a direct comparison of the grand potential with or without the inclusion of the CFL mech-
anism, indicates that this point marks the onset of pairing and consequently the appearance of the
additional pressure term given in Eq.(3.10), regardless of the particular values of V1 and G2 which
parametrize the pressure of the FCM.

The gap ∆ is expected to be in the range 10−100 MeV in the region of interest of µB for the
NS. Finally the total pressure of the quark matter phase is obtained by adding Pc f l to Pqg given in Eq.
(3.5), and is treated as a function of the baryon chemical potential µB with three free parameters,
namely the potential V1 and the gluon condensate G2, coming from the FCM model, and the gap ∆,
due to the CFL pairing.

4. The hadron-quark phase transition

Recently, it has been shown in ref.[14] that if a sharp phase transition occurs to a high-density
phase, where the speed of sound is density-independent, then one observes the following four
topologies of the mass-radius curve for compact stars as general feature of the nuclear to quark
matter phase transition: the hybrid branch may be connected to the nuclear branch (C), or discon-
nected (D), or both may be present (B) or neither (A). We use the term “hybrid branch” to refer to
the part of the mass-radius relation of hybrid stars whose central pressure is above ptrans, and so
they contain a core of the high-density phase. The occurrence of these as a function of the CSS
parameters ptrans/εtrans and ∆ε/εtrans at fixed c2

QM is shown schematically in Fig. 2 (taken from
Ref. [14]). The mass-radius curve in each region is depicted in inset plots, in which the thick green
line is the hadronic branch, the thin solid red lines are stable hybrid stars, and the thin dashed red
lines are unstable hybrid stars.

In the phase diagram the solid red line shows the threshold value εcrit below which there is
always a stable hybrid star branch connected to the neutron star branch. This critical value is given
by [39, 40, 41]

∆εcrit

εtrans
=

1
2
+

3
2

ptrans

εtrans
(4.1)

and was obtained by performing an expansion in powers of the size of the core of high-density
phase. Eq.(4.1) is an analytic result, independent of c2

QM and the nuclear matter EoS. The dashed
and dot-dashed black lines mark the appearance-disappearance of the connected or disconnected
hybrid star branch. The position of these lines depends on the value of c2

QM and (weakly) on the
accompanying nuclear matter EoS [14].

8
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Figure 2: Schematic phase diagram (from [14]) for hybrid star branches in the mass-radius relation of
compact stars. We fix c2

QM and vary ptrans/εtrans and ∆ε/εtrans. The four regions are (A) no hybrid branch
(“absent”); (B) both connected and disconnected hybrid branches; (C) connected hybrid branch only; (D)
disconnected hybrid branch only.

  ρ         ρ   ρ         ρ

Figure 3: Contour plots showing the maximum hybrid star mass as a function of the CSS parameters of the
high-density EoS. The left (right) plot is for a BHF (DBHF) nuclear matter EoS. The grey shaded region is
excluded by the measurement of a 2M⊙ star. See text for details.

Once a nuclear matter EoS has been chosen, any high-density EoS that is well-approximated
by the CSS parametrization can be summarized by giving the values of the three CSS parameters,
corresponding to a point in the phase diagram. We then know what sort of hybrid branches will be
present.

In Fig. 3 we show how mass measurements of neutron stars can be expressed as constraints on
the CSS parameters. Each panel shows the dependence on ptrans/εtrans and ∆ε/εtrans for fixed c2

QM.
The region in which the transition to quark matter would occur below nuclear saturation density
(ρtrans < ρ0) is excluded (hatched band at left end) because in that region bulk nuclear matter would
be metastable. There is also a hatched band at the right hand of the figure indicating an upper limit
on the transition pressure, which is the central pressure of the heaviest stable nuclear matter star.
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This depends on the hadronic EoS that had been assumed. The contours show the maximum mass
of a hybrid star as a function of the EoS parameters. In particular the dot-dashed (red) contours
are for hybrid stars on a connected branch, while the dashed (blue) are for disconnected branches.
The region inside the M = 2M⊙ contour corresponds to EoS for which the maximum mass is
less than 2M⊙ so it is shaded to signify that this region of parameter space for the high-density
EoS is excluded by the observation of a star with mass 2M⊙ [10]. For high-density EoS with
c2

