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1. Introduction

The reduction of pollutant emissions imposed by legislation
such as Euro V [1], the improvement of engine performance,
the complexity of present automotive applications due to the
introduction of several components made more and more
necessary the use of high-performance control systems.

For diesel engines with fixed geometry compressors [2],
techniques based on exhaust gas recirculation and throttle
valve actuator control have been devised to face the stringent
requirements. They give a great deal of freedom to control
the behaviour of the engine. In general two classes of
control approaches are available. Conventional strategies
often treat these devices independently as Single-Input,
Single-Output (SISO) systems [3]. On the other hand, in
the literature multivariable strategies can be found, which
exploit model-based controllers [4]. Since a complete model-
based controller calibration sometimes is quite expensive
and time consuming, with the present state of the art, and
on-vehicle tuning cannot be bypassed, these multivariable
strategies come at the cost of a quite larger number of
controller parameters to tune.

It is worth noting also that the design and testing of these
controls increasingly demand accurate mathematical models
for the static and dynamic behavior of combustion engines.
In addition to the classical engine settings injected fuel,

injection angle, and engine speed, new control inputs like
the variable turbine geometry of turbochargers, exhaust gas
recirculation, and common rail injection offers additional
commands for optimising an engine’s performance. All these
engine variables affect the engine torque, the specific fuel
consumption, and the emissions. As a consequence, modern
combustion engines have developed to complex, nonlinear
multivariable systems. Due to this growing number of engine
input and output variables, the state-of-the-art approach to
implement an engine control, predominantly based on look-
up tables, becomes very time consuming and often does not
lead to optimal results. Physical modelling still requires far
too long development and simulation times [3].

Since a mathematical model is a description of system
behaviour, accurate modelling for a complex nonlinear
system is very difficult to achieve in practice. Sometimes
for nonlinear systems it can be impossible to describe them
by analytical equations. Moreover, very often, the system
structure or parameters are not precisely known. Thus,
parametric model identification represents an alternative for
developing experimental models of complex systems, such as
combustion engines. An approach using quadratic regression
models for emissions to find an optimal set of engine settings
in each operating point can be found in the literature. In con-
trast to traditional nonlinear identification methods, where
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detailed knowledge about the model’s structure is required,
fuzzy systems and neural networks are capable of deriving
nonlinear models directly from measured input/output
data without detailed system assumptions [5, 6]. Recent
publications also stress the importance of considering not
only the static behavior of the combustion process, but
also to implement dynamic control strategies, especially for
turbocharged engines with exhaust gas recirculation [7, 8].
The development of suitable nonlinear approaches can allow
adequate dynamic models of combustion engine emissions
to be developed.

Because of these assumptions, this paper suggests to use
the fuzzy system theory, since it seems to be a natural tool
to handle complicated and uncertain conditions [6]. Thus,
instead of exploiting complicated nonlinear models obtained
by modelling techniques, it is suggested to describe the plant
under investigation by a collection of local affine systems
of the type of Takagi-Sugeno (TS) fuzzy prototypes [9],
whose parameters are obtained by identification procedures.
The interesting feature of fuzzy logic is that it represents a
powerful tool for describing vague and imprecise fact and is
therefore suited for applications where complete information
about fault and system is not available to the designer. It
should finally be pointed out how the fuzzy approach can
solve the problem at two levels: first, fuzzy TS models are
used to generate an accurate description of the monitored
plant and then, the problem of the design of the control
system is enhanced using again fuzzy logic [6].

Regarding the controller design, classical control meth-
ods, such as Proportional Integral Derivative (PID) control,
usually do not guarantee a satisfactory behavior at each
operating point of a supercharged engine, due to high system
nonlinearity, ageing of mechanical parts, and environmental
conditions [10]. Some multivariable PID model based
controllers are compared in [11], where the authors show
that more complex control structures than PID guarantee
higher performances and robustness. In [12] the use of two
separate adaptive PID regulators, one working at steady state
and the other during fast transients, results in good dynamic
responses. Clearly, nonlinear approaches can cope effectively
with large system nonlinearities, often present in diesel
systems [3]. For instance, in [13] it is shown how employing
fuzzy control results in an improvement of the airflow
response at low engine speeds and different loads, with
considerable reductions in the design and implementation
efforts.

In this paper a fuzzy control approach for the adjustment
of the EGR and TVA valves for a diesel engine is proposed and
applied to a particular engine. The resulting design criteria
are independent from the engine model and allow to quickly
tune the controller parameters with partial knowledge of
the system characteristics. In more detail, the design of the
controller is performed according to the following steps.
Firstly, a PI regulator is devised using the classic Ziegler-
Nichols method [14]. Then, the corresponding fuzzy PI
controller is built, by means of a suitable choice of the gains.
The Membership functions (MFs) and rules are derived
directly from the identified TS fuzzy model.
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Figure 1: The diesel engine air system.

Finally, the effectiveness of the proposed fuzzy modelling
and control strategies is assessed on real data sequences
acquired from full European driving cycle tests. A large num-
ber of experiments provide the evidence of the superiority
of the proposed fuzzy PI regulator with respect to the PI
controller developed by BOSCH, with particular reference to
the overall tracking capabilities.

The paper has the following structure. Section 2 provides
an overview of the diesel engine system and its air system
used for modelling and control purposes. The general model
of the diesel engine and the standard structure of the
embedded controller developed by BOSCH are summarised.
The embedded BOSCH controller is considered here as it
takes into account the standard instrumentation and ECU
capabilities. Section 3 describes the fuzzy modelling and
identification strategy exploited in this work for obtaining
the input-output description of the considered diesel engine.
The proposed fuzzy controller design and the tuning strategy
are presented in Section 3.2. The achieved results that are
summarised in Section 4 show the performances of the fuzzy
modelling and control schemes, validated and compared
with respect to the actual embedded strategy. Section 5 ends
the paper by highlighting the main points of the work, open
problems, and further investigations.

2. The Engine and Its Air System Control

Section 2.1 provides basic details regarding the diesel engine
model considered in this work. It describes the classical
embedded and the suggested control strategies exploided
for the regulation of the air system of the considered diesel
engine. In particular, the standard embedded controller
developed by BOSCH and used by VM Motors S.p.A. is
described in Section 2.2. The tuning procedure exploited for
the calibration of the controller maps and parameters is also
recalled.

2.1. The Turbocharged Diesel Engine System. In this paper,
a diesel engine “Panther” RA428 equipped with a fixed
geometry turbine, an external Exhaust Gas Recirculation
(EGR) system, and a Throtlle Valve Actuator (TVA) is
considered as shown schematically in Figure 1.
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This in-line 4 cylinder (2.8 L) diesel motor is produced in
Italy by VM Motors S.p.A. (Cento, Ferrara, Italy). This engine
is used in the JK Jeep Wrangler outside of the U.S. market.
This engine is often reffered to by its development codename:
Panther. This engine main features are the following:

(i) 2776 cc of displacement;

(ii) 4 valve/per cylinder;

(iii) Double Over Head Camshaft (DOHC);

(iv) BOSCH common rail direct injection with electric
piezo injectors operating at 30,000 psi;

(v) weighs 451 pounds/205 kilograms power rating of
174 horsepower, 340 foot pounds.

