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The increased need of flexibility of automation systems and the increased capabilities of sensors and 

actuators paired with more capable bus systems, pave the way for the reallocation of IEC 61131-3 

applications away from the field level into so-called compute pools. Such compute pools are decentralised 

with enough compute power for a large number of applications, while providing the required flexibility 

to quickly adapt to changes of the applications requirements. The paper proposes a framework able to 

deploy IEC 61131-3 applications to multiple computing platforms based on CLR VM; it uses C# language 

as intermediate code. The software solution proposed by the authors does not require any modifications 

of the IEC 61131-3 applications. Current literature does not provide solutions like that here presented; 

due to the spread current use of C# language in the development of industrial applications, adoption of 

the proposed solution seems very attractive. The paper will deeply describe the software implementation 

and will also present an analysis about the capability of the proposed framework to respect real-time 

constraints of the industrial processes, mainly focusing on the periodic ones. 

Povzetek: Prispevek predlaga okvir, ki omogoča uporabo aplikacij IEC 61131-3 za več računalniških 

platform, ki temeljijo na CLR VM. 

1 Introduction 
Programmable Logic Controllers (PLCs) are widely used 

for the control of automation systems. The standard IEC 

61131-3 defines the execution model as well as 

programming languages for such systems [1]. According 

to IEC 61131-3, software development becomes 

independent of process mapping and device specific 

configuration files. Programmers can focus on the 

algorithm and control development. Device specific 

knowledge is outsourced into the block library and can be 

substituted, every time a new target PLC device should be 

programmed. 

During these last years, the need to deploy IEC 

61131-3 – based applications addressing multiple target 

platforms (also different from PLCs, e.g. based on general 

purpose computing architectures) became more and more 

urgent for the reason explained in the following. In a 

common factory automation scenario, actuators and 

sensors connect to the PLCs via automation buses; 

traditionally, bus based systems dominated the automation 

industry. Nowadays, more powerful and flexible 

automation networks appear and allow the connection of 

thousands of actuators and sensors to the same network, 

while still obtaining the required timing performance; 

interested readers are referred to [2] for a detailed 

overview.  

Those changes in the communication technologies 

opens possibilities of computation further away from the 

field level, compared to how it is done in today’s 

automation systems. On the other hand, many sensors and 

actuators are equipped with small microcontrollers, 

allowing them to do basic data processing; furthermore, 

they are able to connect directly to the new bus 

technologies. 

Having basic data processing done at the lowest level 

(i.e., at the field level directly on sensors and actuators) 

and a connection to capable networks, allows the 

reallocation of applications away from the field level into 

so-called compute pools [3] [4]. Such compute pools are 

decentralised with enough compute power for a large 

number of applications, while providing the required 

flexibility to quickly adapt to changes of the applications 

requirements. This has several benefits. Changing control 

applications becomes merely a problem of reconfiguration 

in the compute pool. Costs will decrease as well as the 

need for physical PLCs will be decreased; in this new 

scenario, the PLC is migrated to the computing pool and 

can be also realised by general purpose computer 

architectures (e.g., a server or a cluster of servers). 

Several requirements must be satisfied in order to 

reach this goal. The first one is the guarantee of the total 

compliance with IEC 61131-3; it is clear that moving an 

IEC 61131-3 application on a compute pool must be 

realised without any changes in the same application. 

Then, respect of real-time constraints of the IEC 61131-3 

control applications must occur when migrating the 

application to the compute pool. Particular cares must be 

reserved for real-time applications requiring periodic 

executions; in these cases, executions of each process 

must occur exactly with the requested period. 
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Current literature presents several solutions in the 

direction just pointed out. For example, in [5], the use of 

the Java Virtual Machine (JVM) to deploy IEC 61131-3 

applications to embedded devices has been proposed. In 

[6] different levels of an automation process are proposed 

and a cloud-based solution is presented. An example of 

virtual PLC is given by [7], where PLC systems are 

executed as applications within a legacy OS. Finally, [3] 

[4] present the use of a multi-core high performance 

computing architecture to realise the compute pool. 

Based on what said, the aim of the paper is to 

contribute to find solutions able to deploy IEC 61131-3 –

based applications to multiple computing platforms, 

mainly focusing on general purpose computer systems 

(e.g., single server or cluster of servers with common 

operating systems). 

In the last years, the domain of factory and process 

automation features intense usage of languages (e.g., Java, 

C#) based on Virtual Machines (VMs), like JVM or 

Common Language Runtime (CLR) VM, as pointed out in 

[8]. A VM has some clear benefits: portability, security, 

Just-in-time Compiler to boost performance in time, ease 

of development in conjunction with a garbage collector, 

multi-threading and others; reader may refers to [8] in 

order to achieve a complete survey on this subject. On this 

basis, the authors believe that one of right possible 

directions to reach the aim of the paper is that to adopt 

languages supporting VMs for the deployment of IEC 

61131-3 application on common computing platforms. 

This idea was already pointed out in [5], which proposed 

the deployment of IEC 61131-3 applications using Java 

bytecode as a common intermediate format, although the 

deployment was limited to the embedded devices. 

To the best of authors’ knowledge, literature does not 

provide solutions aimed to deploy IEC 61131-3 

applications using languages based on CLR VM, like C# 

language, as intermediate code. Due to the spread current 

use of C# language in the development of industrial 

applications, adoption of C# language based on CLR VM 

to deploy IEC 61131-3 applications on computing 

platforms seems attractive. Typical candidate platforms 

are those based on general purpose computing architecture 

(on which CLR VM allows the use of common operating 

systems like Linux and Windows), but also all the 

embedded systems supporting a CLR VM may be 

considered. 

For all the previous reasons, the authors propose a 

novel software solution made up by different features. 

First of all, it is able to translate a generic IEC 61131-3 

application into C# code which could be executed in a 

general purpose CLR VM-based platform. Furthermore, 

the solution here proposed includes the definition of a 

framework which is able to realise the deployment of IEC 

61131-3 applications on a compute poll based on CLR 

VM, using the C# code as intermediate one. The proposed 

solution does not require any modifications to the native 

IEC 61131-3 applications; all additional overhead is 

handled by the framework here defined. Applications in 

the automation domain often come with real-time 

requirements; in order to better allow their respect, the 

proposed framework features the use of a CLR VM on the 

top a real-time operating system who is in charge to 

schedule time-critical applications. Finally, the last feature 

of the proposed software solution is the use of open source 

environments; in particular, the implementation presented 

in the paper is based on the use of MONO [9] as CLR VM 

and a real-time Xenomai co-kernel [10] alongside a 

common Linux kernel. Choice of real-time Xenomai co-

kernel has been based on a performance evaluation whose 

main results will be shown in the paper. 

The paper will deeply describe the proposed software 

solution pointing out the main features. Then, results of a 

performance evaluation aimed to analyse its capability to 

respect real-time constraints of typical periodic industrial 

applications will be presented and discussed. 

Some of the very preliminary results achieved at the 

first stages of the research carried out by the authors have 

been subject of publication [11][12]. This paper presents 

the full results of the research and gives a very deep 

analysis of the implementation realised and of the 

outcomes achieved by the authors. 

2 PLC and IEC 61131-3 main 

features 
The main feature of a PLC is the use of cyclic loops for 

the execution of programs; each loop is called Program 

Scan. As shown by Figure 1, in each Program Scan, PLC 

reads the real inputs copying them into an internal memory 

area called I. Then, PLC execute one or more programs 

and finally it updates all the output values found in the 

memory area Q into the real output devices. The program/s 

executed inside the Program Scan may use internal 

memory, called area M, for the temporary storage of 

information. Each program may have a task associated, 

whose main aim is to control the execution of the program 

itself; the most common task is the periodic one, triggering 

the program in such a way it should be iterated after a 

certain fixed time interval (i.e., the period of the task). 

Tasks may feature priorities and the execution of a 

program inside the Program Scan may be pre-empted by 

another program whose task associated features a higher 

priority. Generally, reading and writing operations shown 

by Figure 1, cannot be interrupted by other programs. 

 

 

 

 

 

Figure 1: Program Scan. 

IEC 61131-3 is the vendor independent standardised 

programming language for factory automation [1]. IEC 

61131-3 allows users to write programs, choosing among 

five programming languages: Ladder Diagram (LD), 

Sequential Function Charts (SFC), Function Block 

Diagram (FBD), Structured Text (ST), Instruction List 

(IL). 

IEC 61131-3 software development is independent of 

process mapping and device specific configuration files. 

IEC 61131-3 application is typically deployed on a PLC 

Read Input (I memory) 

Execute Programs using M memory Program Scan 

Write Output (Q memory) 
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device, whose specific knowledge is outsourced into the 

block library and can be substituted, every time a new 

target PLC device should be programmed. 

