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Abstract 

In the airport field, to improve the APMS (Airport Pavement Management System), it may be advantageous, in economic terms, 
to evaluate "Bearing Capacity" using the International Roughness Index (IRI).  
This paper explores the relationship between the bearing capacity (dynamic modulus - HWD) and the IRI; the study was 
conducted on the Lamezia Terme Airport (IATA: SUF, ICAO: LICA), located near Lamezia Terme in the Calabria region in 
southern Italy.  
Bearing Capacity data (from 2010 to 2014), detected through H.W.D. and data on surface features (in terms of IRI) detected 
through Laser Profilometer, for the same period, were acquired for the goals of this study.  
The data were processed using a series of statistical procedures; in particular two models were obtained: Model 1 by MultiVariate 
Analysis (MVA) and Model 2 using the Artificial Neural Network (ANN) technique. Comparing the two models, it emerged that 
Model 2 is better than Model 1 because the total sum of the residual is lower.  
In summary, through these two models, knowing simply the IRI, it is possible to indirectly evaluate the "Bearing Capacity" in 
any point of the runway. 
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1. Introduction 

Airport agencies monitor and manage the runway through APMS (Airport Pavement Management System). The 
APMS (Airport  Pavement Management System) includes a set of methods that can help decision makers find cost-
effective strategies for providing, evaluating, and maintaining pavements in a serviceable condition. Many 
researchers have studied this issue in recent years, producing significant results for the improvement of APMS. 
Khraibani et al. (2012) proposed a mixed-effects logistic model to describe the evolution law of pavement 
deterioration and the effects of many factors were identified on pavement behavior. This approach made optimum 
use of the data by taking into account unit-to-unit variability and it was more powerful than traditional regression 
approaches in establishing the evolution curves.  Drewnowski and Uta (1985) made an analysis of the possible 
causes of the damage to the Kinshasa airport runway, using as a basis the deterioration recorded in the concrete 
slabs. Deformations caused by the difference of temperature on the top surface of the slabs and the under surface, 
plus the overloading due to aircraft landing and take-off, were the main causes of deterioration in the Kinshasa 
airport runway.   Greene et al. (2004) suggested how to perform an Airfield Pavement Condition Assessment based 
on pavement-condition indicators that are determined from measurement of pavement distress, structural capacity, 
friction, and roughness. Factors addressed in the ratings include the pavement-condition index (PCI), the structural 
index (ratio between the aircraft classification number (ACN) and the pavement classification number (PCN)) and 
friction characteristics determined through the use of measuring equipments. Yager et al. (2009) report of the Joint 
Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), 
Transport Canada (TC), and the Federal Aviation Administration (FAA): the program performed instrumented 
aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices 
would report. This number, denoted as the International Runway Friction Index (IRFI), will be related to all types of 
aircraft stopping performance.  Kuo, Mahgoub and Hollyday (2014) had developed a study in which a numerical 
model had been designed to define the impact of load for any landing angle. The results show that the strains of 
traction at the base of the asphalt layer and those of compression in the upper part of the substrate may be ten times 
higher than bump under static load. This study shows that during landing the effects due to aircraft’s loads have to be 
considered significant in the design of airfields.  De Luca et al. (2016) conducted a study about the surface 
characteristics decay phenomenon related to contamination from rubber deposits. The experiment was conducted by 
correlating the pavement surface characteristics, as detected by Grip Tester, to air traffic before and after de-
rubberizing operation and two models were constructed for the assessment of functional capacity of the runway 
before and after the operations de-rubberizing. The goal of this work is a useful criterion for optimizing APMS 
(Čokorilo  et al, 2008). In particular a procedure has been built that allows information on the runway bearing 
capacity (De Luca et al., 2018) trough a simple reading of IRI. 

2. Technique used in the study 

Two different types of techniques are used for the analysis in this study: MultiVariate Analysis (MVA) and 
Artificial Neural Network (ANN). The first description is omitted because it is present for many years in the 
technical literature. The second, more recent, follows the basic principles shown below: 

 
2.1 The Artificial Neural Network multilayer approach 

 
Inspiration for the structure of the (ANNs) is taken from the structure and operating principles of the human 

brain. It is made of interconnected artificial neurons that mimic some properties of biological neurons. The function 
of a biological neuron is to add its input and produce an output. This output is transmitted to subsequent neurons, 
through the synoptic joints, only if the transmitted signal is high (i.e., greater than a predetermined value), 
otherwise, the signal is not transmitted to the next neuron. In the network, therefore, a neuron calculates the 
weighted sum, using Eq (1) (considering the input xi and weights wi) and compares it with a threshold value. 

