
https://doi.org/10.31449/inf.v43i2.2019 Informatica 43 (2019) 263–279 263

A CLR Virtual Machine Based Execution Framework for IEC 61131-3

Applications

Salvatore Cavalieri and Marco Scroppo

University of Catania, Department of Electrical Electronic and Computer Engineering (DIEEI), Italy

E-mail: salvatore.cavalieri@unict.it, marcostefano.scroppo@dieei.unict.it

Keywords: IEC61131-3, PLC, CLR VM, real-time industrial applications

Received: November 13, 2017

The increased need of flexibility of automation systems and the increased capabilities of sensors and

actuators paired with more capable bus systems, pave the way for the reallocation of IEC 61131-3

applications away from the field level into so-called compute pools. Such compute pools are decentralised

with enough compute power for a large number of applications, while providing the required flexibility

to quickly adapt to changes of the applications requirements. The paper proposes a framework able to

deploy IEC 61131-3 applications to multiple computing platforms based on CLR VM; it uses C# language

as intermediate code. The software solution proposed by the authors does not require any modifications

of the IEC 61131-3 applications. Current literature does not provide solutions like that here presented;

due to the spread current use of C# language in the development of industrial applications, adoption of

the proposed solution seems very attractive. The paper will deeply describe the software implementation

and will also present an analysis about the capability of the proposed framework to respect real-time

constraints of the industrial processes, mainly focusing on the periodic ones.

Povzetek: Prispevek predlaga okvir, ki omogoča uporabo aplikacij IEC 61131-3 za več računalniških

platform, ki temeljijo na CLR VM.

1 Introduction
Programmable Logic Controllers (PLCs) are widely used

for the control of automation systems. The standard IEC

61131-3 defines the execution model as well as

programming languages for such systems [1]. According

to IEC 61131-3, software development becomes

independent of process mapping and device specific

configuration files. Programmers can focus on the

algorithm and control development. Device specific

knowledge is outsourced into the block library and can be

substituted, every time a new target PLC device should be

programmed.

During these last years, the need to deploy IEC

61131-3 – based applications addressing multiple target

platforms (also different from PLCs, e.g. based on general

purpose computing architectures) became more and more

urgent for the reason explained in the following. In a

common factory automation scenario, actuators and

sensors connect to the PLCs via automation buses;

traditionally, bus based systems dominated the automation

industry. Nowadays, more powerful and flexible

automation networks appear and allow the connection of

thousands of actuators and sensors to the same network,

while still obtaining the required timing performance;

interested readers are referred to [2] for a detailed

overview.

Those changes in the communication technologies

opens possibilities of computation further away from the

field level, compared to how it is done in today’s

automation systems. On the other hand, many sensors and

actuators are equipped with small microcontrollers,

allowing them to do basic data processing; furthermore,

they are able to connect directly to the new bus

technologies.

Having basic data processing done at the lowest level

(i.e., at the field level directly on sensors and actuators)

and a connection to capable networks, allows the

reallocation of applications away from the field level into

so-called compute pools [3] [4]. Such compute pools are

decentralised with enough compute power for a large

number of applications, while providing the required

flexibility to quickly adapt to changes of the applications

requirements. This has several benefits. Changing control

applications becomes merely a problem of reconfiguration

in the compute pool. Costs will decrease as well as the

need for physical PLCs will be decreased; in this new

scenario, the PLC is migrated to the computing pool and

can be also realised by general purpose computer

architectures (e.g., a server or a cluster of servers).

Several requirements must be satisfied in order to

reach this goal. The first one is the guarantee of the total

compliance with IEC 61131-3; it is clear that moving an

IEC 61131-3 application on a compute pool must be

realised without any changes in the same application.

Then, respect of real-time constraints of the IEC 61131-3

control applications must occur when migrating the

application to the compute pool. Particular cares must be

reserved for real-time applications requiring periodic

executions; in these cases, executions of each process

must occur exactly with the requested period.

mailto:salvatore.cavalieri@unict.it

264 Informatica 43 (2019) 263–279 S. Cavalieri et al.

Current literature presents several solutions in the

direction just pointed out. For example, in [5], the use of

the Java Virtual Machine (JVM) to deploy IEC 61131-3

applications to embedded devices has been proposed. In

[6] different levels of an automation process are proposed

and a cloud-based solution is presented. An example of

virtual PLC is given by [7], where PLC systems are

executed as applications within a legacy OS. Finally, [3]

[4] present the use of a multi-core high performance

computing architecture to realise the compute pool.

Based on what said, the aim of the paper is to

contribute to find solutions able to deploy IEC 61131-3 –

based applications to multiple computing platforms,

mainly focusing on general purpose computer systems

(e.g., single server or cluster of servers with common

operating systems).