QM = 1 (not shown here), this region is extended over a large range of transition pressures and
energy density discontinuities that are compatible with the observation. However, for high-density
matter with c2

QM = 1/3, which is the typical value in many models, the Mmax > 2M⊙ constraint
eliminates a large region of the CSS parameter space [14, 42], leaving only a small white unshaded
acceptable region. The left plot in Fig. 3 is for a softer nuclear matter EoS, Brueckner-Hartree-Fock
(BHF) [1], whereas the right plot is for a stiffer nuclear matter EoS, Dirac-Brueckner-Hartree-Fock
(DBHF)[19]. As expected, the stiffer EoS gives rise to heavier (and larger) stars, and therefore
allows a wider range of CSS parameters to be compatible with the 2M⊙ measurement.

From the left panel of Fig. 3 one can see that if, as predicted by many models, c2
QM ≲ 1/3,

then we are limited to two regions of parameter space, corresponding to a low pressure transition
or a high pressure transition. In the low transition pressure region the transition occurs at a fairly
low density ntrans ≲ 2n0, and a connected hybrid branch is possible. In the high transition pressure
region the connected branch (red dot-dashed) contours are, except at very low ∆ε , almost vertical,
corresponding to EoS that give rise to a very small connected hybrid branch which exists in a
very small range of central pressures pcent just above ptrans. The maximum mass on this branch is
therefore very close to the mass of the purely-hadronic matter star with pcent = ptrans. The mass of
such a purely hadronic star is naturally independent of parameters that only affect the quark matter
EoS, such as ∆ε and c2

QM, so the contour is vertical.
Disconnected hybrid branches are of special interest, because they give a characteristic signa-

ture in mass-radius measurements. For both the hadronic EoS that we study, the regios B and D,
where disconnected hybrid star branches can occur, are excluded for c2

QM ⩽ 1/3. Even for larger
c2

QM disconnected branches only arise if the nuclear matter EoS is sufficiently stiff. It is interest-
ing to note that using an extremely stiff hadronic matter EoS such as DD2-EV [43] can further
shrink the region that is excluded by the Mmax > 2M⊙ constraint, allowing disconnected branches
of hybrid stars to occur.

5. Mapping the FCM EoS on the CSS parametrization

The CSS parametrization will be applicable to the FCM EoS if the speed of sound in the
FCM EoS depends only weakly on the density or pressure. In Fig. 4 we show that this is indeed
the case. The upper panel shows the speed of sound vs. pressure for different values of the FCM
parameters, displayed in the lower panel. We see that the speed of sound varies by less than 5%
over the considered range of pressures along each curve, and lies in the interval 0.28 < c2

QM < 1/3.
The value of c2

QM shows a weak dependence on V1 and extremely weak on G2, which appears as an
additive constant in the quark matter EoS according to Eq. (3.5). The transition pressure is more
sensitive to the FCM parameters, increasing rapidly with V1 and with G2. The energy density at a
given pressure increases slightly with V1 or G2.
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Figure 4: The squared speed of sound c2
QM (panel (a) ) is displayed vs. quark matter pressure for several

values of V1 (in MeV) and G2 (in GeV4). In panel (b), the FCM energy density is represented by full symbols,
whereas the full lines denote the CSS parametrization given by Eq.(1.1).