 
      

 
                                                                                                                                                  (1) 
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where I − the weighted sum (dimensionless); wi − the weight (dimensionless); xi − the input (dimensionless). 
 
If the sum is greater than the threshold value, the neuron lights up and the signal is transmitted. Otherwise, the 

neuron does not turn on and the flow stops. 
The activation value uj rather than uj, connected to weight wij, is a function of the weighted sum of the input. This 

function may take various forms. In this study, a function as Eq (2) is used. 
 

   
 

                   
                                                                                                                                     (2) 

 
where θj − the bias unit (dimensionless); ui − the degree of sensitivity of uj when it receives an input signal from 

uj; wij − the weight between the connection of the neuron i with the neuron j (dimensionless). 
In particular in this study, a neural network with Multi-Layer Perceptron (MLP) architecture is used; moreover, 

training is carried out using the Back Propagation (BP) algorithm (De Luca, 2016). 

3. Data Collection and instruments used to survey  

The International Civil Airport of Lamezia Terme (ICAO: LICA, IATA: SUF) is equipped with a 4D class 
runway (Moretti et al, 2018) named RWY 10/28 of approximately 145,000 square meters, built with flexible 
pavement whose structural characteristics are identified by the code: PCN 58/F/B/W/T.  

Geographic coordinates and altitude on the average sea level are as follows:  
• Latitude: 38°54’30” North; Longitude: 16°14’30” East; Altitude: 12.31 m on the a.s.l.. 
The runway has a flexible pavement with a dense asphalt wearing surface and the following layers:  
• Surface:        4 cm in dense asphalt 
• Binder:         4 cm in dense asphalt 
• Base:          38 cm in dense asphalt 
• Subgrade:  40 cm in “mixed crushed rock” 

 

 
Fig. 1   Lamezia Terme International Civil Airport 

 
The following data were collected in three different surveys from 2010 to 2014:  

1) Bearing Capacity data using H.W.D. (Heavy Falling Weight Deflectometer) - ICAO regulation, Annex    14, 3th 
Edition, July 1999, “Aerodrome Design Manual and Operations”; 

2) Surface Characteristic, in terms of IRI (International Roughness Index), using Laser Profilometer -ICAO 
regulation, Annex 14, 3th Edition, July 1999, “Aerodrome Design Manual and Operations” (Ivković et al, 2018); 
 

3.1 Bearing Capacity data using HWD 
 
The HWD data were measured according to the "measurement lines" shown in Figure 2; ie with a 5m step along 

the y axis and with a 25m step along the x axis (Runway axis).  In particular, the paving has been schematized as 
follows: 

• Layer 1 (Surface +Binder + Base): Dense asphalt, with complex module E1* 
• Layer 2 (Sub Grade): mixed crushed rock  with Dynamic module E2. 
• Layer 3 (Compacted Sub Grade/Natural Sub Grade): with dynamic module E3. 
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The data collected were organized as shown in table 1.

 
Fig. 2 Layout of “HWD” Surveys 

Table 1. HWD data Collection organization (Case y=5m and 0<x<2400m) 

x(m) y (m) E1
*(Mpa) E2(Mpa) E3(Mpa) 

0 5 4859 648 75 

25 5 2984 1090 133 

50 5 3543 1229 111 

….. ….. …… …… ….. 

2400 5 2242 1235 133 

 
3.2 Surface characteristic in terms of IRI. 

 
The IRI data were measured according to the "measurement lines" shown in Figure 3 and table 2; ie with a 25m 

step along the x axis (Runway axis) and with a 3m step along the y axis. 