In the last years, the domain of factory and process

automation features intense usage of languages (e.g., Java,

C#) based on Virtual Machines (VMs), like JVM or

Common Language Runtime (CLR) VM, as pointed out in

[8]. A VM has some clear benefits: portability, security,

Just-in-time Compiler to boost performance in time, ease

of development in conjunction with a garbage collector,

multi-threading and others; reader may refers to [8] in

order to achieve a complete survey on this subject. On this

basis, the authors believe that one of right possible

directions to reach the aim of the paper is that to adopt

languages supporting VMs for the deployment of IEC

61131-3 application on common computing platforms.

This idea was already pointed out in [5], which proposed

the deployment of IEC 61131-3 applications using Java

bytecode as a common intermediate format, although the

deployment was limited to the embedded devices.

To the best of authors’ knowledge, literature does not

provide solutions aimed to deploy IEC 61131-3

applications using languages based on CLR VM, like C#

language, as intermediate code. Due to the spread current

use of C# language in the development of industrial

applications, adoption of C# language based on CLR VM

to deploy IEC 61131-3 applications on computing

platforms seems attractive. Typical candidate platforms

are those based on general purpose computing architecture

(on which CLR VM allows the use of common operating

systems like Linux and Windows), but also all the

embedded systems supporting a CLR VM may be

considered.

For all the previous reasons, the authors propose a

novel software solution made up by different features.

First of all, it is able to translate a generic IEC 61131-3

application into C# code which could be executed in a

general purpose CLR VM-based platform. Furthermore,

the solution here proposed includes the definition of a

framework which is able to realise the deployment of IEC

61131-3 applications on a compute poll based on CLR

VM, using the C# code as intermediate one. The proposed

solution does not require any modifications to the native

IEC 61131-3 applications; all additional overhead is

handled by the framework here defined. Applications in

the automation domain often come with real-time

requirements; in order to better allow their respect, the

proposed framework features the use of a CLR VM on the

top a real-time operating system who is in charge to

schedule time-critical applications. Finally, the last feature

of the proposed software solution is the use of open source

environments; in particular, the implementation presented

in the paper is based on the use of MONO [9] as CLR VM

and a real-time Xenomai co-kernel [10] alongside a

common Linux kernel. Choice of real-time Xenomai co-

kernel has been based on a performance evaluation whose

main results will be shown in the paper.

The paper will deeply describe the proposed software

solution pointing out the main features. Then, results of a

performance evaluation aimed to analyse its capability to

respect real-time constraints of typical periodic industrial

applications will be presented and discussed.

Some of the very preliminary results achieved at the

first stages of the research carried out by the authors have

been subject of publication [11][12]. This paper presents

the full results of the research and gives a very deep

analysis of the implementation realised and of the

outcomes achieved by the authors.

2 PLC and IEC 61131-3 main

features
The main feature of a PLC is the use of cyclic loops for

the execution of programs; each loop is called Program

Scan. As shown by Figure 1, in each Program Scan, PLC

reads the real inputs copying them into an internal memory

area called I. Then, PLC execute one or more programs

and finally it updates all the output values found in the

memory area Q into the real output devices. The program/s

executed inside the Program Scan may use internal

memory, called area M, for the temporary storage of

information. Each program may have a task associated,

whose main aim is to control the execution of the program

itself; the most common task is the periodic one, triggering

the program in such a way it should be iterated after a

certain fixed time interval (i.e., the period of the task).

Tasks may feature priorities and the execution of a

program inside the Program Scan may be pre-empted by

another program whose task associated features a higher

priority. Generally, reading and writing operations shown

by Figure 1, cannot be interrupted by other programs.

Figure 1: Program Scan.

IEC 61131-3 is the vendor independent standardised

programming language for factory automation [1]. IEC

61131-3 allows users to write programs, choosing among

five programming languages: Ladder Diagram (LD),

Sequential Function Charts (SFC), Function Block

Diagram (FBD), Structured Text (ST), Instruction List

(IL).

IEC 61131-3 software development is independent of

process mapping and device specific configuration files.

IEC 61131-3 application is typically deployed on a PLC

Read Input (I memory)

Execute Programs using M memory Program Scan

Write Output (Q memory)

A CLR Virtual Machine Based Execution Framework for... Informatica 43 (2019) 263–279 265

device, whose specific knowledge is outsourced into the

block library and can be substituted, every time a new

target PLC device should be programmed.

In order to make the program itself independent on the

device on which it must be deployed, the structure of an

application written according to IEC 61131-3 standard is

made up by at least two separate sections: Program and

Configuration.