In order to make the program itself independent on the 

device on which it must be deployed, the structure of an 

application written according to IEC 61131-3 standard is 

made up by at least two separate sections: Program and 

Configuration. 

An IEC61131-3 Program provides a large re-usable 

software component. It is defined by a program type 

definition (starting with PROGRAM and ending with 

END_PROGRAM keywords) which has input, output and 

internal variables declaration and a body which contains 

software describing the behaviour of the program itself. 

As said before, one of the five languages specified above 

can be used to describe the program.  

A Configuration defines the software for a complete 

PLC and will always include at least one but, in some 

cases, many Resources. A Configuration is specific to a 

particular type of PLC product and the arrangement of the 

relevant PLC hardware. It can be used to create software 

for another PLC if the hardware is identical. Configuration 

is introduced with the keyword CONFIGURATION and 

terminate with END_CONFIGURATION keyword.  

A Resource describes a processing facility inside a 

PLC type that is able to execute an IEC 61131-3 Program. 

A Resource is defined within the Configuration using the 

keyword RESOURCE followed by an identifier and the 

type of the processor on which the Resource will be loaded 

(keyword ON is used before the type of processor). In the 

real cases, for each type of PLC a detailed description of 

the hardware and software features is associated (e.g., 

firmware version, number of inputs/outputs, internal 

memory). The resource definition contains a list of Global 

Variable declarations and task definitions that can be 

assigned to Programs. It terminates with the keyword 

END_RESOURCE. 

As said, a task may be associated to a Program 

controlling its execution. Task may be single or periodic; 

in this last case, a period is specified for its execution. A 

priority value is assigned to each task in order to determine 

the order of their executions. Tasks are defined inside the 

RESOURCE section, as said. A Task declaration is 

introduced using the keyword TASK followed by the task 

identifier and optional values for the following 

parameters: SINGLE (if the task is not periodic), 

INTERVAL (period, if the task is periodic), PRIORITY 

(task priority value). After its definition, Task is 

associated to an instance of a Program using the keywords 

WITH. 

Figure 2 shows a very simple IEC 61131-3 application 

using ST language; this same example will be used in the 

remainder of this paper. 

As it can be seen, the simple IEC 61131-3 application 

is made up by only one PROGRAM section called 

MyProgram, which contains the definition of the local 

(i.e., VAR) and external (or global, i.e., 

VAR_EXTERNAL) variables. Furthermore, it contains 

the algorithm coded into ST language; it is made up by 

only two assignments, the first is relevant to a global 

variable (StepSizeVar) and the other to the local variable 

ComputedResult. CONFIGURATION section is named 

MyConfiguration and is made up by only one resource 

called MyResource; the type of PLC chosen for the 

execution of the software has been called PLC1 in the 

example. The RESOURCE section contains the 

declaration of the global variables used by the program 

(StepSizeVar, MaxValueVar and MinValueVar); the 

declaration includes the mapping of these variables into 

the internal PLC memory (called M memory, as shown by 

Figure 1) at the addresses 200, 204 and 208, respectively. 

RESOURCE section also contains the definition of two 

periodic Tasks, named MyTask1 and MyTask2; they 

differ for the period and the priority values. According to 

IEC 61131-3 standard, low priority values refer to high 

priority tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: IEC 61131-3 ST-based Program relevant to a 

simple algorithm. 

Finally, two instances of the MyProgram Program are 

defined into the RESOURCE section; they are called 

MyInstance1 and MyInstance2 and are featured by the 

tasks MyTask1 and MyTask2 associated, respectively, 

controlling their execution. 

3 Overview of Xenomai 
The Xenomai project has the aim of providing real-time 

support for user applications [10].  

It is a real-time development framework that 

cooperate with the Linux kernel in order to make possible 

the real-time management of tasks on any hardware with 

a Linux-based operating system. The project has a strong 

focus on embedded systems, although Xenomai can also 

be used over common desktop and server architectures. 

Xenomai has two modes of use: 

PROGRAM MyProgram 

 VAR 
  ComputedResult : REAL; 

 END_VAR 

 VAR_EXTERNAL 
  StepSizeVar : REAL; 

  MaxValueVar : REAL; 

  MinValueVar : REAL; 
 END_VAR 

   

 StepSizeVar := MaxValueVar-MinValueVar; 
 ComputedResult := StepSizeVar; 

END_PROGRAM 

 
CONFIGURATION MyConfiguration 

 RESOURCE MyResource ON PLC1 

  VAR_GLOBAL 
   StepSizeVar AT  %MD200 : REAL; 

   MaxValueVar AT  %MD204 : REAL; 

   MinValueVar AT  %MD208 : REAL; 
  END_VAR 

  TASK MyTask1(INTERVAL := T#100ms, PRIORITY := 1); 

  TASK MyTask2(INTERVAL := T#150ms, PRIORITY := 2); 
  PROGRAM MyInstance1 WITH MyTask1: MyProgram; 

  PROGRAM MyInstance2 WITH MyTask2: MyProgram; 

 END_RESOURCE 

END_CONFIGURATION 



266 Informatica 43 (2019) 263–279 S. Cavalieri et al.  

• as co-kernel extension for a patched version of 

the original Linux kernel. This is the solution 

adopted in the paper. 

• as libraries for native Linux kernel (features 

added in the version 3.0 in 2015) 

In both modes, it is possible to use the Native 

Xenomai C language-based API functions to run real-time 

tasks [13].  

To create and run a simple real-time task, three steps 

are needed: 

1. Creation of the task and setting of its properties 

(e.g., priority) using the rt_create_task() API 

function. If the task is periodic, the 

rt_task_set_periodic() API function will be also 

used, in order to allow Xenomai to have 

knowledge of the task periodicity. 

2. Creation of a C language-based procedure that 

the task will perform during its execution. If the 

task is not-periodic there are not particular 

constraints for the structure of this procedure. 

But, for periodic task, the C-language-based 

procedure must be featured by an infinite while 

loop inside which the rt_task_wait_period() API 

function must be present; it allows the procedure 

to be stopped after its conclusion and to resume 

its regular running after the task period 

previously set by rt_task_set_periodic() API 

function. Figure 3 shows how the C language-

based procedure (called task_function() in the 

figure), must be written in the case of periodic 

task. 

3. Association of the C language-based procedure 

to the Xenomai task created at the step 1 and 

starting the task using the rt_task_start() API 

function; in particular, the entry point of the C 

language-based procedure is passed to this 

function. 

 

 

 

 

 

 

Figure 3: Structure of a C language-based procedure to be 

assigned to a periodic task. 

4 Running C# programs over 

Xenomai 
This section plays a strategic role inside the paper. 

Introduction pointed out that the aim of the paper is that to 

propose a framework able to translate an IEC61131-3 

application into C# program; furthermore, the framework 

is able to allow real-time execution of the C# program 

using a Xenomai co-kernel. 

Before the framework defined may be presented, this 

section has to point out how a C# program may be 

executed over a Xenomai real-time co-kernel and, most 

important, if execution of a C# program may actually 

exploit the real-time features of the Xenomai co-kernel. 

The software solution presented in Figure 4 has been 

defined to allow execution of a C# program over Xenomai 

co-kernel. It is based on the use of a MONO Virtual 

Machine running on the top of a Linux OS with Xenomai 

co-kernel [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Software solution adopted for the Xenomai-

based C# program execution. 

As said in the previous section, Xenomai offers a set 

of native API functions to realise real-time mechanisms 

[13]; these API functions are callable inside a program 

written in C language. In order to allow a C# language-

based program to call a particular real-time Xenomai API 

function, suitable wrapper functions had to be defined. 

Each wrapper function maps a C# function call to a 

particular Xenomai API function; this happens through the 

definition of a C function containing the call to the native 

Xenomai API. All the wrapper functions are pre-compiled 

and realise a run-time library named in the figure “Native 

Xenomai API wrapper functions”. One of the following 

subsections will give an overview of the wrapper 

functions defined in the research here present. 

C# programs (written inside .cs files) are compiled by 

Mono producing .exe files containing Intermediate 

Language (IL)-based instructions. At run-time, for each 

IL-based executable file, Just-In-Time (JIT) compilation 

is realised producing binary code. Native machine code is 

executed directly by Linux/Xenomai kernel. In order to 

execute the Native Xenomai API wrapper functions, 

P/Invoke procedure allows to call the unmanaged code 

produced by the compilation of the “Native Xenomai API 

wrapper functions”. The unmanaged code is mapped on 

the Xenomai real-time system calls as the wrapper 

functions contains the calls to Xenomai API, as said 

before. 