The turbine converts the energy of the exhaust gas into
mechanical energy of the rotating turboshaft, which, in turn,
drives the compressor. The compressor increases the density
of air supplied to the engine. This larger mass of fresh air
can be burned with a larger quantity of fuel thereby resulting
in a larger output torque. By varying the TVA valve, it is
possible to act on the mass flow rate through the engine
intake manifold [2, 15, 16].

To reduce the emissions of harmful nitrogen oxides
(NOx) produced during combustion, a portion of the
exhaust gas can be diverted back to the intake manifold
to dilute the air supplied by the compressor. This process
is referred to as EGR system. It is accomplished with an
EGR valve that connects the intake manifold to the exhaust
manifold. In the cylinders the recirculated exhaust gas acts
as inert gas thus lowering the flame temperature and,
hence decreasing the formation of (NOx). The considered
diesel engine air system includes a TVA valve between the
compressor and the intake manifold as well. This throttle
permits the air system to create a variable pressure drop
through the TVA valve, thereby increasing the EGR rates
[4, 15, 16].

In the following, in order to show the physical modelling
procedure of a diesel engine, the case study and the diesel
engine formal model are briefly described.

For the four cylinders turbocharged diesel engine under
investigation, it is assumed that the working fluid is a
mixture of ideal gases always in equilibrium for all chemical
compositions and pressure-temperature conditions. In order
to simplify the fluid dynamics description, a dynamic model
relying on the filling and emptying principle is set up [17,
18]. Assuming small enough pipe dimensions, a lumped
capacities representation is adopted, in which the fluid
thermodynamic properties are spatially constant but time
variant. In particular, this work describes the engine by
means of five elements: the turbine and the compressor,
the intake and exhaust manifolds, and the cylinders. Each
component is characterized by a different set of thermody-
namic state variables and may be described by the ideal gas
law, conservation of the mass, conservation of energy, and
dynamic equilibrium equations.

The principle of conservation of mass in the intake and
exhaust manifolds produces the following equation:

V

R

d
(
p/T

)

dt
= min −mout, (1)

where p and T are the gas pressure and temperature in
the manifold volume V , respectively, R is the universal gas
constant,min is the mass inflow, andmout is the mass outflow.
Neglecting heat transfers through walls, the conservation of
energy equation for the intake and exhaust manifolds can be
written as follows:

V

R
cv
dp

dt
= minhin −mouthout, (2)

where cv is the specific heat at constant volume, calculated for
the manifold under study and assumed as a time invariant,
hin is the input fluid enthalpy content, hout is the enthalpy
content of the fluid in the manifold.

The conservation of mass in the cylinders yields

dMcyl

dt
= m2a + μ̇ f −m1s, (3)

where Mcyl is the overall mass in each cylinder, m2a is the
mass inflow from the intake valve, m1s is the mass outflow
to the exhaust valve, and μ̇ f is the apparent burned fuel rate.
The latter is calculated as the sum of two contributions under
the assumption that combustion develops in three sequential
steps, namely, combustion delay, premixed combustion, and
diffusive combustion [17]. The gas pressure pcyl in the
cylinder is obtained by applying the ideal gas law:

pcylVcyl =McylRcylTcyl. (4)

The temperature Tcyl is calculated by means of the energy
conservation equation:

Mcylcvcyl
dTcyl

dt
= dQ

dt
− pcyl

dVcyl

dt
+m2a

(
hva − ucyl

)

−m1s

(
hvs − ucyl

)
+ μ̇ f

(
h f − ucyl

)
,

(5)

where Rcyl is the cylinder universal gas constant, cvcyl is
the specific heat at constant volume, Q is the heat transfer
in the cylinders, Vcyl is the instantaneous cylinder volume
depending on the piston position, h f is the fuel low calorific
value, hva is the input fluid enthalpy content, hvs is the
exhaust fluid enthalpy content, and ucyl is the fluid internal
energy. Neglecting the conductive contribution, for example,
assuming constant cylinder walls temperature Tw, the heat
transfer Q can be computed as the sum of the convective and
radiative contributions. The convective term is

Qc = hcAsc
(
Tw − Tcyl

)
, (6)

where Asc is the instantaneous heat transfer surface, depend-
ing on the crankshaft angle, and hc is a convective heat trans-
fer coefficient, depending on the fluid working conditions.
The radiative term is

Qr = βσAsc
(
T4

cyl − T4
w

)
, (7)
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where σ is the Stephan-Boltzman constant and β is a coeffi-
cient computed by way of a polynomial fit or experimental
data, depending on the engine speed and the equivalence
ratio.

The cylinders intake and exhaust valves are represented
as converging nozzles. Assuming stationary flow, two gas
conditions are distinguished, which can be described by
the following dynamic equations, depending on the out-
put/input pressure ratio pout/pin:

m =

⎧
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(sonic flow condition in the outlet section),
(8)

where k is the gas elastic constant, referred to the intake air
flow,Aeff is the equivalent outlet section surface, evaluated by
means of the valve displacemenl curve, and depends on the
crankshaft angle.

The turbocharger is equipped with a turbine and a
compressor. By interpolating data stored in experimental
maps (or look-up tables) it is possible to calculate the turbine
and compressor efficiencies and the output air flow from the
compressor, corresponding to different turbocharger speeds
and pressure ratios. Evaluating the power supplied by the
turbine and received by the compressor is straightforward.
For the compressor it can be obtained

PC = moutcpTin

⎡

⎣
(
pout

pin

)(k−1)/k

− 1

⎤

⎦ 1
ηC

, (9)

where cp is the specific heat at constant pressure, assumed
invariant during the transformation and referred to the
intake mass flow, Tin is the environmental temperature, and
ηC is the compressor efficiency.

On the other hand, for the turbine the following relation
can be written:

PT = mincpTin

⎡

⎣1−
(
pout

pin

)(k−1)/k
⎤

⎦ηT , (10)

where ηT is the turbine efficiency.
Finally, the turbocharger speed is calculated by applying

the dynamic equilibrium momentum equation:

JT
dωT
dt

+ νωT = PT − PC
ωT

, (11)

where JT is the turbocharger moment of inertia, ν is the shaft
viscous friction coefficient, and ωT is the turbocharger speed.