 
Fig. 3 Layout of “IRI” Surveys 

Table 2. IRI data Collection organization  

X(m) 
-24<y<-21      

IRI (mm/m) 
-21<y<-18      

IRI (mm/m) 
….. -6<y<-3         

IRI(mm/m) 
3<y<0          

IRI(mm/m) 
3<y<6          

IRI(mm/m) 
….. 21<y<24      

IRI (mm/m) 

25 1.73 1.27 ….. 1.57 3.10 3.80 ….. 2.70 

50 1.60 1.24 ….. 1.66 2.69 3.62 ….. 1.50 

75 1.45 2.12 ….. 1.55 2.75 2.4 ….. 2.02 

100 1.51 2.14 ….. 1.42 2.62 2.30 ….. 1.77 

….. ….. ….. ….. ….. ….. ….. ….. ….. 

…… …… …… …… …… …… …… …… …… 

2375 1.82 2.17 ….. 1.9 1.29 1.05 ….. 1.86 

2400 2.57 2.48 ….. 2.11 1.69 1.02 …… 1.43 

Axis Runway

Y (meter)

X (meter)
0.00 m

+5.00 m
+10.00 m
+15.00 m
+20.00 m
+25.00 m

-5.00 m
-10.00 m
-15.00 m
-20.00 m
-25.00 m 10L

28R

1th Third 2th Third 3th Third

Legend Survey 1 with HWD (+5m and -5m) - Step  25 m  (on X axis)
Survey 2 with HWD (+10m and -10m) - Step 25m (on X axis)
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4.  Data Collection and data Analysis  

The IRI values taken on the runway were organized into 19 classes using the central values of each class as a 
basis, the average value of the E1*, E2 and E3 associated (see Table 3).  

Table 3 IRI data Collection organization  

Class 
Number 

IRI Amplitude 
class (mm/m) 

IRI Central 
Value (mm/m) 

E1*  

(MPa) 

E2 

 (MPa) 

E3  

(MPa) 

1 0.6<IRI<0.76 0.68 4397 550 103 

2 0.76<IRI<0.92 0.84 3759 589 118 

3 0.92<IRI<1.08 1.00 3671 547 116 

4 1.08<IRI<1.24 1.16 3319 527 116 

5 1.24<IRI<1.40 1.32 3122 488 116 

6 1.40<IRI<1.56 1.48 2871 501 114 

7 1.56<IRI<1.72 1.64 2988 527 114 

8 1.72<IRI<1.88 1.80 2721 448 114 

9 1.88<IRI<2.04 1.96 2603 468 115 

10 2.04<IRI<2.20 2.12 2887 499 118 

11 2.20<IRI<2.36 2.28 2306 473 122 

12 2.36<IRI<2.52 2.44 2864 395 118 

13 2.52<IRI<2.68 2.60 1823 380 129 

14 2.68<IRI<2.84 2.76 2361 545 110 

15 2.84<IRI<3.00 2.92 2338 478 111 

16 3.00<IRI<3.16 3.08 2508 334 106 

17 3.16<IRI<3.32 3.24 1714 167 124 

18 3.32<IRI<3.48 3.40 1937 317 97 

19 3.48<IRI<3.64 3.56 2252 315 118 

 
4.1 MVA - Multivariate Analysis Model 

 
The technique of MVA has been applied to the data contained in Table 3 using IRI as the dependent variable and 

the other variables as predictors (E1*, E2, E3). The expression of the model obtained is the following: 
 
                                                                                                                                            (3) 
 

The model (3) was characterized by a coefficient of determination ρ2 = 0.87 and a significance more than 95% 
(see table 4) 

Table 4. Model parameters 
Parameter Estimate Std. Error Significance 

   9.007E0 1.463 .000 

   -9.608E-4 .000 .000 

   -2.294E-3 .001 .050 

   -2.793E-2 .012 .031 
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4.2  ANN- Artificial Neural Network Model 
 
The ANN technique has been applied to the data contained in Table 3. The model has been obtained with the 

technique of ANN as given in Section 2.1. The variables that were considered and used in the model are listed in 
Table 3 (i.e. IRI, E1*, E2 and E3). The 70% of the data was used to train the network, and the remaining part of the 
data was used for verification. Different configurations were considered for the architecture of the neural network. 
Fig. 4 presents the best network architecture. Table 5 gives values of the estimated parameters. 