4.1 Native Xenomai API wrapper 

functions 

The Xenomai wrapper functions defined according to the 

goal of the research here presented, are detailed in the 

following. 

.cs files 

Linux OS with Xenomai co-kernel 
 

.exe file 

Mono 

Compilation 

JIT  

Compilation 

P/Invoke  

Fully-Native  

Machine Code 

Native Xenomai API 

 wrapper functions 

MONO Virtual Machine 

C#  

program 

IL-based 

instructions 

void task_function(){ 

 while (true) { 

  //Code in C Language to be executed 

  rt_task_wait_period(); 

 } 

} 
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rt_task_create_wrap(). It calls the native Xenomai 

API rt_task_create() belonging to the Task Management 

Services. This service creates a new real-time task which 

is left in an innocuous state until it is actually started by 

the Xenomai service rt_task_start(). Among the 

parameters passed to the native Xenomai API function, the 

wrapper function specifies the priority of the new task in 

the range from [0 .. 99], where 0 is the lowest effective 

priority. 

rt_task_set_periodic_wrap(). This wrapper function 

calls the native Xenomai API rt_task_set_periodic(), 

which makes a real-time task periodic, by programing its 

first release point and its period in the processor time line. 

rt_task_start_wrap(). It allows to start execution of a 

Xenomai task that has been previously created. This 

wrapper calls the native Xenomai API rt_task_start(), 

which releases the target task from the dormant state. 

Among parameters passed to the native Xenomai API 

rt_task_start(), the wrapper function specifies the address 

of the procedure to be execute when the task is running. 

rt_task_wait_period_wrap(). It makes the Xenomai 

task wait for the next periodic release point in the 

processor time line. A rescheduling of the task always 

occurs, unless the current release point has already been 

reached. In the latter case, the current task immediately 

returns from this service without being delayed. 

rt_task_sleep_wrap(). It suspends the calling process 

for a certain amount of milliseconds passed as argument. 

This function calls the Xenomai rt_task_sleep() API 

function.  

rt_sem_create_wrap(). It allows to create a Xenomai 

real-time semaphore, fully handled by Xenomai itself. It 

wraps the Native Xenomai API rt_sem_create(). 

rt_sem_p_wrap(). It is used to acquire the semaphore 

or put on hold his release if already occupied. It is directly 

mapped to the native Xenomai API rt_sem_p(), which 

acquires a semaphore unit. If the semaphore value is 

greater than zero, it is decremented by one and the service 

immediately returns to the caller. Otherwise, the caller is 

blocked until the semaphore is either signalled or 

destroyed, unless a non-blocking operation has been 

required. Among the parameters passed to the native API 

function, there is the descriptor address of the affected 

semaphore. 

rt_sem_delete_wrap(). It directly maps to the 

Xenomai API rt_sem_delete(), which destroys a 

semaphore and release all the tasks currently pending on 

it. 

rt_sem_v_wrap(). This function allows to call the 

native Xenomai API rt_sem_v() inside a C# program. This 

service releases a semaphore unit; the parameters passed 

to the native Xenomai API function, specify the descriptor 

address of the affected semaphore. 

4.2 Analysis of the real-time capabilities 

Evaluation of the capability of the software solution 

shown by Figure 4 to respect real-time constraints of a 

generic C# program was considered of primary 

importance. Real-time feature has been evaluated 

observing the capability of a particular C# program to 

promptly react to a rising event; real-time capabilities 

have been measured checking that all rising events have 

been caught with the lowest delay. 

The analysis has been carried out on an embedded 

system. Choice of an embedded system compared with a 

general purpose computing device like a server or a 

personal computer, had the advantage to allow an easier 

use of an oscilloscope to analyse the output produced upon 

the occurrence of an event realised by a digital input. 

The embedded system is made up by a MPC8309 

PowerQUICC processor [14] running at 333Mhz with 

256MB RAM, a microcontroller PIC32MX, and two 

Serial Peripheral Interface (SPI) acquisition boards (each 

featuring 4 channels at 16 bit, sampling at 125 µs). 

Figure 5 shows the general architecture of the 

embedded system. The PIC32MX receives the samples 

from SPI, forwarding them to MPC8309 through the 

MISO (Master data In/Slave data Out) bus. The SYNC 

line is used by MPC8309 processor to advise the 

PIC32MX that it is ready to start the acquisition of 

samples. After reception of this synchronization signal, 

the PIC32MX will start transmission of samples received 

from SPI, synchronizing them with a DRDY signal with a 

duration of 15 µs, sent with a period of 5ms. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Architecture of the Embedded System. 

A Linux Kernel 3.8.13 with co-kernel Xenomai 

version 2.6.4 has been installed in the MPC8309 

embedded system. A Mono framework version 3.2.6 has 

been also installed. 

A huge set of tests has been performed in order to 

explore the capability featured by the Xenomai-based 

software solution shown by Figure 4 to meet real-time 

constrains of a C# program running inside the MPC8309. 

A C# program realising the flow-chart described by Figure 

6 has been defined. It reacts to the DRDY activation; on 

the receipt of this signal, the C# program set a particular 

General Purpose I/O, the GPIO #1, and maintains the 

value ON for 1 ms; this is achieved using the 

rt_task_sleep_wrap() describe before. After the sleep 

interval has passed, the GPIO #1 is put OFF. It is 

important to recall that DRDY is activated each 5 ms, as 

said at the beginning of this section. 

Two other C# programs have been defined; they both 

realise the flow chart shown by Figure 7. Each program 

waits for the setting of the GPIO #1 (by the program 

shown by Figure 6); when this occurs, the GPIO #2 is set 

and suddenly reset. Then, each program calls a sleep 

function with a duration of 2 ms; one C# program realises 

MPC8309 PIC32MX 
2x 4ch 

SPI 

SYNC 

DRDY 

MISO 
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this call though the function rt_task_sleep_wrap(), whilst 

the other C# program uses the C# Thread.sleep(). The only 

difference between the two C# programs is that the first 

one foresees the real-time management of the sleep by 

Xenomai co-kernel, whilst the other one does not exploit 

the real-time features of Xenomai co-kernel, as the 

management of the sleep of the process is given to Linux 

OS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: C# language-based programs acting on receipt 

of GPIO #1 signal. 

Figure 8 points out the behaviour of the C# program 

described by Figure 7 using the C# Thread.sleep(). The 

signal number 1 (on the top) refers to the setting of the 

GPIO #1 done by the C# program shown by Figure 6; it 

easy to verify that the period of this signal is 5ms as it is 

synchronised with DRDY. Signal number 2 (on the 

bottom) refers to the GPIO #2 and is set/reset by the C# 

program shown by Figure 7 when C# Thread.sleep() is 

used. 

Figure 9 refers to the C# program described by Figure 

7 when rt_task_sleep_wrap() is used. Again, the signal 

number 1 (on the top) refers to the setting of the GPIO #1 

done by the first C# program shown by Figure 6. Signal 

number 2 (on the bottom) refers to the GPIO #2 and is 

set/reset by the C# program shown by Figure 7 when 

rt_task_sleep_wrap() is used. 

Comparison of the two Figures 8 and 9 points out that 

the C# Thread.sleep is not able to wake-up the process in 

time to catch each single setting/resetting of the GPIO #2. 

The use of Xenomai API allows total respect of real-time 

requirements here presented. 

A huge set of other tests not shown here for space 

limitation, allowed to reach the same conclusions just 

pointed out: use of Native API Xenomai wrapper 

functions here defined according to the software solution 

shown by Figure 4, allows to fully exploit the real-time 

capabilities offered by Xenomai co-kernel and allows the 

respect of time-critical constraints. For these reasons, the 

software solution presented in Figure 4 will be used in the 

remainder of this paper. 

5 Overview of the proposed 

framework 
As pointed out in the Introduction, the main aim of this 

paper is that to present a framework based on the use of 

CLR-based virtual machine, able to deploy an IEC 61131-

3 application on a computing system supporting CLR VM. 

The framework is made up by the two modules shown in 

Figure 10 with the grey coloured backgrounds: C# 

Translator and PLC Framework.  

C# Translator is in charge to process a generic IEC 

61131-3 application in order to produce C# language-

based classes (contained in .cs files). These classes include 

all the information relevant to the different sections of the 

IEC 61131-3 application (e.g., program, configuration, 

DRDY received 

yes 

no 

Set GPIO #1 

Reset GPIO #1 

rt_task_sleep_wrap(1 ms) 

Start 

GPIO #1 is ON 

yes 

no 

Set GPIO #2 

rt_task_sleep_wrap(2 ms) or 

Thread.sleep(2 ms) 

Reset GPIO #2 

Start 

Figure 6: C# language-based program acting on receipt 

of DRDY and setting GPIO #1. 