Similarly, by applying the dynamic equilibrium momentum
equation to the driving shaft, the engine speed ωe can be
computed

[

Je +M
(
Rp

2πτ

)2]dωe
dt

= Ct − Cp − Cr , (12)

where Je and M(Rp/2πτ)2 are the crankshaft and the vehicle
moment of inertia, respectively. M is the overall vehicle
mass, Rp the tires circumference, τ the gear transmission
ratio, Ct the driving torque, Cp the organic friction torque,
and Cr the load torque, taking into account the road and
viscous friction. Torques Cp and Cr are computed by means
of polynomial fits of experimental data at different engine
speeds and fuel mass introduction values.

Finally, the TVA and EGR behaviour can be described
by relation of the type of (8), since for the air mass flow
through throttle valves, the standard model for isentropic
restriction flow is used. In this cases, (8) is corrected by
means of a discharge coefficient Cd, and the term Aeff is the
real opening throttle area. In practice, the product CdAeff is
defined as the effective opening throttle area and identified
as a single coefficient, usually computed as a function of the
valve opening control signal (angle in degrees or aperture
percentage). It can exist many different models to describe
this relation, in general chosen for providing the best fit on
the real engine data.

In this paper, the simultaneous control of the EGR valve
and the TVA throttle of the diesel engine described above are
investigated. For this purpose, a mathematical model of the
process under investigation is required, either in state space
or input-output forms. However, in practical situations,
the straightforward application of model-based controller
design techniques can be difficult, due to the dynamic model
complexity. In fact, the plant analytical description is usually
designed to carefully capture all kinds of details relevant
to the analysis and the deployment of the real system.
On the other hand, this intrinsic complexity makes almost
unfeasible the use of many cited control design methods, and
a viable procedure for the practical application of control
design techniques is really necessary in practical cases. In
particular, the use of model identification is investigated here
for finding a solution of the control problem. To this aim, two
practical aspects of the presented work are stressed. Firstly,
the system complexity may not indicate a requirement for a
complex physical or thermodynamic model. In fact, as shown
in this work, a dynamic model identification method can be
successfully used, thus obviating the requirement for physical
models. Secondly, the TS fuzzy prototype enhances the
design of the control strategy. This is considered important
to avoid the complexity that would otherwise be inevitable
when nonlinear models are used.

2.2. Standard Embedded BOSCH Control. The standard con-
trol strategy for EGR and TVA systems uses the Proportional
+ Integral (PI) control structure with feed-forward terms as
illustrated in Figure 2.
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Figure 2: Standard control strategy developed by BOSCH.

Since the EGR-TVA plant is decoupled during transients,
BOSCH proposed a regulation based on two Single-Input,
Single-output loops [15, 16]. The Mass fresh AirFlow (MAF)
is measured upstream of the compressor and is used to close
the loops on the EGR and TVA systems. Therefore, the two
outputs of the controller are switched by a suitable logic and
divided into the EGR and TVA valve control signals, as shown
in Figure 2. The gains of the two PI controllers depend on
suitable maps (look-up tables), which result functions of the
engine fuelling and speed.

The setpoints for these two controllers are derived from
extensive engine mapping, involving the engine turbine,
compressor, and EGR system positions at fixed engine speed
and fuelling inputs to determine the optimum settings with
respect to the desired performances. From prepositioning
values, the controller drives the actuators as close as possible
to the positions required to attain the desired fresh airflow.

The open-loop term (feedforward duty cycle) is valid
only in steady-state conditions, but it cannot guarantee
accurate setpoint tracking due to the engine variability,
aging, and driving environment. The closed-loop through
the PI modules is used to ensure the position convergence.
The response of the MAF to the EGR and TVA systems
varies with engine operating points, therefore PI controller
with gain scheduling is employed extensively by the BOSCH
strategy [15, 16]. By means of the considered BOSCH
strategy, the gains of the PI controllers shown in Figure 2
are scheduled by means of suitable maps (look-up tables).
Usually, these maps and the PI parameters are empirically
determined by the calibration engineers working at the
Calibration Section of VM Motors S.p.A. However, facing
the future standard requirements, this tuning strategy seems
to have reached its limits and should be replaced by an
automatic strategy.

To improve the tracking of the setpoint, several strategies
have been presented in the recent years, as described, for
example, in [15, 19].

Model-based strategies require an accurate dynamic
model of the diesel engine, as shown in Section 2.1. This
model can be derived via the so-called “grey-box” modelling
approach, which is based on the description of the input-
output behaviour of the diesel engine from the first principle,
that is, starting directly at the level of established laws of
physics. Also the parameters of the physical laws have to
be empirically estimated. Both steps are complex and time
consuming (several months on a test bed). The high value
variability of engine parameters makes necessary, in the ideal
case, an individual modelling for each produced engine.
Sometimes such parameter estimation cannot be applied
to standard engines. Moreover, these algorithms cannot be
nowadays supported by standard Electronic Control Unit
(ECU) in terms of calculation power [15, 19].

As an example, predictive controllers and robust con-
trollers have the advantage that the actuator prepositioning is
no more needed. In general, this would be interesting if both
the intake manifold pressure and the fresh airflow setpoints
could be always reached simultaneously. Regarding the diesel
engine considered in this work, and its own characteristics,
this is not possible for all operating points. For example at
idle speed, any position combination of the two EGR and
TVA actuators could allow the tracking of the MAF setpoint.
To improve the air system control, a strategy taking into
account the engine characteristics, without an internal model
and with a very low calculation need, should be provided.
To meet these requirements, a strategy relying on the fuzzy
modelling for control design is proposed in this paper.

3. Fuzzy Modelling for Control

This section describes the approaches exploited for obtaining
the mathematical description of the diesel engine system
and the control strategy used for the regulation of its air
system. In particular, the fuzzy modelling and identification
scheme, which is reported in Section 3.1, enhances the design
procedure of the proposed fuzzy controller, as shown in
Section 3.2.

3.1. Fuzzy Identification from Data. The modelling approach
exploited in this work relies on the identification of trans-
parent rule-based fuzzy models, which can accurately predict
the quantities of interest, and at the same time provides
insight into the system that generated the data. Attention
is paid to the selection of appropriate model structures in
terms of the dynamic properties, as well as the internal
structure of the fuzzy rules (in particular, Takagi-Sugeno
type) [9]. From the system identification point of view, a
fuzzy model is regarded as a composition of local affine
submodels. Fuzzy sets naturally provide smooth transitions
between the submodels and enable the integration of various
types of knowledge within a common framework.

In order to generate fuzzy models automatically from
measurements, a comprehensive methodology is used. This
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employs fuzzy clustering techniques to partition the available
data into subsets characterised by a linear behaviour. The
relationships between the presented identification method
and linear regression are exploited, allowing for the com-
bination of fuzzy logic techniques with system identifica-
tion tools. In addition, an implementation in a MATLAB
Toolbox of the Fuzzy Modelling and IDentification (FMID)
techniques presented in the following is available [20]. Fuzzy
identification usually refers to techniques and algorithms for
constructing fuzzy models from data.