 
Fig. 4. Architecture of ANN model 

Table 5. Parameters of ANN model 
Predictor Predicted 

Hidden layer 1 Hidden layer 1 Output layer 
H(1:1) H(1:2) H(2:1) H(2:2) IRI 

Input layer (Bias ) 1.115 -.566    

E1 1.057 .989    

E2 .560 .221    

E3 .587 -.522    
Hidden layer 1 (Bias )   -.156 .027  

H(1:1)   -.485 -.500  

H(1:2)   -.542 -.453  
Hidden layer 2 (Bias)     .217 

H(2:1)     .916 

H(2:2)     1.234 
 

4.3. ANN Model Versus the MVA Model 
 
Figure 5 and table 6 shows the comparison between the two models and it denotes that Model 2 is better than 

Model 1 because the residual has a lower total sum.  

 
Figure 5. Graphical comparision ANN Versus MVA 
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  Table 6. ANN Versus MVA 
N. Class IRI 

Observed 
IRI MVA 

Model Predictor 
IRI MVA Model 

Predictor 

1 0.68 0.64 0.73 
2 0.84 0.75 0.85 
3 1.00 0.99 0.87 
4 1.16 1.37 1.12 
5 1.32 1.65 1.42 
6 1.48 1.92 1.63 
7 1.64 1.74 1.37 
8 1.80 2.18 2.20 
9 1.96 2.22 2.24 
10 2.12 1.79 1.74 
11 2.28 2.30 2.26 
12 2.44 2.05 2.17 
13 2.60 2.78 2.79 
14 2.76 2.42 2.33 
15 2.92 2.56 2.80 
16 3.08 2.87 3.10 
17 3.24 3.51 3.33 
18 3.40 3.71 3.17 
19 3.56 2.83 3.21 

 

5.  Result 

MVA and ANN models were used to construct an abacus (Čavka et al, 2018) for the indirect estimation of Et 
(Bearing Capacity). To construct the abacus the following hypothesis was made: Layer 1, characterized by E1*, 
contributes in terms of bearing capacity about 80%; layer 2, characterized by E2, contributes about 15%; layer 3, 
characterized by E3, contributes about 5%; in addition, the reference temperature is 20 ° C. In particular the IRI 
values were organized into 5 classes (amplitude equal to 0.8); the abacus was built using the central values of each 
class and the average value of E1 *, E2 and E3 (see Table 7 and figure 6). For example, if IRI on runway is 1.65 
mm/m, you can read on abacus that Bearing Capacity is judged Sufficient (i.e. if IRI=1.60 mm/m then   Et=3800 
Mpa). 

 
Figure 6 - Abacus IRI - Bearing Capacity 

 
                                  Table 7 IRI- Bearing Capacity Values 

Judgment  IRI Class Et=(0.8E1*+0.15E2+0.05E3) 

Very Good      0<IRI<0.80 5050 
Good 0.80<IRI<1.60 3994 
Sufficient 1.60<IRI<2.40 3300 
mediocre  2.40<IRI<3.20    291 
Bad 3.20<IRI<4.00  2347 

BAD

SUFFICIENT

MEDIOCRE

 4.00

 3.20

 2.40

 1.60

 0.80

 0.00
 0.00  500  1000  1500  2000  2500  3000  3500  4000  4500  5000  5500

Bearing Capacity  Et

 IRI
 ABACUS  (IRI - Bearing Capacity "Runway")

VERY GOOD

 GOOD
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Conclusion  
 

This study proposes a procedure to estimate the capacity (dynamic modulus - HWD) through IRI.  The study was 
conducted on the Lamezia Terme Airport (IATA: SUF, ICAO: LICA), located near Lamezia Terme in the Calabria 
region in southern Italy.  

The data were acquired through a series of surveys (from 2010 to 2014) in three different phases. From the 
analysis of the data, through the MVA and ANN technique, two models were obtained for the estimation of the 
load-bearing capacity of the runway through the IRI. Comparing the two models, it is evident that Model ANN is 
better than Model MVA because it has a lower total residual. 

Subsequently, with the procedures indicated in chapter 4.5, an Abacus allows, through a simple measure of IRI, 
to have immediate information on the "Bearing Capacity" of the runway also in quantitative terms. Tests are 
currently trying to transfer this methodology to other roads with similar characteristics. Although in the initial phase, 
the assessment is providing very interesting results. 
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