An IEC61131-3 Program provides a large re-usable

software component. It is defined by a program type

definition (starting with PROGRAM and ending with

END_PROGRAM keywords) which has input, output and

internal variables declaration and a body which contains

software describing the behaviour of the program itself.

As said before, one of the five languages specified above

can be used to describe the program.

A Configuration defines the software for a complete

PLC and will always include at least one but, in some

cases, many Resources. A Configuration is specific to a

particular type of PLC product and the arrangement of the

relevant PLC hardware. It can be used to create software

for another PLC if the hardware is identical. Configuration

is introduced with the keyword CONFIGURATION and

terminate with END_CONFIGURATION keyword.

A Resource describes a processing facility inside a

PLC type that is able to execute an IEC 61131-3 Program.

A Resource is defined within the Configuration using the

keyword RESOURCE followed by an identifier and the

type of the processor on which the Resource will be loaded

(keyword ON is used before the type of processor). In the

real cases, for each type of PLC a detailed description of

the hardware and software features is associated (e.g.,

firmware version, number of inputs/outputs, internal

memory). The resource definition contains a list of Global

Variable declarations and task definitions that can be

assigned to Programs. It terminates with the keyword

END_RESOURCE.

As said, a task may be associated to a Program

controlling its execution. Task may be single or periodic;

in this last case, a period is specified for its execution. A

priority value is assigned to each task in order to determine

the order of their executions. Tasks are defined inside the

RESOURCE section, as said. A Task declaration is

introduced using the keyword TASK followed by the task

identifier and optional values for the following

parameters: SINGLE (if the task is not periodic),

INTERVAL (period, if the task is periodic), PRIORITY

(task priority value). After its definition, Task is

associated to an instance of a Program using the keywords

WITH.

Figure 2 shows a very simple IEC 61131-3 application

using ST language; this same example will be used in the

remainder of this paper.

As it can be seen, the simple IEC 61131-3 application

is made up by only one PROGRAM section called

MyProgram, which contains the definition of the local

(i.e., VAR) and external (or global, i.e.,

VAR_EXTERNAL) variables. Furthermore, it contains

the algorithm coded into ST language; it is made up by

only two assignments, the first is relevant to a global

variable (StepSizeVar) and the other to the local variable

ComputedResult. CONFIGURATION section is named

MyConfiguration and is made up by only one resource

called MyResource; the type of PLC chosen for the

execution of the software has been called PLC1 in the

example. The RESOURCE section contains the

declaration of the global variables used by the program

(StepSizeVar, MaxValueVar and MinValueVar); the

declaration includes the mapping of these variables into

the internal PLC memory (called M memory, as shown by

Figure 1) at the addresses 200, 204 and 208, respectively.

RESOURCE section also contains the definition of two

periodic Tasks, named MyTask1 and MyTask2; they

differ for the period and the priority values. According to

IEC 61131-3 standard, low priority values refer to high

priority tasks.

Figure 2: IEC 61131-3 ST-based Program relevant to a

simple algorithm.

Finally, two instances of the MyProgram Program are

defined into the RESOURCE section; they are called

MyInstance1 and MyInstance2 and are featured by the

tasks MyTask1 and MyTask2 associated, respectively,

controlling their execution.

3 Overview of Xenomai
The Xenomai project has the aim of providing real-time

support for user applications [10].

It is a real-time development framework that

cooperate with the Linux kernel in order to make possible

the real-time management of tasks on any hardware with

a Linux-based operating system. The project has a strong

focus on embedded systems, although Xenomai can also

be used over common desktop and server architectures.

Xenomai has two modes of use:

PROGRAM MyProgram

 VAR
 ComputedResult : REAL;

 END_VAR

 VAR_EXTERNAL
 StepSizeVar : REAL;

 MaxValueVar : REAL;

 MinValueVar : REAL;
 END_VAR

 StepSizeVar := MaxValueVar-MinValueVar;
 ComputedResult := StepSizeVar;

END_PROGRAM

CONFIGURATION MyConfiguration

 RESOURCE MyResource ON PLC1

 VAR_GLOBAL
 StepSizeVar AT %MD200 : REAL;

 MaxValueVar AT %MD204 : REAL;

 MinValueVar AT %MD208 : REAL;
 END_VAR

 TASK MyTask1(INTERVAL := T#100ms, PRIORITY := 1);

 TASK MyTask2(INTERVAL := T#150ms, PRIORITY := 2);
 PROGRAM MyInstance1 WITH MyTask1: MyProgram;

 PROGRAM MyInstance2 WITH MyTask2: MyProgram;

 END_RESOURCE

END_CONFIGURATION

266 Informatica 43 (2019) 263–279 S. Cavalieri et al.

• as co-kernel extension for a patched version of

the original Linux kernel. This is the solution

adopted in the paper.