The modelling approach suggested in this paper is used
for achieving the integration of knowledge and data in a
fuzzy model. In particular, no prior knowledge about the
system under investigation is initially used to formulate the
rules, and a fuzzy model is constructed using numerical data
only. It is expected that the extracted rules and membership
functions can provide an a posteriori interpretation of the
system’s behaviour. An expert can compare this information
with his own knowledge, can modify the rules, or supply
new ones, and can design additional experiments in order
to obtain more informative data. This technique is proposed
here as it can obviate the process of knowledge acquisition
which is a well-known bottleneck for the practical applica-
tions of knowledge-based systems [21]. Instead, the expert
is invited to assume a more active role of model analysis
and validation, which may lead to revealing new pieces of
information, and may result in a kind of emergent knowledge
acquisition.

To date, relatively little attention has been devoted to the
identification of transparent fuzzy models from data. Most
of the techniques reported in the literature aim at obtaining
numerical models that simply fit the data with the best pos-
sible accuracy, without paying attention to the interpretation
of the results [22, 23]. Many other identification techniques
can be used for completely “grey-box” modelling, such as
standard nonlinear regression [24], spline techniques [25], or
neural networks [26]. In many cases, a natural requirement
is that a model not only predicts accurately the system’s
outputs but also provides some insights into the working of
the system. Such a model can be used not only for the given
situation, but can also be more easily adapted to changing
design parameters and operating conditions.

In this section, fuzzy models are viewed as a class of local
modelling approaches, which attempt to solve a complex
modelling problem by decomposing it into a number of
simpler subproblems. The theory of fuzzy sets offers an
excellent tool for representing the uncertainty associated
with the decomposition task, for providing smooth tran-
sitions between the individual local submodels, and for
integrating various types of knowledge within one common
framework. In particular, fuzzy logic is exploited to define
a TS fuzzy model [9]. The TS fuzzy model for nonlinear
dynamic systems is described by a collection of local linear
or affine submodels, each one approximating the system
behaviour around a single working point. The scheduling of
the submodels is achieved through a smooth function of the
system state, the behaviour of which is defined using fuzzy
set theory [27].

y

x

y2 = a2x + b2

y1 = a1x + b1

y3 = a3x + b3

(a)

x

μAi (x)

(b)

Figure 3: Fuzzy model diagram.

A large part of fuzzy modelling and identification
algorithms (see [6] and references therein) share a common
two-step procedure, in which at first, the operating regions
are determined using heuristics or data clusterings tech-
niques. Then, in the second stage, the identification of the
parameters of each submodel is achieved using Least-Squares
algorithm. From this perspective, fuzzy identification can
be regarded as a search for a decomposition of a nonlinear
system, which gives a desired balance between the complexity
and the accuracy of the model, effectively exploring the
fact that the complexity of systems is usually not uniform.
Since it cannot be expected that sufficient prior knowledge
is available concerning this decomposition, methods for
automated generation of the decomposition, primarily from
system data, are developed. A suitable class of fuzzy clustering
algorithms is used for this purpose.

3.1.1. Takagi-Sugeno Multiple-Model Paradigm. A fuzzy rule-
based model suitable for the approximation of a large class of
nonlinear systems was introduced by Takagi and Sugeno [9].

In the TS fuzzy model 3, the rule consequents are crisp
functions of the model inputs:

Ri : IF x(k) is Ai THEN yi = fi(x(k)), i = 1, 2, . . . ,K ,
(13)

where x(k) ∈ Rp is the input (antecedent) variable and
yi ∈ R is the output (consequent) variable. Ri denotes the
ith rule, and K is the number of rules in the rule base.
Ai is the antecedent fuzzy set of the ith rule, defined by a
(multivariate) membership function:

μAi(x) : Rp −→ [0, 1]. (14)
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As in the linguistic model, the antecedent proposition “x(k)
is Ai” is usually expressed as a logical combination of
simple propositions with univariate fuzzy sets defined for the
individual components of x(k), often in the conjunctive form

Ri : IF x1 is Ai1, x2 is Ai2, . . . , xp is Aip,

THEN yi = fi(x), i = 1, 2, . . . ,K.
(15)

The consequent functions fi are typically chosen as instances
of a suitable parameterised function, whose structure
remains equal in all the rules and only the parameters vary.
A simple and practically useful parametrisation is the affine
linear form

yi = aix + bi, (16)

where ai is a parameter vector and bi is a scalar offset. This
model is referred to as affine TS model. The consequents
of the affine TS model are hyperplanes (p-dimensional
linear subspaces) in Rp+1. The antecedent of each rule
defines a (fuzzy) validity region for the corresponding affine
consequent model. The global model is composed of a
concatenation of the local models and can be seen as a
smoothed piecewise approximation of a nonlinear surface.
Approximation properties of the affine TS model were
investigated, for example, in [28, 29].

Before the output can be inferred, the degree of fulfil-
ment of the antecedent denoted by βi(x) must be computed.
For rules with multivariate antecedent fuzzy sets given by
(13) and (14), the degree of fulfilment is simply equal to
the membership degree of the given input x, that is, βi =
μAi(x). When logical connectives are used, the degree of
fulfilment of the antecedent is computed as a combination of
the membership degrees of the individual propositions using
the fuzzy logic operators [6].

In the Takagi-Sugeno model, the inference is reduced
to a simple algebraic expression, similar to the fuzzy-mean
defuzzification formula [9]

y =
∑K

i=1 βi(x)yi
∑K

i=1 βi(x)
. (17)

By denoting the normalised degree of fulfilment

λi(x) = βi(x)
∑K

j=1 βj(x)
, (18)

the affine TS model with a common consequent structure
can be expressed as a pseudolinear model with input-
dependent parameters:

y =
⎛

⎝
K∑

i=1

λi(x)aTi

⎞

⎠x +
K∑

i=1

λi(x)bi = aT(x)x + b(x). (19)

The parameters a(x), b(x) are convex linear combinations of
the consequent parameters ai and bi, that is,

a(x) =
K∑

i=1

λi(x)aTi , b(x) =
K∑

i=1

λi(x)bi. (20)

Because of this property, a TS model can be regarded as
a mapping from the antecedent (input) space to a convex
region (polytope) in the space of the parameters of a
quasilinear system of (19).

Consider, for instance, the dynamic system of (13), that
can be rewritten in the following form:

Ri : IF y(k − 1) is Ai1, y(k − 2) is Ai2, . . . , y(k − n) is Ain,

u(k − 1) is Bi1, u(k − 2) is Bi2, . . . , u(k − n) is Bin,

THEN y(k) =
n∑

j=1

α(i)
j y
(
k − j

)
+

n∑

j=1

δ(i)
j u

(
k − j

)
,

(21)

where the consequents are linear ARX models, n is
the order of the ARX dynamic system, x(k) = [y(k −
1), . . . , y(k − n),u(k − 1), . . . ,u(k − n)]T , and ai =
[α(i)

1 , . . . ,α(i)
n , δ(i)

1 , . . . , δ(i)
n ].