 

Figure 8: Performance achieved using C# 

Thread.sleep(). 

 

Figure 9: Performance using rt_task_sleep_wrap(). 
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resource, including task definitions with periods and 

priorities). These classes will be used by the real-time 

environment shown by Figure 10, as explained in the 

remainder of this section. 

A very important feature to be pointed out is that the 

C# Translator may be used stand-alone, i.e. not linked to 

the real-time environment shown by Figure 10. C# 

Translator allows to achieve a C# code that in principle 

may be executed by a common CLR-based platform, using 

a common C# language-based integrated development 

environment (IDE).  

Introduction pointed out a main trend in automation, 

relevant to the reallocation of applications away from the 

field level into so-called compute pools. Real-time 

environment shown by Figure 10 is strictly linked to the 

concept of compute tools, as it will be shown better later. 

About C# Translator, no constraints exist for its 

installation; it may be installed in a compute poll or may 

be installed close to the system where the IEC 61131-3 

development environment is running. 

PLC Framework has the aim to realise a real-time 

environment implementing the same behaviour of a PLC. 

Mainly it allows the realisation of the Program Scan loop 

execution and allows the real-time scheduling of the tasks 

associated to the IEC 61131-3 Programs and the relevant 

executions.  

On the basis of what said in the Introduction, and on 

the basis of the software solution shown by Figure 4, 

implementation of PLC Framework requires the presence 

of a CLR-based VM running on a real-time operating 

system, as shown by Figure 10. The CLR VM has been 

realised by MONO [9]. For the real-time operating system 

it has been assumed to adopt a Linux OS and a Xenomai 

co-kernel [10]; choice of Xenomai has been supported by 

the analysis of the relevant performances, shown in the 

previous section. 

The remainder of this section will focus on the main 

technical details of the architecture shown by Figure 10. 

5.1 C# translator 

Given an IEC 61131-3 application, the main aim of the C# 

Translator module is to create a .cs file containing classes 

that can be used to execute a C# program which exactly 

behaves as the original IEC application. In the following, 

a detailed description of the procedure adopted by the C# 

Translator to map an IEC 61131-3 application to the C# 

classes, will be given.  

Figure 11 shows the structure of a typical .cs file 

produced by C# Translator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: File structure produced by C# Translator. 

The .cs file produced contains three main classes: 

ProgramName, ConfigurationName and 

ExternalProgramName. 

The class ProgramName is the translation of the 

PROGRAM section in the IEC61131-3 application; it 

mainly includes a method called IECRoutine() that 

translates the software describing the IEC61131-3 

Program.  

The class ConfigurationName is relevant to the 

CONFIGURATION section in the IEC61131-3 

application and is made up by the class ResourceName, 

related to the RESOURCE section. Class ResourceName 

may include the declaration of Global Variables; in this 

case the class GlobalDeclaration is present. The other 

class contained in ResourceName, class TaskName, 

represents a single task (so many classes may be present if 

several IEC tasks have been defined); inside this class, the 

program to be associated with the task is specified. 

Finally, class ExternalprogramName is a singleton 

class needed for the usage of the External Variables 

defined in the IEC61131-3 Program and declared as 

variables of the GlobalDeclaration class. This class has to 

contain a single instance of the GlobalDeclaration class, 

that IECRoutine can use so sharing the variables among 

all its instances. Furthermore, the class must implement 

suitable mechanisms able to guarantee that concurrent 

access to the shared variables must occur through use of 

critical section. 

In order to clarify better the structure of the .cs file 

produced by the C# Translator, the IEC 61131-3 

application shown by Figure 2 will be considered. After 

the processing operated by C# Translator, the .cs file 

shown by Figure 12 is achieved. 

As it can be seen, the .cs file produced contains the 

three main classes: MyProgram, MyConfiguration and 

ExternalMyProgram.  

The class MyProgram is the translation of the 

PROGRAM MyProgram section shown by Figure 2; it 

contains the local variable of the program, declared as 

class ProgramName { 
  public ProgramName(){} 

  public void IECRoutine() { 

  } 
} 

 

class ConfigurationName { 
 class ResourceName { 

   class GlobalDeclaration{ 

   } 
   class TaskName { 

     ProgramName instanceName; 

     public TaskName(){ 
      instanceName = new ProgramName(); 

     } 

   } 

 } 

} 

 
class ExternalProgramName { 

} 

 

Figure 10: Architecture of the Framework proposed. 
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variables of the class (i.e., ComputedResult), and the 

method IECRoutine() that translates the algorithm of the 

PROGRAM MyProgram. Just like the IEC 61131-3 

application, the C# algorithm uses global variables, as it 

will be explained in the following. 

The class MyConfiguration refers to the IEC 61131-3 

CONFIGURATION MyConfiguration section. As it 

occurs for the IEC 61131-3 application, it is made up by 

the class MyResource related to the RESOURCE section. 

The class MyResource contains three classes: 

GlobalDeclaration, MyTask1 and MyTask2. Class 

GlobalDeclaration allows the definition of the global 

variables of the original IEC61131-3 application (i.e., 

StepSizeVar, MaxValueVar and MinValueVar). The 

classes MyTask1 and MyTask2 represent the IEC 61131-

3 Tasks: inside these classes there are the variables that 

indicate the properties of the tasks as period and priority, 

a variable that indicates the program associated with the 

task (MyProgram) and a constructor with the aim of 

initializing these variables. 

The class ExternalMyProgram contains a variable of 

type GlobalDeclaration (i.e., Gd), representing the 

External Variable of IEC61131-3 Program. This variable 

is used by the IECRoutine(), as shown by Figure 12. The 

ExternalMyProgram class implements a critical section 

using the lock mechanism, allowing a safe and unique 

instantiation of the single class instance and the safe 

concurrent access to it. 

Again, it is important to point out that the classes 

produced by C# Translator could be directly used on a 

common CLR-based platform. They only requires a C# 

program using them; for example, execution of the 

IECRoutine() may be achieved through one or more 

instances of the class MyProgram. 

In principle, implementation of C# Translator can be 

realised using whatever technology and language. In this 

work, the authors chosen to implement this module in C# 

as a CLR VM-based application. The implementation has 

been based on the use of the GOLD Parser system [15], by 

means of which parse tables have been created. In 

particular, its Builder component has been used to read a 

source grammar written in the GOLD Meta-Language and 

to produce the parse tables needed by the C# Translator. 

5.2 PLC framework 

During the design phase, it has been assumed that the PLC 

Framework had to comply with the following 

assumptions. 

For each IEC 61131-3 periodic task, a Xenomai real-

time task is created with the same period; priority value of 

the original IEC 61131-3 task is converted into the range 

1 to 99, where 99 is given to the IEC 61131-3 tasks with 

the highest priority. It is important to recall that task 

priorities in Xenomai ranges from 0 to 99; as explained in 

the following, the value 0 has been reserved for a special 

purpose. 

The native scheduling mechanism based on pre-

emption adopted by Xenomai has been left unchanged; 

this means that execution of a Xenomai task is suspended 

when a higher priority Xenomai task has to be performed. 

Program Scan loop has been realised through a 

Xenomai real-time task with the lowest priority, i.e. 0. 

This means that all the other tasks (to which priority values 

ranging from 1 to 99 have been assigned) can act pre-

emption on the Program Scan task. This choice has been 

made in order to allow execution of a very urgent task, 

delaying the program scan loop.  

The reading and writing operations shown by Figure 

1, have been implemented in atomic way, in the sense that 

during their execution they cannot be interrupted by no 

other tasks. In order to make atomic the Program Scan 

execution, a semaphore-based mechanism has been 

 

Figure 12: .cs file produced by C# Translator on the IEC 

61131-3 application of Figure 2. 

 class MyProgram { 
  double ComputedResult; 

  public MyProgram(){} 

  public void IECRoutine() { 
   ExternalMyProgram.Gd.StepSizeVar=  

ExternalMyProgram.Gd.MaxValueVar- 

ExternalMyProgram.Gd.MinValueVar; 
   ComputedResult = ExternalMyProgram.Gd.StepSizeVar; 

  } 

} 
 

class MyConfiguration { 

 class MyResource { 
   class GlobalDeclaration{ 

     double StepSizeVar; 

     double MaxValueVar; 
     double MinValueVar; 

   } 

   class MyTask1 { 
     double period; 

     int priority; 

     MyProgram MyInstance1; 
     public MyTask1(){ 

      MyInstance1 = new MyProgram(); 

      period=100; 
      priority=1; 

    } 

   } 
   class MyTask2 { 

     double period; 

     int priority; 
     MyProgram MyInstance2; 

     public MyTask2(){ 

      MyInstance2 = new MyProgram(); 
      period=150; 

      priority=2; 

     } 
   } 

 } 
} 

 

class ExternalMyProgram { 
  private static ExternalMyProgram instance = null; 

  private static readonly object padlock = new object(); 

  private GlobalDeclaration Gd = new GlobalDeclaration(); 

  ExternalMyProgram() {} 

  public static ExternalMyProgram Instance { 

   get { 
    lock (padlock) { 

     if (instance == null) { 

      instance = new ExternalMyProgram(); 
     } 

     return instance; 

    } 
   } 

  } 

} 
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implemented. In particular, a Xenomai semaphore is 

created and locked when the Xenomai task implementing 

the Program Scan is started. The semaphore is deleted 

each time the Xenomai Program Scan task ends. All the 

other tasks, even if featuring higher priority cannot 

interrupt the Program Scan task if the Xenomai semaphore 

is locked. 