• as libraries for native Linux kernel (features

added in the version 3.0 in 2015)

In both modes, it is possible to use the Native

Xenomai C language-based API functions to run real-time

tasks [13].

To create and run a simple real-time task, three steps

are needed:

1. Creation of the task and setting of its properties

(e.g., priority) using the rt_create_task() API

function. If the task is periodic, the

rt_task_set_periodic() API function will be also

used, in order to allow Xenomai to have

knowledge of the task periodicity.

2. Creation of a C language-based procedure that

the task will perform during its execution. If the

task is not-periodic there are not particular

constraints for the structure of this procedure.

But, for periodic task, the C-language-based

procedure must be featured by an infinite while

loop inside which the rt_task_wait_period() API

function must be present; it allows the procedure

to be stopped after its conclusion and to resume

its regular running after the task period

previously set by rt_task_set_periodic() API

function. Figure 3 shows how the C language-

based procedure (called task_function() in the

figure), must be written in the case of periodic

task.

3. Association of the C language-based procedure

to the Xenomai task created at the step 1 and

starting the task using the rt_task_start() API

function; in particular, the entry point of the C

language-based procedure is passed to this

function.

Figure 3: Structure of a C language-based procedure to be

assigned to a periodic task.

4 Running C# programs over

Xenomai
This section plays a strategic role inside the paper.

Introduction pointed out that the aim of the paper is that to

propose a framework able to translate an IEC61131-3

application into C# program; furthermore, the framework

is able to allow real-time execution of the C# program

using a Xenomai co-kernel.

Before the framework defined may be presented, this

section has to point out how a C# program may be

executed over a Xenomai real-time co-kernel and, most

important, if execution of a C# program may actually

exploit the real-time features of the Xenomai co-kernel.

The software solution presented in Figure 4 has been

defined to allow execution of a C# program over Xenomai

co-kernel. It is based on the use of a MONO Virtual

Machine running on the top of a Linux OS with Xenomai

co-kernel [9].

Figure 4: Software solution adopted for the Xenomai-

based C# program execution.

As said in the previous section, Xenomai offers a set

of native API functions to realise real-time mechanisms

[13]; these API functions are callable inside a program

written in C language. In order to allow a C# language-

based program to call a particular real-time Xenomai API

function, suitable wrapper functions had to be defined.

Each wrapper function maps a C# function call to a

particular Xenomai API function; this happens through the

definition of a C function containing the call to the native

Xenomai API. All the wrapper functions are pre-compiled

and realise a run-time library named in the figure “Native

Xenomai API wrapper functions”. One of the following

subsections will give an overview of the wrapper

functions defined in the research here present.

C# programs (written inside .cs files) are compiled by

Mono producing .exe files containing Intermediate

Language (IL)-based instructions. At run-time, for each

IL-based executable file, Just-In-Time (JIT) compilation

is realised producing binary code. Native machine code is

executed directly by Linux/Xenomai kernel. In order to

execute the Native Xenomai API wrapper functions,

P/Invoke procedure allows to call the unmanaged code

produced by the compilation of the “Native Xenomai API

wrapper functions”. The unmanaged code is mapped on

the Xenomai real-time system calls as the wrapper

functions contains the calls to Xenomai API, as said

before.

4.1 Native Xenomai API wrapper

functions

The Xenomai wrapper functions defined according to the

goal of the research here presented, are detailed in the

following.

.cs files

Linux OS with Xenomai co-kernel

.exe file

Mono

Compilation

JIT

Compilation

P/Invoke

Fully-Native

Machine Code

Native Xenomai API

 wrapper functions

MONO Virtual Machine

C#

program

IL-based

instructions

void task_function(){

 while (true) {

 //Code in C Language to be executed

 rt_task_wait_period();

 }

}

A CLR Virtual Machine Based Execution Framework for... Informatica 43 (2019) 263–279 267

rt_task_create_wrap(). It calls the native Xenomai

API rt_task_create() belonging to the Task Management

Services. This service creates a new real-time task which

is left in an innocuous state until it is actually started by

the Xenomai service rt_task_start(). Among the

parameters passed to the native Xenomai API function, the

wrapper function specifies the priority of the new task in

the range from [0 .. 99], where 0 is the lowest effective

priority.

rt_task_set_periodic_wrap(). This wrapper function

calls the native Xenomai API rt_task_set_periodic(),

which makes a real-time task periodic, by programing its

first release point and its period in the processor time line.

rt_task_start_wrap(). It allows to start execution of a

Xenomai task that has been previously created. This

wrapper calls the native Xenomai API rt_task_start(),

which releases the target task from the dormant state.