3.1.2. Fuzzy Clustering for Fuzzy Identification. An effective
approach to the identification of complex nonlinear systems
is to partition the available data into subsets and approximate
each subset by a simple model [30]. Fuzzy clustering can
be used as a tool to obtain a partitioning of data where
the transitions between the subsets are gradual rather than
abrupt. This section recalls the basic concepts of fuzzy clus-
tering [6] at a level necessary to understand the subsequent
applications. For a more detailed treatment of the subject,
the reader may refer to the classical monographs by Duda
and Hart [31], Bezdek [32], and Jain and Dubes [33]. A more
recent overview can be found in a collection of Bezdek and
Pal [34], and the monograph by Backer [35]. The notation
and terminology in this section closely follows [32].

The aim of cluster analysis is the classification of objects
according to similarities among them, and the organising
of data into groups. Clustering techniques are among the
unsupervised (learning) methods, since they do not use
prior class identifiers. Most clustering algorithms also do
not rely on assumptions common to conventional statistical
methods, such as the underlying statistical distribution of
data, and therefore they are useful in situations where
little prior knowledge exists. The potential of clustering
algorithms to reveal the underlying structures in data can be
exploited, not only for classification and pattern recognition,
but also for the reduction of complexity in modelling and
optimisation. Clustering techniques can be applied to data
which are typically observations of some physical process.
Generally, a cluster is a group of objects that are more similar
to one another than to members of other clusters [32, 33].
In metric spaces, similarity is often defined by means of a
distance norm. Distance can be measured among the data
vectors themselves, or as a distance from a data vector
to some prototypical object of the cluster. The prototypes
are usually not known beforehand and are sought by the
clustering algorithms simultaneously with the partitioning
of the data. The prototypes may be vectors of the same
dimension as the data objects, but they can also be defined
as geometrical objects, such as linear or nonlinear subspaces
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or functions. Data can reveal clusters of different geometrical
shapes, sizes, and densities. Algorithms that can detect
subspaces of the data space are of particular interest for
identification and will be summarised in the following.

Many clustering algorithms have been introduced in the
literature. Since clusters can formally be seen as subsets of the
data set, one possible classification of clustering methods can
be according to whether the subsets are fuzzy or crisp (hard).
Hard clustering methods are based on classical set theory
and require that an object either does or does not belong
to a cluster. The fuzzy clustering methods, however, allow
the objects to belong to several clusters simultaneously, with
different degrees of membership. In many situations, fuzzy
clustering is more natural than hard clustering, as objects
on the boundaries between several classes are not forced to
fully belong to one of the classes, but rather are assigned
membership degrees between 0 and 1 indicating their partial
memberships.

Another classification of clustering techniques can be
related to the algorithmic approach of the different tech-
niques [32]. In particular, the class of clustering algorithms
presented here exploits an objective function to measure the
desirability of partitions. Nonlinear optimisation algorithms
are used to search for local extrema of the objective
function. In general, the fuzzy clustering algorithms are
developed in connection with suitable objective functions.
These methods lead to least-squares optimisation, and hence
there are close relationships between clustering with fuzzy
objective function and statistical regression and systems
identification methods [6]. In more detail, the clustering
algorithm exploited in this work is based on optimisation of
the basic c-means objective function and it is known as fuzzy
c-means clustering algorithm [36].

When considering fuzzy identification via data clus-
tering, an important point concerns the determination of
the optimal number of clusters. When clustering real data
without any a priori information about the data structure,
one usually has to make assumptions about the number
of underlying subgroups (clusters) K in the data. The
chosen clustering algorithm then searches for K clusters,
regardless of whether they are really present in the data or
not. Two main approaches to determining the appropriate
number of clusters in data can be distinguished [6]. The
first one consists of clustering data for different values of
K , and using validity measures to assess the goodness of the
obtained partitions. Different scalar validity measures have
been proposed in the literature. The second approach starts
with a sufficiently large number of clusters, and successively
reduces this number by merging clusters that are similar
(compatible) with respect to some predefined criteria.

3.1.3. Fuzzy Model Identification from Clusters. As shown in
the previous sections, fuzzy clustering algorithms can be used
to approximate a set of data by local linear models. Each of
these models is represented by a fuzzy subset in the data set
available for identification. In order to obtain a model useful
for prediction, an additional step must be applied to generate
a model independent of the identification data. Such a model

can be represented either as a rule base or as a fuzzy relation
[6]. This section recalls the algorithms for constructing fuzzy
TS models from the fuzzy partitions obtained by product
space clustering. In particular, the construction of Takagi-
Sugeno models is addressed and the methods for generating
the antecedent membership functions and estimating the
consequent parameters are summarised below.

Each cluster obtained by product space clustering of
the identification data set can be regarded as a local linear
approximation of the regression hypersurface. The global
model can be conveniently represented as a set of affine
Takagi-Sugeno rules:

Ri : IF x is Ai THEN yi = aTi x + bi, i = 1, 2, . . . ,K.
(22)

The antecedent fuzzy sets Ai can be computed analytically in
the antecedent product space, or can be extracted from the
fuzzy partition matrix. The consequent parameters ai and bi
are estimated from the data using the method sketched in the
following, or they can be extracted from the eigenstructure of
the cluster covariance matrices. The antecedent membership
functions can be obtained by projecting the fuzzy partition
onto the antecedent variables, or by computing the member-
ship degrees directly in the product space of the antecedent
variables. These two methods are described in the following
but the second one will be exploited for the identification
of the TS models by means of the Fuzzy Modelling and
Identification Toolbox (FMID), for Matlab [20] developed by
Robert Babuška [6].

The first method estimates the antecedent membership
function by projection. The principle of this method con-
sists of projecting the multidimensional fuzzy sets defined
pointwise onto the individual antecedent variables of the
rules. These variables can be the original regression variables,
in which case the projection is an orthogonal projection of
the data. Then, the transformed antecedent variables can
be obtained by means of eigenvector projection, using the
p largest eigenvectors of the cluster covariance matrices.
The eigenvector projection is useful for clusters which are
opaque to the axis of the regression space, and cannot be
represented by axis-orthogonal projection with a sufficient
accuracy. By projecting the fuzzy partition matrix onto the
antecedent variable xi, a pointwise definition of the fuzzy
set Ai is obtained. In order to obtain a prediction model,
the antecedent membership functions must be expressed
in a form that allows computation of the membership
degrees, also for input data not contained in the data set.
This is achieved by approximating the pointwise defined
membership function by some suitable parametric function.
The piecewise exponential membership functions proved
to be suitable for the accurate representation of the actual
cluster shape. This function is fitted to the envelope of the
projected data by numerically optimising its parameters. An
advantage of this method over the multi-dimensional mem-
bership functions, summarised below, is that the projected
membership functions can always be approximated such
that convex fuzzy sets are obtained. Moreover, asymmetric
membership functions can be used to reflect the actual
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partition of the considered nonlinear regression problem.
The second method considers multi-dimensional antecedent
membership functions, which are represented analytically
by computing an inverse of the distance from the cluster
prototype. The membership degree is computed directly for
the entire input vector (without the decomposition). The
antecedents of the TS rules are simple propositions with
multi-dimensional fuzzy sets given by (22), and βi(x) =
μAi(x).