Association of a C# program to a periodic Xenomai 

task has been realised according to the procedure 

described in Section 3. In particular, for each Xenomai 

task an instance of the task_function() method shown by 

Figure 13 is associated through the rt_task_start_wrap().  

 

 

 

 

 

 

 

 

 

 

 

Figure 13: task_function() method whose instance is 

associated to each Xenomai task. 

Each task_function() method is made up by a 

while(true) cycle, inside which a particular C# code is 

defined; it may be the ScanProgram() or the 

IEC61131Program(), both described in the following. 

Then, the call to the wrapper function 

rt_task_wait_period_wrap() described before in this 

paper, is achieved. As said before, it forces the Xenomai 

task associated to the instance of task_function() to wait 

for the next periodic release point in the processor time 

line. Figure 13 points out that the local variables (if 

present) used by the ScanProgram() or by 

IEC61131Program(), could be defined at the three 

different scopes shown by the same figure; the definition 

of the proper scope will be discussed later in this paper. 

ScanProgram() is a C# program in charge to emulate the 

typical Program Scan of a PLC. It is shown by Figure 14, 

by means of a flow-chart graphical representation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: ScanProgram(). 

At the beginning of the ScanProgram(), a semaphore 

is created by rt_sem_create_wrap(). Then, the C# 

program calls the rt_sem_p_wrap() in order to lock it. In 

this way, the ScanProgram() cannot be interrupted from 

this moment on; reading and writing operations are 

executed without pre-emption. Reading operations 

involve I memory, whilst writing operations are relevant 

to the Q memory (see Figure 1). When they are completed, 

the semaphore is deleted, by rt_sem_delete_wrap(); the 

relevant waiting queue on the same semaphore is deleted, 

so all the other task pending on it are released. These tasks 

may be scheduled for their execution by Xenomai co-

kernel. 

Figure 15 shows the algorithm implemented inside the 

IEC61131Program(). As it can be seen, it executes a 

program called IECRoutine(); during the description of 

the C# Translator module, it has been said that among the 

classes produced for each IEC 61131-3 application there 

is the class named ProgramName. As shown in Figure 11, 

this class contains a public void IECRoutine(). The 

program IECRoutine() executed inside 

IEC61131Program is made up by the same C# code 

extracted by the public void IECRoutine() contained in the 

class ProgramName. In the following, the extraction 

operation performed by the PLC Framework will be 

pointed out. 

At the beginning, the IEC61131Program() checks the 

existence of Xenomai semaphore (by using the 

rt_sem_p_wrap()). As said before, this semaphore is 

created by the ScanProgram() and is deleted by the same 

routine when no more needed. If the IEC61131Program() 

does not find the semaphore, it runs the IECRoutine(). 

If semaphore exists, the IEC61131Program() must 

check if it is locked (e.g., by ScanProgram()). The check 

is again done using the rt_sem_p_wrap(), which locks the 

semaphore if it is found unlocked; this happens for 

example when the semaphore has been created by 

ScanProgram() but it was not already locked by it. In this 

case, the IEC61131Program() must suddenly unlock the 

semaphore (by using rt_sem_v_wrap()). This is needed as 

this task may be pre-empted by a higher priority task 

which must find the semaphore unlocked, otherwise it 

cannot be executed. Once the semaphore is unlocked, the 

class name { 

// local variables 

  void task_function () { 

// local variables 

 

   while (true) { 
// local variables 

     ScanProgram() or IEC61131Program(); 

     rt_task_wait_period_wrap (null); 
    } 

  } 

} 

Read Inputs and put data into I Memory Area 

Delete Xenomai Semaphore  

Create a Xenomai Semaphore  

Write Outputs from Q Memory Area 

Start  

Lock the Xenomai Semaphore  

 

Figure 15: IEC61131Program(). 
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IEC61131Program() executes the IECRoutine(). Figure 

15 points out that if the IEC61131Program() finds the 

semaphore locked, it will wait until it is deleted (by 

ScanProgram) or it is unlocked (e.g., by another Xenomai 

task). 

On the basis of what said until know, for each 

IEC61131-3 application received by the C# Translator (in 

terms of C# classes contained by the .cs files already 

described), the PLC Framework has to performs two main 

activities.  

The first is to produce the task_function() methods 

shown by Figure 13. One and only one method must 

contain the ScanProgram(), shown by Figure 14; each of 

the other task_function() methods must contain a 

IEC61131Program(), described by Figure 15. 

The second important activity performed by PLC 

Framework is to associate a Xenomai task to each instance 

of task_function() method, and then activate them so they 

can be executed by Xenomai co-kernel. 

These two activities are performed by two main 

modules running inside the PLC Framework: 

ProgramsCreator and TasksCreator. ProgramsCreator is 

in charge to produce the task_function() method on the 

basis of the C# classes received from the C# Translator. 

TasksCreator creates and activates the Xenomai tasks 

associated to these methods. Figure 16 shows them. 

Figure 17 gives an overview of the main activities 

carried out by the ProgramsCreator on the reception of a 

.cs files produced by C# Translator. It analyses class 

ProgramName (see Figure 11) here contained. From this 

class, it extracts the class variables and the C# code 

contained in the IECRoutine() method; this method is 

placed into the IEC61131Program() as shown by Figure 

15. Finally, the ProgramsCreator creates the class 

containing the task_function() method shown by Figure 

13, placing the IEC61131Program() and placing the 

variables extracted as said before in one of the scopes 

shown by the same figure. Choice of the right scope will 

be discussed later in this paper, as said before. When no 

more ProgramName classes received from C# Translator 

are present, the ProgramsCreator will produce the class 

containing the task_function() method with the 

ScanProgram(), as shown by Figure 13. 

The TasksCreator module has the main goal to create 

and run Xenomai tasks, starting from the task_function() 

methods created by the ProgramsCreator module. Figure 

18 shows the details of the algorithm implemented by this 

module. 

At the beginning, the TasksCreator analyses each .cs 

file received from C# Translator. In particular, it focuses 

on the classes TaskName shown by Figure 11, extracting 

information (i.e., period and priority) of the entire set of 

IEC 61131-3 tasks. For each IEC 61131-3 task, a Xenomai 

real-time task is created through the 

rt_task_create_wrap(); a priority (ranging from 1 to 99) is 

specified for the Xenomai task to be created. As said 

 
Figure 17: ProgramsCreator. 

 

 
Figure 16: PLC Framework main components. 

 

 

Figure 18: TasksCreator. 
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before, priority value is assigned according to the priority 

of the IEC 61131-3 task, mapping the highest priority IEC 

61131-3 task with the highest Xenomai priority value 

(e.g., 99). Once a Xenomai task with a certain priority has 

been created, the same period of the relevant IEC 61131-

3 task is assigned; this is done by the 

rt_task_set_periodic_wrap(). 

When no more TaskName classes are present, a 

Xenomai task must be created in order to be subsequently 

associated to the task_function() method including the 

ScanProgram(). On the basis of the hypotheses explained 

in this section, the Xenomai task is created by using 

rt_task_create_wrap(), specifying the priority value 0 (the 

lowest Xenomai priority value). A period is assigned to 

this task according to the user settings; this is the period of 

the Program Scan loop the user has to apply. Period 

assignment is realised using again the 

rt_task_set_periodic_wrap().  

Finally all the previous Xenomai tasks are started 

using the rt_task_start_wrap(). This wrapper function 

calls the native Xenomai API rt_task_start(), passing the 

address of the instance of the task_function() method, 

created by the ProgramsCreator, to be associated to each 

Xenomai task with priority ranging from 1 to 99. Address 

of the instance of the task_function() method containing 

the ScanProgram(), is passed to the Xenomai task with 

priority 0. 

In order to better understand the main activities 

performed by the ProgramsCreator and TasksCreators 

modules, let us consider the .cs file shown by Figure 12.  