Let us now discuss the main features of the hadron-quark phase transition. Fig. 5 shows
numerical results for the pressure as a function of the baryon chemical potential µB in the hadronic
matter and quark matter in beta equilibrium. In particular, the green (red) solid curves represent the
BHF (DBHF) EoS, whereas the remaining curves are the results for the FCM model with different
choices of the quark-antiquark potential V1 (expressed in MeV). For completeness, a negative value
of the potential, V1 =−50 MeV is also included in this analysis. In the left, middle and right panels
the value assumed for the gap ∆ is respectively equal to 0, 50 and 100 MeV. All calculations shown
in Fig. 5 are performed taking G2 = 0.006 GeV4. We notice that with increasing the value of V1

the transition point is shifted to larger values of the chemical potential, hence of the baryon density.
However, the exact value depends also on the stiffness of the hadronic EoS at those densities. In
this case, being the DBHF EoS stiffer than the BHF, the transition takes place at smaller values of
the density. We notice that the transition point is affected also by the value of the gap ∆, and is
shifted toward smaller µB for larger value of the gap. We also see that no phase transition occurs
for negative values of V1.

The resulting EoS, for the several cases discussed, is the main input for solving the well-
known Tolman-Oppenheimer-Volkoff equations [22] for spherically symmetric NS, thus obtaining
the mass-radius-central density relation. The mass of the NS has a maximum value as a function
of radius (or central density), above which the star is unstable against collapse to a black hole. The
value of the maximum mass depends on the EoS, so that the observation of a mass higher than
the maximum mass allowed by a given EoS simply rules out that EoS. This is illustrated in Fig. 6,
where the relation between mass and radius (left panel) and central density (right panel) in units of
the saturation density ρ0 is displayed. Results are plotted for different values of V1, G2 and ∆ and
the BHF EoS is used for hadronic matter. The largest value of the maximum mass in this example
is observed for large values of V1 = 200 MeV, ∆ = 100 and G2 = 0.01, and it is compatible with
the largest mass observed up to now, i.e. (2.01±0.04)M⊙ in PSR J0348+0432 [10].
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Figure 5: The pressure is displayed as a function of the baryon chemical potential µB for the FCM quark
matter and the purely hadronic matter. All calculations for FCM have been performed for G2 = 0.006 GeV4,
and several values of V1 have been chosen. The solid curves represent the BHF (green) and DBHF (red)
EoS. Each panel shows results for different values of the gap ∆, i.e. 0, 50, and 100 MeV.
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Figure 6: The mass as function of the radius (left panel) and the central density (right panel) is displayed
for several values of V1, G2 and ∆. The BHF EoS is used for the hadronic phase. The labels (A), (B), (C)
and (D) indicate the specific topologies of the hybrid star branch.

In addition, in Figs. 6 we use the same labels as in Fig. 2 in order to indicate the topology of
the mass-radius curve, which is strongly related to the chosen values of V1, G2 and ∆. For example,
when combining FCM quark matter to the BHF nuclear matter we find that, for unpaired quark
matter and V1 = −50 MeV, the lowest transition point can be obtained only if G2 > 0.006 GeV4.
Then, in Fig. 6 the mass-radius relation obtained with G2 = 0.01 GeV4 is displayed by the blue
dashed line and it exhibits a branch of stable hybrid stars disconnected (D) by the hadronic branch.
With increasing V1 the transition point moves to larger values of the pressure and the energy density,
and as a consequence we explore regions of the phase diagram where the topology changes. For
instance, for V1 = 0 we can get both (B) connected and disconnected hybrid star branches, whereas
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Figure 7: Same as Fig.6, but for the DBHF EoS.

for V1 = 100 MeV connected (C) hybrid star branches are present and, for the largest value of
V1 = 200 MeV the hybrid branch is absent (A). This is clearly shown by a cusp in the mass-radius
relation, and all configurations with radii smaller than the one characterizing the cusp are unstable.
Therefore only purely nucleonic stars do exist in this case. However, the stability of those hybrid
star configurations is related to the modeling of the deconfinement phase transition, as pointed out
in ref.[44] where the Gibbs construction was used instead of the Maxwell method. The additional
contribution of the CFL pressure to the FCM EoS produces only a shift of the transition point, and
therefore the topology explored can be different than the one of the unpaired case. In Fig. 7 we
display the mass-radius (left panel) and the mass-central density relation (right panel) when the
DBHF EoS is used for the hadronic phase. We observe a topology similar to the one displayed in
Fig. 6, except for the (B) configurations, which do not appear for the chosen set of values used for
V1, G2 and ∆.