Regarding the estimation of the consequent parameters,
there are several methods of obtaining them. Based on the
geometrical interpretation of the TS model, the consequent
parameters can be directly computed from the cluster
prototypical points and the smallest eigenvectors of the
cluster covariance matrices. This method assumes that errors
are present in both the regressors and the regressand, and
corresponds to the total least-squares solution of the local
linearisation around the cluster centre [37]. A set of optimal
parameters with respect to the model output can also be
estimated from the identification data set by ordinary least-
squares methods or by using the procedure recalled in
the following [38]. This approach can be formulated as
minimisation of the total prediction error using the TS
defuzzification formula of (17), or as minimisation of the
prediction errors of the individual local models, solved as a
set of K independent, weighted least-squares problems.

In the following, an example of identification of the con-
sequent TS parameters by exploiting an algorithm developed
by one of the author is summarised. This approach is usually
preferred when the TS model should serve as predictor [38]
and it computes the consequent parameters by the so-called
Frisch scheme. After the clustering of the data has been
obtained, data subsets can be processed according the Frisch
scheme identification procedure [39, 40], in order to estimate
the TS parameters for each affine submodels, according to the
rules presented in [38].

Thus, in order to identify the structure of the TS SISO
model of (17) in the ith cluster with i = 1, . . . ,K and K
clusters, the following matrices can be defined:

X (i)
n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(k) xTn (0) 1

y(k + 1) xTn (1) 1

...
...

y(k +Ni − 1) xTn (Ni − 1) 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (23)

where the subscript n represents the order of the considered
dynamic model (number of regressors), that is, xn(h) =
[y(h− 1), . . . , y(h− n),u(h− 1), . . . ,u(h− n)]T . Therefore:

Σ(i)
n =

(
X (i)
n

)T
X (i)
n . (24)

In order to solve the noise-rejection problem in a mathe-
matical framework, it is necessary to follow the assumptions
[39, 40] that the noises ũ(k) and ỹ(k) are additive on the
input-output data u∗(k) and y∗(k) are region independent
(k = 1, 2, . . . ,N).

Under these assumptions, a positive-definite matrix Σ(i)
n

associated to the sequences belonging to the ith cluster can

be expressed as the sum of two terms Σ(i)
n = Σ∗(i)

n + Σ̃n, where

Σ̃n = diag
[
σ̃ yIn+1, σ̃uIn, 0

]
≥ 0. (25)

The solution of the above identification problem requires the
computation of the unknown noise covariances σ̃u and σ̃ y ,
that can be achieved solving the following relation:

Σ∗(i)
n = Σ(i)

n − Σ̃n ≥ 0 (26)

in the variables σ̃u, σ̃y , where Σ̃n = diag[σ̃yIn+1, σ̃uIn, 0]. It is
worth noting that all the surfaces of type as defined by (26)
have necessarily at least one common point, that is, point
(σ̃u, σ̃ y) corresponding to the true variances of the noise
affecting the input and the output data.

The search for a solution for the identification problem
can therefore start from the determination of this point in
the noise space, if the noise characteristics are common to all
the clusters and all assumptions regarding the Frisch scheme
are satisfied (independence between input-output sequences,
additive noise, noise whiteness).

In real cases, these assumptions have to be relaxed,
thus no common point can be determined among surfaces

Γ(i)
n = 0 in the noise plane and a unique solution to the

identification problem cannot be obtained. In this situation,
the local fuzzy model identification can be performed by

finding the point (σ̃u, σ̃y) ∈ Γ(i)
n+1 = 0 that makes Σ∗(i)

n+1 closer
to the double singular condition. It leads to determine the
common point of the surfaces when the assumptions of the
Frisch scheme are not violated. Moreover, for each cluster,

different noises (σ̃
(i)
u , σ̃

(i)
y ) and the following relation should

be rewritten as

Σ∗(i)
n = Σ(i)

n − Σ̃(i)
n ≥ 0, (27)

where Σ̃(i)
n = diag[σ̃

(i)
u In+1, σ̃

(i)
y In, 0] ≥ 0 whilst (σ̃

(i)
u , σ̃

(i)
y )

represent the variances of input and output additive noises
in the ith cluster.

Finally, the matrices Σ̃(i)
n can therefore be built and the

parameter of the model in each cluster determined by means
of relation

(
Σ(i)
n − Σ̃(i)

n

)
ai = 0, for i = 1, . . . ,K , (28)

for a number of K clusters. This completes the multiple-
model identification procedure in the fuzzy environment.

In Section 4 the example concerning the fuzzy modelling
and identification from real data of the considered diesel
engine by means of TS models will be presented.

3.2. Fuzzy Controller Design. The structure of the control
system with the proposed fuzzy PI (FPI) controller is shown
in Figure 4, where the proposed fuzzy controller is based on
Sugeno’s fuzzy technique.
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r(k) +

−

e(k)

δe(k)

Fuzzy PI
u(k)

Diesel engine
y(k)

Figure 4: The structure of the control system with the proposed
fuzzy PI controller.

The proposed fuzzy logic controller works with input
signals of the system error e(k). This system or tracking error
is defined as the difference between the set point r(k) and the
plant output y(k) at the sample k, or

e(k) = r(k)− y(k). (29)

As shown in Figure 4, the fuzzy PI controller uses a
second input signal, defined as the sum of the system errors,
which is computed using

δe(k) =
k∑

i=1

e(i). (30)

It is known from digital control theory that the most
frequently used digital PI control algorithm can be described
with the well-known discrete equations as follows [14]:

u(k) = kpe(k) + kiδe(k), (31)

where ki = kp(Ts/Ti), Ts is the sample time of the discrete
system, Ti is the integral time constant of the conventional
controller, kp is the proportional gain, and u(k) is the output
control action.