ProgramsCreator will produce the C# code shown by 

Figure 19; it includes the IEC61131Program() which in 

turns is made up by the IECRoutine() given by Figure 20.  

As shown by Figure 19, the ExternalMyProgram class 

contained in the .cs file of Figure 12 is imported. The 

ExternalMyProgram class is made up by the instance Gd 

of GlobalDeclaration class inside which the external 

variables of the IEC 61131-3 MyProgram program 

(StepSizeVar, MaxValueVar, MinValueVar) are defined. 

Figure 20 points out that IECRoutine() accesses these 

external variables through the instance Gd contained in the 

ExternalMyProgram class. 

 

Figure 19: C# code produced by ProgramsCreator. 

The TaskCreator module extracts from the MyTask1 

and MyTask2 classes produced by the C# translator the 

information about Xenomai tasks to be created; this 

information is about periodicity, priority and about the 

Program to be associated. On the basis of the information 

contained in the .cs file shown by Figure 12, it is clear that 

two Xenomai tasks must be created. Their period values 

are 100ms and 150ms, respectively; priority values of the 

original IEC 61131-3 tasks are 1 and 2, which could be 

mapped to Xenomai priority values 99 and 98, 

respectively, as priority 1 is the highest priority value 

according to IEC 61131-3 and must be mapped to the 

highest Xenomai priority value (i.e., 99). Finally, 

according to the information contained in the MyTask1 

and MyTask2 classes, two instances of the same 

task_function() method shown by Figure 19 is associated 

to these two Xenomai tasks. 

 

Figure 20: IECRoutine(). 

As said many times until now, in the Figure 19 

declaration of the local variable of the IEC 61131-3 

MyProgram program (ComputedResult) is not defined; 

the figure points out only the three different scopes where 

declaration may occur. The following section will 

definitely clarify the position of the declaration of local 

variables, through a deep analysis of the impact of the 

possible choices on the run-time performance of the 

system. 

6 Performance evaluation 
It is well known that execution of a generic C# application 

on a CLR VM may be delayed by the activation of the 

Garbage Collection. When a collection starts, it causes the 

stop of all the tasks associated to the C# program, 

including the Xenomai real-time tasks in the real-time 

environment architecture shown by Figure 10. The main 

consequence is the increase of each single execution time 

of C# programs; furthermore, the periodicity of one or 

more tasks could be not respected if the time interval 

needed by the Garbage Collector to conclude its work is 

higher than the task period.  

It is clear that a performance evaluation is strongly 

required in order to point out if what written can actually 

occur in the framework here defined, and, in in this case, 

suitable mechanisms to prevent performance deterioration 

must be proposed and evaluated. 

During the description of the PLC Framework it has 

been left unsolved the problem relevant to the declaration 

of the local variables of a IEC 61131-3 program inside the 

class containing the task_function() method, shown by 

Figure 13. The possible scopes where this declaration 

could occur have been highlighted but no indication about 

the right choice has been given. Actually, this choice 

seems to play a very strategic role from the performance 

point of view of the entire real-time environment 

proposed. In fact, each of the three possible scopes shown 

by Figure 13 may led to a very different impact of the 

import ExternalMyProgram; 

 

class MyProgram { 
 //double ComputedResult; 

   void task_function () { 

   //double ComputedResult; 

    while (true) { 

     //double ComputedResult; 

     IEC61131Program(); 
     rt_task_wait_period_wrap (null); 

     } 

   } 

} 

public void IECRoutine(){ 
   ExternalMyProgram.Gd.StepSizeVar= 

ExternalMyProgram.Gd.MaxValueVar-  

ExternalMyProgram.Gd.MinValueVar; 
   ComputedResult = ExternalMyProgram.Gd.StepSizeVar; 

} 
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Garbage Collector on the overall behaviour of the 

IEC61131-3 programs execution.  

On account of what said until now, performance 

evaluation was carried out by the authors with the main 

aim to analyse the impact of the Garbage Collector on the 

behaviour of the real-time environment depicted by Figure 

10, considering the effect of the three different scopes of 

local variables pointed out by Figure 13. As it will be 

shown, this analysis allowed to find the best choice, able 

to minimise the impact of the Garbage Collector over the 

framework here defined. 

The performance evaluation has been carried out on 

two different architectures: the embedded system 

described in Section 4.1 and a general purpose computer.  

Only one IEC 61131-3 ST-based Program has been 

considered for the performance evaluation. Several 

periodic tasks were associated to this Program. This 

choice has been done in order to make simpler the analysis 

of the results, removing their dependence from possible 

differences in the program codes executed. 

Figure 21 shows the IEC 61131-3 ST language-based 

implementation of the Goertzel Algorithm [16] considered 

for the performance evaluation.  

The PROGRAM section features several variables. 

Q0, Q1 and Q2 are output arrays used for the per-sample 

processing; the samples are stored in the sbuffer array. The 

coeff array is another basic variable of the Goertzel 

Algorithm; it sores some of the precomputed constants 

foreseen by the algorithm, needed during processing [16]. 

The magnitude array is used to store the magnitude values 

of the signals coming from the channels and relevant to 

different harmonics. ch and num_ch variables refer to the 

number of channels, whilst i and k_max refer to the 

number of harmonics. The number of samples is 

represented by variables n and j.  

The first FOR cycle present in the ST code of the 

PROGRAM section, iterates for all the samples; the 

second FOR cycle allows iteration for all the harmonics to 

be analysed. Finally, the last cycle refers to all the 

channels producing the samples. The boolean condition (j 

= n-1) indicates the completion of the analysis of all the 

samples; when this condition occurs the algorithm 

calculates the magnitude relevant to a specific channel and 

to a specific harmonic, given by the value of index.  

Figure 21 also shows the CONFIGURATION and 

RESOURCE sections containing the global constants and 

variables and an example of periodic task associated to the 

Program Goertzel. In particular, TASK MainTask1 

defines a periodic task with period 100 ms and priority 

value 1; an instance of Program Goertzel (called 

MainInst1) is associated to the MainTask1. As said before, 

it was assumed to associate a huge number of periodic 

tasks to the Program Goertzel shown in Figure 21; only 

for reason of space limits, the other tasks are not shown in 

the RESOURCE section of Figure 21. 

5.3 Performance Evaluation on Embedded 

System 

Figures 22 and 23 show the C# code produced by 

ProgramsCreator on the basis of the Goertzel algorithm 

shown in Figure 21, considering the local variables inside 

the while(true) cycle. Figure 23 details the C# code 

realising Goertzel’s algorithm inside the IECRoutine(). As 

already explained in the previous section, the external 

variables of the IEC61131-3 PROGRAM Goertzel are 

defined inside class GlobalDeclaration and are used 

though the access to the class ExternalGoertzel, which 

contains the instance Gd of GlobalDeclaration. The 

ExternalGoertzel class contained in the .cs file is 

imported, as shown by Figure 22. 

It has been assumed to execute the Goertzel’s code 

with a number of harmonics equals to 6 (i.e., 

ExternalGoertzel.Gd.k_max constant was set to 6). 

PROGRAM Goertzel 
 VAR_EXTERNAL CONSTANT 

   k_max: INT :=12; 

  num_ch: INT :=8; 
 END_VAR 

 VAR_EXTERNAL 

  coeff : ARRAY [0..k_max] OF REAL; 
 END_VAR 

 VAR 

  count : INT; 
  i : INT; 

  j : INT; 

  ch : INT; 
  index : INT; 

  n : INT;    

  sbuffer : ARRAY [0..num_ch*n] OF REAL; 
  Q0 : ARRAY [0..num_ch*k_max] OF REAL; 

  Q1 : ARRAY [0..num_ch*k_max] OF REAL; 

  Q2 : ARRAY [0..num_ch*k_max] OF REAL; 

  magnitude : ARRAY [0..num_ch*k_max] OF REAL; 

 END_VAR 

 FOR j:= 0 TO n-1 DO 
  FOR i:= 1 TO k_max DO 

   count:= i * 8 - 8; 

   FOR ch:= 0 TO num_ch-1 DO 
    index := count + ch; 

    Q0[index] := (coeff[i - 1] * Q1[index]) – 

 (Q2[index] + sbuffer[j + ch * n]); 
    Q2[index] := Q1[index]; 

    Q1[index] := Q0[index]; 

    IF j = n-1 THEN 
     magnitude[index] := SQRT(Q1[index] *Q1[index] +  

Q2[index] * Q2[index] – 

(Q1[index] * Q2[index] * coeff[i - 1])); 
    END_IF;  

   END_FOR; 

  END_FOR; 
 END_FOR; 

END_PROGRAM 

 

CONFIGURATION Config 

 RESOURCE Resource1  
  VAR_GLOBAL CONSTANT 

   k_max: INT :=12; 

   num_ch: INT :=8; 
  END_VAR 

  VAR_GLOBAL 

   coeff : ARRAY [0..k_max] OF REAL; 
  END_VAR 

  TASK MainTask1(INTERVAL :=T#100ms, PRIORITY := 1); 

  PROGRAM MainInst1 WITH MainTask1 : Goertzel; 
 END_RESOURCE 
END_CONFIGURATION 

Figure 21: IEC 61131-3 ST-based application relevant to 

the Goertzel Algorithm. 
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In order to analyse the execution of the Goertzel 

Algorithm though the use of an oscilloscope, the GPIO #2 

is set at the beginning of the execution of the 

IECRoutine(). The GPIO #2 is reset at the conclusion of 

the execution of the same code. Set and reset operations 

are not shown in the code of Figures 22 and 23. 