Let us now comment on the values of the maximum mass. In both cases, either BHF or DBHF
EoS for the hadronic matter, we see that the largest possible values of the maximum mass are
obtained only for values of V1 > 100 MeV, and that only in the DBHF case maximum masses
well above the observational limit are possible. In fact, the heaviest BHF+FCM hybrid star has a
mass of 2.03 M⊙, and the heaviest DBHF+FCM hybrid star has a mass of 2.31 M⊙. Those values
are indicated by an orange cross in Fig. 8, where we display the mapping between the FCM and
CSS parameters. In the upper (lower) panels we show results for the BHF (DBHF) hadronic EoS,
whereas in the left, middle and right panels calculations are reported for different values of the
gap ∆ = 0, 50, 100 MeV respectively. The dashed black contour delimits the region accessible
by the FCM calculation. Above that region, the symbols connected by solid lines show the CSS
parametrization of the FCM quark matter EoS. Along each line we keep V1 constant and vary G2.
In Fig. 8 V1 varies from -50 MeV up to the maximum value at which hybrid star configurations
occur, which is indicated by an (orange) cross. For the BHF case that value is V1 = 240 MeV,
G2 = 0.0024 GeV4 and for the DBHF case it is V1 = 255 MeV, G2 = 0.0019 GeV4. The vertical
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black dashed lines indicate the parameter regions accessible by the FCM and consistent with the
measurement of a M = 2 M⊙. Hybrid stars with mass heavier than 2 M⊙ lie on a very small
connected branch on the right side of the vertical black dashed lines, and cover a small range
of central pressures, having a very tiny quark core, with mass and radius similar to those of the
heaviest purely hadronic star, as was already discussed in Ref. [15]. We have found that for a
hybrid star with M = 2M⊙ the radius of the quark core is bigger for the stiffest hadronic EoS, being
comprised between 1 and 3 km, whereas for the soft hadronic EoS the quark core radius is not
larger that a few hundreds meters. In both cases the hadronic layer occupies the largest portion of
the star, and is characterized by a radius of about 10 km, whereas the crust radius is always smaller
than 1 km. Finally we briefly discuss the effects of adding the hyperon degrees of freedom in our
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Figure 8: The mapping of the FCM quark matter model onto the CSS parametrization. Results are obtained
using the BHF (upper panels) and DBHF (lower panels) nuclear matter EoS. The green curves are the phase
boundaries for the occurrence of connected and disconnected hybrid branches. The dashed black line delimit
the region yielded by the FCM model. Within that region, the symbols give CSS parameter values for FCM
quark matter as G2 is varied at constant V1 (given in MeV). The (orange) cross denotes the EoS with the
highest ptrans, which gives the heaviest FCM hybrid star. The left, middle, and right panels display results
obtained with ∆ = 0, 50, and 100 MeV respectively.

analysis. In the past years, the BHF approach has been extended to include the hyperons [41,42]
and in fact, they are expected to appear in beta-stable matter already at relatively low densities of
about twice nuclear saturation density which should produce a softening of the EoS with a strong
decrease of the maximum mass. There exist several hyperon-nucleon (NY) potentials fitted to
scattering data, i.e. NSC89 [43], NSC97 [44], and ESC08 [45], while the hyperon-hyperon (YY)
potentials have presently to be considered rather uncertain or unknown, which is basically due to
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the lack of appropriate experimental data. Here we reconsider the phase transition to quark matter
for the NSC89 and ESC08 potential and study the structure of the corresponding hybrid stars. As
expected we observe that the softening of the hadronic EoS in the presence of hyperons is such that
a double crossing of the hadronic and quark matter pressure can occur and, as a final effect, the
maximum mass remains well below the 2 M⊙ at variance with the observational constraint.