The Sugeno’s fuzzy rules into the fuzzy PI controller
can be composed in the generalized form of “IF-THEN”
composition with a premise and an antecedent part to
describe the control policy. The rule base comprises a
collection of K rules, where the upper index ( j) represents
the rule number:

Rj : IF x(k) is Aj THEN f
( j)
u (k)=K ( j)

P e(k) + K
( j)
I δe(k),

j=1, 2, . . . ,K ,
(32)

where e(k) and δe(k) are the input variables. This way a
similarity between the equation of the conventional digital PI
controller 31 and the Sugeno’s output function (32) could be
found. In this case, the fuzzy PI controller is considered as a
collection of many local PI controllers, which are represented
by the Sugeno’s functions into the different fuzzy rules,
and this way it is possible to approximate the nonlinear
characteristic of the controlled plant.

For a discrete universe with K quantisation levels in the
fuzzy output, the control action u = uF is expressed as a
weighted average of the Sugeno’s output functions fu and
their membership degrees βi of the quantisation levels. Also
in this case, before the output can be inferred, the degree
of fulfilment of the antecedent denoted by βi(x) must be

computed. Thus, as for the case of (13) and (14), the degree
of fulfilment is simply equal to the membership degree of
the given input x, that is, βi = μAi(x). By recalling the
identified Takagi-Sugeno model, the inference is reduced to a
simple expression, similar to the fuzzy-mean defuzzification
formula [9]

uF =
∑K

j=1 βj(x) f
( j)
u

∑K
i=1 βj(x)

, (33)

or by substituting the expression of the fuzzy PI terms:

uF(k) =
∑K

j=1 βj(x(k))
(
K

( j)
P e(k) + K

( j)
I δe(k)

)

∑K
i=1 βj(x(k))

, (34)

where the time dependence at the instant k has been
highlighted.

It is worth noting that the PI controller parameters

K
( j)
P and K

( j)
I (with j = 1, . . . ,K) are settled according to

the Ziegler-Nichols rules [14] applied to the identified local
linear submodels of (22). Then, in order to obtain a quick
reaction to set-point variations, gain scheduling of the fuzzy
regulator parameters is performed depending on the error, as
shown by (34).

The second step consists in building the fuzzy controller
of (34). The input MFs βj(x) coincide with the ones of
the identified TS model, as described in Section 3.1.3. The
output MFs are equally spaced singletons. The number of the
input MFs determines the number of rules and output MFs.
In this work, the optimal number of rules K is equal to the
minimal number of clusters used to identify the nonlinear
diesel engine system, as recalled in Section 3.1.3. Finally, the
adopted fuzzy operators are the product as AND operator,
the bounded sum as OR operator, min as implication
method, the Center of Gravity (COG) as defuzzification
method.

4. Experimental Results

This section describes the experimentations with the method
proposed for the fuzzy modelling techinque oriented to
the design of the controller relying on the multiple-model
approach.

As described in Section 1, theoretical models of the diesel
engine air system are too complex and labor intensive for
control design. The reason is that complex thermodynamic,
chemical equations, and side-effects have to be taken into
account. Therefore, diesel engine models are mostly exper-
imental. In contrast to this physical modelling, dynamic
fuzzy models can easily be exploited in order to represent
all relevant variables influencing the diesel engine air system.
Depending on the complexity of the engine, more than 5
inputs might be necessary to consider the most relevant
variables concerning the air system.

Thus, the fuzzy identification procedure recalled in
Sections 3.1.3, 3.1.2, 3.1.1, and 3.1 exploits the identification
of a nonlinear dynamic system based on TS fuzzy models.
According to this procedure, the nonlinear dynamic process



Advances in Fuzzy Systems 11

can be described as a composition of several TS models
selected according to process operating conditions. In partic-
ular, Section 3.1 addresses the method for the identification
and the optimal selection of the local TS models from
a sequence of noisy input-output data acquired from the
process.

It is assumed that the monitored system, depicted in
Figure 1, can be described by a model of the type given
by (21). The problem considered here thus regards the
fuzzy system identification on the basis of the knowledge
of the measured sequences u(k) and y(k) acquired from
the input-output sensors of the considered diesel engine.
As stated in Section 2.1, in general the process operates
in different working conditions and the 7 measurements,
including temperatures, flows, control signals, and speed can
be acquired with a sampling rate Ts = 0.1 s. Because of the
underlying physical mechanisms and because of the modes
of the control signals, the process has nonlinear steady state
as well as dynamic characteristics.

In more detail, the acquired inputs u(k) =
[u1(k), . . . ,u6(k)] and the output y(k) (with k = 1, 2, . . . ,N)
of the diesel engine are summarised in the following.

u1: engine fuelling;

u2: engine speed;

u3: intake air flow temperature;

u4: engine oil temperature;

u5: EGR command;

u6: TVA command;

y: intake air flow (for each cylinder).

The clustering algorithm recalled in Section 3.1.1 was used
and it provides an optimal number of K = 9 clusters
(operating conditions) and n = 2 the number of sample
delays of the inputs and outputs for a model of the type of
(21). After clustering, the system structure and its parameters

ai = {α(i)
j , δ(i)

j }, with i = 1, . . . ,K and j = 1, 2, were
estimated using the Frisch scheme. The reconstructed output
y(k) of the plant is characterised as a TS fuzzy multiple-
input single-output (MISO) model 17 with 6 inputs. As an
example, the actual output measurement compared with the
reconstructed signal is reported in Figure 5.

The identified model capabilities and reliability were then
validated by testing it on many different separate real data
sets, acquired from a Jeep Wrangler under emission test,
according the European Union Driving Cycle (EUDC). This
test is based on the prescribed vehicle velocity profile shown
in Figure 6.

By considering different test data sequences, which
consist of a number of samples N > 30000, Table 1 reports
the Predicted PerCent Reconstruction Error (PPCRE). This
performance index is defined as

PPCRE = 100

√√
√
√
∑N

k=1 ε2(k)
∑N

k=1 y2(k)
, (35)

where the prediction error ε(k) is computed as the difference
between the actual diesel engine output y(k) and the output
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Figure 5: Compared actual and simulated intake air flow.
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Figure 6: European Union Driving Cycle velocity profile.

Table 1: Output estimation errors of the TS fuzzy model for
different data sets.

Data Set PPCRE

Estimation data set 0.90%

Validation data set 2.80%

Test data set 4.20%

from the TS fuzzy model. Since this error is normalised with
respect to the output standard deviation, it can represent
the percentage of data that are not correctly explained by
the identified TS model. The results summarised in Table 1
indicate how the fuzzy multiple-model approximates the real
process very accurately and that the composite model can
serve as a reliable predictor for the real diesel engine.

Using this identified TS fuzzy prototype, a model-based
approach for the diesel engine controller design can be
exploited and applied to the actual process.
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According to Section 3.2, the parameters of the fuzzy
PI controllers have been computed. In particular, as the
identified TS model consists of a fuzzy collection of 9 ARX
MISO 2nd order (n = 2) models, the regulator parameters in
(32) can be computed analitically.