Figure 24 points out the GPIO #2 values during the 

time; the time interval during which GPIO #2 is on 

represents the single execution time of the Goertzel 

Algorithm. As pointed out by Figure 24, results achieved 

show that duration of the each algorithm execution 

maintains about the same value in time. But the figure 

highlights that execution of the Goertzel algorithm does 

not occur with the same frequency; the 

rt_task_wait_period_wrap() called in the in the C# code of 

Figure 22 is not able to guarantee that execution of the 

Goertzel algorithm occurred after a deterministic time 

interval. 

 

Figure 23: Details of C# Goertzel Algorithm Code 

contained in the IECRoutine(). 

 

Figure 24: Execution of the Goertzel Algorithm shown by 

Figure 22 with k_max=6. 

Utilisation of the CPU has been increased considering 

a higher number of harmonics (setting k_max to 12). 

Figure 25 shows the results achieved, pointing out that 

now the behaviour of the system is completely 

unpredictable. Both duration of each execution and 

repetition of the execution occur in an arbitrary fashion. 

The behaviours depicted by Figures 24 e 25 are due to 

the intervention of the Garbage Collector whose execution 

has been forced by the choice to define the local Goertzel 

variables inside the while(true) loop of Figure 22. This 

means that, for each loop execution, these variables are de-

allocated and re-allocated, producing garbage that must be 

collected, causing the intervention of the Garbage 

Collector which stops the real-time tasks producing the 

bad behaviour depicted by Figures 24 and 25. 

 

Figure 25: Execution of the Goertzel Algorithm shown by 

Figure 22 with k_max=12. 

We proceeded to test the performance of the Goertzel 

algorithm by changing the scope of the local variables. 

The scope represented by Figure 26 has been considered; 

in this case, the Goertzel variable are global variable of the 

C# class Goertzel. 

Figure 27 shows the executions of the algorithm 

during the time, considering a number of harmonics equal 

to 12 (k_max=12). As it is possible to see, now the 

duration of each execution is quite the same and the 

repetition in time of the Goertzel’s algorithm is 

predictable because the impact of the Garbage Collector is 

much less than in the previous case. The variables are 

allocated only when the class is instantiated, and the 

Garbage Collector does not collect them until the 

deallocation of the class, that will occur only at the end of 

the associated task. 

Another important performance improvement could 

be achieved defining the variable inside the 

task_function() as shown in Figure 28. 

Public void IECRoutine() { 
 for (j = 0; j < n; j++) { 

  for (i = 1; i < ExternalGoertzel.Gd.k_max + 1; i++) { 

   count = (UInt16)(i * 8 - 8); 
   for (ch = 0; ch < ExternalGoertzel.Gd.num_ch; ch++) { 

    index = (UInt16)(count + ch); 

    Q0[index] = (ExternalGoertzel.Gd.coeff[i - 1] *  
Q1[index]) – (Q2[index] + sbuffer[j + ch *n]); 

    Q2[index] = Q1[index]; 

    Q1[index] = Q0[index]; 
    if (j == n - 1) { 

     magnitude[index] = Math.Sqrt(Q1[index] *  
Q1[index] + Q2[index] * Q2[index] –  

(Q1[index] * Q2[index] *  

ExternalGoertzel.Gd.coeff[i - 1])); 
   } 

   } 

  } 
 } 

} 

import ExternalGoertzel; 
 

class Goertzel { 

 void task_function () { 
   double[] sbuffer =  

new double[ExternalGoertzel.Gd.num_ch * n]; 

   double[] Q0 = new double[ExternalGoertzel.Gd.num_ch *  
ExternalGoertzel.Gd.k_max]; 

   double[] Q1 = new double[ExternalGoertzel.Gd.num_ch *  

ExternalGoertzel.Gd.k_max]; 
   double[] Q2 = new double[ExternalGoertzel.Gd.num_ch *  

ExternalGoertzel.Gd.k_max]; 

   double[] magnitude =  
new double[ExternalGoertzel.Gd.num_ch *  

ExternalGoertzel.Gd.k_max]; 

   UInt16 count, n, index, i, j, ch; 
   while (true) { 

     IEC61131Program(); 

     rt_task_wait_period_wrap (null); 

    } 

 } 

} 
 

Figure 22: C# code produced by ProgramsCreator. 
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Figure 26: C# code produced by ProgramsCreator. 

In this case, it is well known that the variable access 

is faster than the scenario shown by Figure 16. In addition, 

the task_function() method is instanced only once before 

the creation and activation of the relevant task; this means 

that the so-defined variables are always active and never 

deallocated by Garbage Collector until the end of the task 

exactly like global variables. Figure 29 points out 

execution of the Goertzel algorithm in this scenario. 

 

 

 

 

 

 

 

 

 

Figure 27: Execution of the Goertzel Algorithm shown by 

Figure 26 with k_max=12. 

 

Figure 28: C# code produced by ProgramsCreator. 

 

Figure 29: Execution of the Goertzel Algorithm shown by 

Figure 28 with k_max=12. 

Comparing Figure 29 with Figure 27, it is possible to 

point out that the scope for the local variable considered 

in Figure 28 allows to improve performance of the system, 

as the execution time is now decreased. 

5.4 Performance evaluation on general 

purpose computer 

The algorithm shown by Figure 28 has been considered, 

as it allowed to achieve the best results in the performance 

evaluation on embedded system, as said before. 

Performance evaluation has been carried out using a 

computer made up by a six-core Xeon processor (X5650 

Intel) and 100 GB of RAM. The following software was 

installed on it: Ubuntu 16.04 (Kernel Linux 3.18.20), 

Xenomai co-kernel 3.0.2, and Mono 4.4. 

Several periodic Xenomai tasks were associated to the 

task_function() method shown by Figure 28. It has been 

assumed to consider several groups of tasks; tasks 

belonging to each group share the same period and 

priority.  

During execution of each Xenomai task, jitter values 

were measured. Figure 30 shows how jitter has been 

evaluated; each arrow represents a real execution of a 

Xenomai task. 

 
Figure 30: Jitter evaluation. 

For each task, Ti-1, Ti, Ti+1 are generic time intervals 

between consecutive Xenomai periodic task executions. 

Said T the period of the Xenomai task, Ji-1, Ji, Ji+1 values 

shown in Figure 30 are the relevant jitter values. For each 

single task, the average absolute value of the jitters was 

calculated. It was said that tasks were divided into several 

group, each group sharing the same period and priority; 

for each group of tasks, the minimum and the maximum 

average absolute jitter values were pointed out. 

Performance evaluation has been carried out 

considering different scenarios featured by different 

groups of tasks, different numbers of tasks for each group 

and different period values associated to a group. 

Scenarios were chosen in order to be comparable in terms 

import ExternalGoertzel; 
 

class Goertzel { 

 double[] sbuffer = new double[ExternalGoertzel.Gd.num_ch * n]; 
 double[] Q0 = new double[ExternalGoertzel.Gd.num_ch *  

ExternalGoertzel.Gd.k_max]; 

 double[] Q1 = new double[ExternalGoertzel.Gd.num_ch *  
ExternalGoertzel.Gd.k_max]; 

 double[] Q2 = new double[ExternalGoertzel.Gd.num_ch *  

ExternalGoertzel.Gd.k_max]; 
 double[] magnitude = new double[ExternalGoertzel.Gd.num_ch 

*  

ExternalGoertzel.Gd.k_max]; 
 UInt16 count, n, index, i, j, ch; 

 

 void task_function () { 
   while (true) { 

     IEC61131Program(); 

     rt_task_wait_period_wrap (null); 

    } 

 } 

} 
 

import ExternalGoertzel; 
 

class Goertzel { 

 void task_function () { 
  while (true) { 

   double[] sbuffer =  

new double[ExternalGoertzel.Gd.num_ch * n]; 
   double[] Q0 = new double[ExternalGoertzel.Gd.num_ch *  

ExternalGoertzel.Gd.k_max]; 

   double[] Q1 = new double[ExternalGoertzel.Gd.num_ch *  
ExternalGoertzel.Gd.k_max]; 

   double[] Q2 = new double[ExternalGoertzel.Gd.num_ch *  
ExternalGoertzel.Gd.k_max]; 

   double[] magnitude= 

new double[ExternalGoertzel.Gd.num_ch *  
ExternalGoertzel.Gd.k_max]; 

   UInt16 count, n, index, i, j, ch; 

 
   IEC61131Program(); 

   rt_task_wait_period_wrap (null); 

   } 
 } 

} 

Ti-1 Ti Ti+1 

Ji-1=Ti-1-T Ji=Ti-T Ji+1=Ti+1-T 
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of bandwidth utilisation, otherwise comparison between 

their performances was meaningless. 