To bypass this obstacle we take the point of view of retaining only the first crossing of the
hadronic and quark matter pressure curves and neglect the other crossing occurring at larger values
of the chemical potential, which can be justified by our poor knowledge of the hyperon interactions.
By following this procedure we report in Fig. 9 the mass-radius and mass-central density relation
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Figure 9: Mass-radius (left panel) and mass-central density (right panel) plots of the hybrid stars corre-
sponding to the quark matter EoS (a), (b), (c), (d) together with the hyperon parametrization ESC08. See
text for details.

of the hybrid stars corresponding to four different choices of the parameters of the FCM: V1 =−50
MeV (a), V1 = 0 (b), V1 = 120 MeV (c, d), with ∆= 0 in (a,b,d) and ∆= 100 MeV in (c). In addition,
the two potentials NSC89 and ESC08 give qualitatively similar results and for convenience we
display only the results obtained with the ESC08. It is evident that in the cases (a) and (b), when
V1 is small, the masses remain below 1.5 M⊙ while in the other two cases with larger V1, the mass
of the NS grows above 1.7 M⊙ for (c) and up to 1.95 M⊙ for (d) which is reasonably close to the
observational constraint of 2 M⊙. Only in this approach we are able to reach sufficiently high NS
masses in the presence of hyperon degrees of freedom. It is remarkable that very similar results
are obtained for the maximum NS masses in [45] where the NSC89 parametrization is used for
hyperons and a sort of QCD corrected bag model for quark matter.
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6. Conclusions

The FCM extension at finite T and µB provides us a very simple description of the quark dy-
namics in terms of two parameters, namely the gluon condensate G2, that parametrizes the vacuum
pressure and energy density, and hence is strictly related to the bag constant of the MIT bag model,
and the potential V1, which summarizes the interaction corrections to the free quark and gluon
pressure. In order to have a more complete picture, we include the effect of color superconductiv-
ity through the CFL mechanism, which amounts to the addition of a new free energy contribution
written in terms of the gap ∆.

Clearly, any prediction of a quark matter model on the structure of a hybrid NS strongly
depends on the nuclear matter EoS employed, and among the large variety of nuclear EoS available
in the literature, we focused on the non-relativistic BHF EoS and its relativistic counterpart, the
DBHF EoS. We also analyzed the inclusion of the hyperon degrees of freedom that produces a
softening of the nuclear matter EoS with the consequent reduction of the NS maximum mass.

With this new set of more refined calculations, we confirm the trend already observed in
[13, 46, 15], i.e. the maximum mass of hybrid stars grows with the two parameters V1 and G2

while it decreases when ∆ is increased. We also extend the mapping developed in [15] among the
parameters of the FCM and those defining the CSS parametrization, by displaying the effect of
the gap ∆, and we conclude that a particular configuration with mass around or above two solar
masses can be realized in the FCM by different pairs of G2 and V1, depending on the specific value
assigned to ∆, i.e. the appearance of a color superconducting gap can be mimicked by a shift of the
other two parameters. Therefore, even the mass of the heaviest hybrid star predicted by the FCM
(the orange crosses in Fig. 5) does not correspond to a unique set of G2, V1 and ∆, while, as seen in
[15], its value strongly depends on the specific choice made for the nuclear matter EoS.

The inclusion of the hyperons induces dramatic changes in this picture. In fact, a regular tran-
sition from nuclear to quark matter with a stable quark phase up to very high chemical potential
requires a particular tuning of the FCM parameters that leads to low maximum masses not compat-
ible with the heaviest observed NS. At the same time, we noticed that this problem can be softened
if one retains only the crossing from the hadronic to the quark matter phase at lowest µB and ne-
glects the other transitions at higher chemical potential. Then, under this hypotesis it is possible to
tune the FCM parameters in such a way to raise the maximum mass up to 1.95 M⊙.
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