In more detail, by considering a second-order local
model described by its identified parameters ai =
[α(i)

1 ,α(i)
2 , δ(i)

1 , δ(i)
2 ] from (28), the critical gain K (i)

0 and the

critical period of oscillations T(i)
0 required by the Ziegler-

Nichols method [41] are computed from the following
relations [42]:

K (i)
0 = α(i)

1 − α(i)
2 − 1

δ(i)
2 − δ(i)

1

,

T(i)
0 = 2πTs

arccos γ(i)
with γ(i) = α(i)

2 δ
(i)
1 − α(i)

1 δ
(i)
2

2δ(i)
2

.

(36)

The following relations are recommended to calculate the

parameters K (i)
P and K (i)

I for the (local) ith PI controller of
(32):

K (i)
P = 0.6 K (i)

0

(

1− Ts

T(i)
0

)

, K (i)
I = 1.2 K (i)

0

K (i)
P T(i)

0

, (37)

where Ts is the sampling time.
In the following, the suggested fuzzy PI controller and

the embedded BOSCH controller have been developed and
compared in the Matlab and Simulink environments.

The experimental setup employs 2 MISO fuzzy PI
regulators used for the control of the EGR and TVA valves,
respectively. As an example, by using the previous relations
of (36) and (37), the following tuned parameter sets have
been computed for the EGR valve control:

{
K (1)
P , . . . ,K (9)

P

}

= {7.1, 10.2, 17.1, 20.1, 12.2, 14.3, 5.1, 8.5, 22.3},
{
K (1)
I , . . . ,K (9)

I

}

= {0.2, 0.15, 0.50, 0.60, 0.35, 0.40, 0.15, 0.30, 0.65}.

(38)

In order to compare the advantages of the proposed fuzzy
PI strategy, the obtained results are compared with the ones
achieved by using the embedded BOSCH regulator described
in Section 2.2. The embedded controller parameters were
empirically tuned by the calibration engineers of the VM
Motors S.p.A., and experimentally optimised on a test-bed
to ensure the best controller performances.

Figure 7 reports the desired fresh air setpoint r(k) (blue
curve) and shows the air flow y(k) from the identified TS
model with the proposed fuzzy PI controller (green line),
whilst the red curve is the TS model response obtained
with the embedded PI-based strategy by BOSCH. As shown
in Figure 7, the tracking performances achieved by the
proposed fuzzy PI controller are better than the ones
obtained with the standard regulator.
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Figure 7: Responses with the fuzzy PI and the standard embedded
BOSCH controllers.

Because of the lack of theoretical methods suited to such
complex system, the controller robustness has been assessed
in simulation by considering different data sequences, cor-
responding to different driving cycles on the test vehicle.
This situation should correspond to the variabilities generally
encountered on the engine, and due for example to variations
of the engine volumetric efficiency, or turbocompressor
efficiency. In Table 2, the percentage Normalised Sum of
Squared tracking Error (NSSE) defined as:

NSSE = 100

√
√
√√
∑N

k=1

(
r(k)− y(k)

)2

∑N
k=1 r2(k)

(39)

is computed for the controllers and for different data
sequences. According to these simulation results, the robust-
ness of the suggested fuzzy PI controller seems to be reached.

4.1. Real-Time Validation. Clearly, the presented fuzzy iden-
tification and model-based controller design algorithms
require a considerable calculation effort. State-of-the-art
Engine Control Units (ECUs) would not be able to calculate
these algorithms in an appropriate time. Assuming that the
growth in calculation power proceeds at the high speed
of the last few years, future ECUs should make sufficient
calculation time available within some years, where very
simple adaptation or identification algorithms could be
implemented. However, it is worth noting that the complete
fuzzy modelling for control strategy suggested in this work
was computed off-line.

Special real-time computer systems based on digital sig-
nal processors already allow an implementation and testing
of the model-based controllers in vehicles or engine test
stand. In order to operate the designed fuzzy regulator under
realistic conditions, a real-time system was implemented at a
dynamic engine test stand where it could be run parallel to



Advances in Fuzzy Systems 13

From ECU

Engine speed

Acc. pedal

Charge pressure

Air flow sensor

Charge air
temperature

Water temperature

Oil temperature

Brake pedal

Clutch pedal

ECU
embedded
controller

Bosch
controller

Embedded
controller

bypass

TVA
electric valve

To ECU

PWM
EGR
Electropneumatic
Converter

Rapid prototyping

Matlab simulink
RTW

(control desk host PC)

Figure 8: Integration of the real-time system with the test vehicle.

Table 2: Performances of the simulated controllers.

Data set BOSCH controller NSSE Fuzzy PI NSSE

Identification data set 24.70% 10.60%

Validation data set 29.80% 12.70%

Test data set 33.50% 14.70%

the production car’s ECU. This system uses the production
car sensors, and the input-output messages of the ECU.

The controller actuated signals, which are calculated in
real-time, are then sent to the actual actuators by means of
a suitable electronic interface. Thus, this system, whose logic
diagram is reported in Figure 8, allows to test the capabilities
of both the embedded BOSCH controller and the suggested
fuzzy controller.

In this application, the test system is used as a rapid
prototyping environment. The goal of this structure is to
enable a very fast and easy implementation and testing of new
control concepts on real-time hardware. The user is enabled
to code newly developed algorithms from block diagrams
via the Matlab and Simulink environments, and download
the code by means of an automatic code generation software
to the real-time hardware (e.g., the well-known Real-Time
Workshop of Matlab). In this way, a complete design
iteration can thus be accomplished very easily.

The described real-time hardware system shown in
Figure 8 enables very fast and easy implementation and
testing of complex control strategies, even under the harsh
real-time conditions of diesel engines.

5. Conclusion

In this paper, a fuzzy modelling procedure oriented to
the design of a fuzzy controller has been presented. The
proposed fuzzy identification strategy relying on local linear
models has the advantages of automatically finding the fuzzy
model optimal structure and a straightforward estimation

of the model parameters in the relatively small computation
time. On the other hand, the suggested fuzzy controller
allows the regulation of the intake fresh airflow without
using a physical model of the diesel engine air system.
Its structural simplicity and straightforward design derived
from an identified fuzzy prototype distinguishes it from
predictive and robust controller strategies, sometime inap-
plicable in standard cars. The use of the suggested fuzzy
controller allowed to track with good accuracy the reference
fresh mass airflow signal, thus assuring the minimisation
of NOx emissions and avoiding exhaust visible smoke. In
comparison to the current PID embedded strategy developed
by BOSCH, a significant improvement in desired setpoint
tracking is obtained as highlighted by the experimental
results obtained from real data shown in this work. In
order to validate the optimization results, a real-time rapid
control prototyping system was exploited, which allows the
evaluation of the model-based design technique directly at
the real process. Further investigations will be performed for
implementing this controller in an electronic control unit
and tested on an engine test-bed in order to finally assess its
performances.
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