For each group of tasks, the bandwidth utilisation has 

been defined by: 

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 =
1

𝑇
∗ 𝑛 ∗ 𝑡                    (1) 

where n is the number of tasks belonging to the group 

and sharing the same period T, and t is the execution time 

of the Program associated to the task.  

Use of the parameter given by (1) allowed to compare 

scenarios featured by the same bandwidth utilisation, 

during the performance evaluation carried out. 

Tables 1 and 2 show two of the scenarios considered. 

Three groups of tasks have been considered for each 

scenario. Inside each scenario, the groups differs for the 

number of tasks and the relevant period. Comparing the 

different scenarios, they feature groups with the same 

bandwidth utilisation. 

Tables 3 and 4 presents some of the results achieved. 

They show the minimum and maximum average absolute 

jitter values for each scenario and for each of the three 

groups. As it can be seen, the average absolute jitter values 

are always very close to zero. 

Table 1: Scenario 1: Groups of Tasks with Period, 

Number of Tasks and Bandwidth Utilisation. 

Group Period 

(ms) 

Number of 

Tasks 

Bandwidth 

Utilisation 

1 50 100 30% 

2 30 100 50% 

3 25 100 60% 

Table 2: Scenario 2: Groups of Tasks with Period, 

Number of Tasks and Bandwidth Utilisation. 

Group Period 

(ms) 

Number of 

Tasks 

Bandwidth 

Utilisation 

1 25 50 30% 

2 15 50 50% 

3 12.5 50 60% 

Table 3: Scenario 1: Minimum and Maximum Average 

Absolute Jitters. 

Group Period (ms) Min (ms) Max (ms) 

1 50 6.58 E-05 3.40 E-04 

3 30 5.03 E-05 3.59 E-04 

4 25 5.89 E-05 6.45 E-04 

Table 4: Scenario 2: Minimum and Maximum Average 

Absolute Jitters. 

Group Period (ms) Min (ms) Max (ms) 

1 25 5.27 E-05 1.89 E-04 

2 15 5.39 E-05 3.41 E-04 

3 12.5 5.86 E-05 6.96 E-04 

These results seem to demonstrate that Garbage 

Collector does not affect at all the performance of the 

system. They confirm the same results achieved through 

the experiments carried out by the embedded system and 

shown in the previous subsection. 

In order to verify this result, in the following an 

analysis will be presented in order to point out what could 

occur when the Garbage Collector intervenes. The C# 

code shown by Figure 22 has been considered. As said, in 

this scenario the local variables are mapped inside the 

while(true) cycle; this means that the entire set of variables 

are re-located for each cycle. This affects the heap 

memory capacity, going to fill it and forcing the Garbage 

Collector to intervene to free the unused variables, as each 

cycle uses another set of the same local variables. 

Tables 5 and 6 show the minimum and maximum 

average absolute jitter values for the same scenarios seen 

before. It is important to point out the higher values of the 

jitter. Furthermore, it is important to compare the 

maximum average absolute jitter values with the period of 

each group; in some cases, the values are close to the same 

periods, pointing out the very bad performance achieved. 

Time instants of each Xenomai task execution have 

been recorded during the performance evaluation, 

considering again the C# code shown by Figure 22. The 

entire set of the execution times for the tasks belonging to 

each group has been carefully analysed. Analysis pointed 

out that Xenomai task executions sometimes featured the 

behaviour depicted by Figure 31. Each vertical arrow in 

the figure represents a real execution; Ti is the time 

interval between two consecutive executions, and the 

dotted vertical arrows represents the instant at which a 

periodic execution is expected but does not occur. 

Table 5: Scenario 1: Minimum and Maximum Average 

Absolute Jitters. 

Group Period (ms) Min (ms) Max (ms) 

1 50 9.38 11.30 

2 30 5.62 11.12 

3 25 4.77 12.56 

Table 6: Scenario 2: Minimum and Maximum Average 

Absolute Jitters. 

Group Period (ms) Min (ms) Max (ms) 

1 25 2.12 2.56 

2 15 1.30 2.49 

3 12.5 1.10 2.62 

As shown by Figure 31, during a task execution, jitter 

values greater than a multiple value of the task period may 

occur. It has been observed that the generic Ti may be 

greater than two or three times the task period, in the worst 

cases. The only event which could cause this behaviour is 

the running  of  Garbage  Collector  causing the stop of the  

 
Figure 31: Xenomai task executions. 

Ti 

Ti 

Ti 
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Xenomai tasks. Values of the time interval Ti clearly 

depends on the execution times of the Garbage Collector 

needed to collect all the garbage produced by the 

programs. 

7 Final remarks 
Paper has presented a software solution allowing the 

execution of IEC 61131-3 applications into computing 

systems based on a CLR VM. The software solution is 

made up by two main components. 

The first component is a software able to realise 

translation of a generic IEC 61313-3 application into C# 

code. For each IEC 61131-3 application a .cs file is 

produced containing several classes relevant to the 

original IEC 61131-3 sections; these classes may be 

directly instantiated and used in a generic C# program 

running inside a CLR VM. Otherwise, the output 

produced may be passed to the second component here 

presented, which is a real-time execution environment. It 

is a framework able to realise the exact behaviour of a PLC 

(e.g., Program Scan loops and real-time task scheduling). 

It requires the presence of a CLR VM running on the top 

of a real-time operating system. The framework receives 

the C# classes produced by the first component described 

before, achieved for an IEC 61131-3 application. On the 

basis of these classes, it produces suitable C# programs 

and real-time tasks associated to the programs to be 

submitted to the underlying real-time operating system. In 

this paper, use of Xenomai real-time co-kernel has been 

presented. 

After a description of both the software components, 

the paper focused on a performance evaluation of 

capability of the real-time environment to respect the 

periodic constraints of real-time tasks. As known, in a 

CLR VM-based environment, execution of a generic C# 

program may be delayed by the activation of the Garbage 

Collection. When a collection starts, it may cause the stop 

of all the tasks associated to the C# program and the 

increase of their execution time. The periodicity of one or 

more tasks could be not respected for the same reason. The 

results of the performance evaluation carried out by the 

authors, pointed out that although Garbage Collector may 

be a cause of performance degradation, its impact on the 

performance of the system may be drastically limited. This 

can be achieved by realising the right mapping between 

the IEC 61131-3 original local variables defined inside 

IEC 61131-3 PROGRAM section and the variables used 

by the C# classes generated by the real-time environment. 

Results presented in the paper, pointed out that the 

mapping choices operated by the authors avoid the 

intervention of the Garbage Collector. Under their 

adoption, performance evaluation allowed to demonstrate 

the capability of the real-time environment here presented 

to respect real-time constraints of periodic tasks.  

To the best of authors’ knowledge, current literature 

does not provide solutions aimed to deploy IEC 61131-3 

applications on CLR VM, using C# language as 

intermediate code. Due to the spread current use of C# 

language in the development of industrial applications, 

adoption of the software solutions here presented seems 

attractive. Typical candidate platforms on which 

deployment may be achieved, are those based on general 

purpose computer architecture (on which CLR VM allows 

the use of common operating systems like Linux and 

Windows), but also all the embedded systems supporting 

a CLR VM may be considered. 

Furthermore, the paper gives a contribution to a very 

spread research field currently present in literature; in 

particular it introduces a solution able to move 

computation further away from the field level into the so-

called compute pools, which are decentralised and may be 

also realised inside cloud computing solutions. In the 

scenario proposed, the PLC is migrated to the compute 

pool which can be realised by a computer architectures 

based on CLR VM, as demonstrated by the research 

presented in the paper. 

Although the paper has been presented considering 

Just-in-Time compilation, it is important to point out that 

the procedures presented in the paper and aimed to 

translate original IEC 61131-3 language-based programs 

may be applied also into the case the Ahead-of-Time 

(AOT) compilation was adopted. 
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