Among parameters passed to the native Xenomai API

rt_task_start(), the wrapper function specifies the address

of the procedure to be execute when the task is running.

rt_task_wait_period_wrap(). It makes the Xenomai

task wait for the next periodic release point in the

processor time line. A rescheduling of the task always

occurs, unless the current release point has already been

reached. In the latter case, the current task immediately

returns from this service without being delayed.

rt_task_sleep_wrap(). It suspends the calling process

for a certain amount of milliseconds passed as argument.

This function calls the Xenomai rt_task_sleep() API

function.

rt_sem_create_wrap(). It allows to create a Xenomai

real-time semaphore, fully handled by Xenomai itself. It

wraps the Native Xenomai API rt_sem_create().

rt_sem_p_wrap(). It is used to acquire the semaphore

or put on hold his release if already occupied. It is directly

mapped to the native Xenomai API rt_sem_p(), which

acquires a semaphore unit. If the semaphore value is

greater than zero, it is decremented by one and the service

immediately returns to the caller. Otherwise, the caller is

blocked until the semaphore is either signalled or

destroyed, unless a non-blocking operation has been

required. Among the parameters passed to the native API

function, there is the descriptor address of the affected

semaphore.

rt_sem_delete_wrap(). It directly maps to the

Xenomai API rt_sem_delete(), which destroys a

semaphore and release all the tasks currently pending on

it.

rt_sem_v_wrap(). This function allows to call the

native Xenomai API rt_sem_v() inside a C# program. This

service releases a semaphore unit; the parameters passed

to the native Xenomai API function, specify the descriptor

address of the affected semaphore.

4.2 Analysis of the real-time capabilities

Evaluation of the capability of the software solution

shown by Figure 4 to respect real-time constraints of a

generic C# program was considered of primary

importance. Real-time feature has been evaluated

observing the capability of a particular C# program to

promptly react to a rising event; real-time capabilities

have been measured checking that all rising events have

been caught with the lowest delay.

The analysis has been carried out on an embedded

system. Choice of an embedded system compared with a

general purpose computing device like a server or a

personal computer, had the advantage to allow an easier

use of an oscilloscope to analyse the output produced upon

the occurrence of an event realised by a digital input.

The embedded system is made up by a MPC8309

PowerQUICC processor [14] running at 333Mhz with

256MB RAM, a microcontroller PIC32MX, and two

Serial Peripheral Interface (SPI) acquisition boards (each

featuring 4 channels at 16 bit, sampling at 125 µs).

Figure 5 shows the general architecture of the

embedded system. The PIC32MX receives the samples

from SPI, forwarding them to MPC8309 through the

MISO (Master data In/Slave data Out) bus. The SYNC

line is used by MPC8309 processor to advise the

PIC32MX that it is ready to start the acquisition of

samples. After reception of this synchronization signal,

the PIC32MX will start transmission of samples received

from SPI, synchronizing them with a DRDY signal with a

duration of 15 µs, sent with a period of 5ms.

Figure 5: Architecture of the Embedded System.

A Linux Kernel 3.8.13 with co-kernel Xenomai

version 2.6.4 has been installed in the MPC8309

embedded system. A Mono framework version 3.2.6 has

been also installed.

A huge set of tests has been performed in order to

explore the capability featured by the Xenomai-based

software solution shown by Figure 4 to meet real-time

constrains of a C# program running inside the MPC8309.

A C# program realising the flow-chart described by Figure

6 has been defined. It reacts to the DRDY activation; on

the receipt of this signal, the C# program set a particular

General Purpose I/O, the GPIO #1, and maintains the

value ON for 1 ms; this is achieved using the

rt_task_sleep_wrap() describe before. After the sleep

interval has passed, the GPIO #1 is put OFF. It is

important to recall that DRDY is activated each 5 ms, as

said at the beginning of this section.

Two other C# programs have been defined; they both

realise the flow chart shown by Figure 7. Each program

waits for the setting of the GPIO #1 (by the program

shown by Figure 6); when this occurs, the GPIO #2 is set

and suddenly reset. Then, each program calls a sleep

function with a duration of 2 ms; one C# program realises

MPC8309 PIC32MX
2x 4ch

SPI

SYNC

DRDY

MISO

268 Informatica 43 (2019) 263–279 S. Cavalieri et al.

this call though the function rt_task_sleep_wrap(), whilst

the other C# program uses the C# Thread.sleep(). The only

difference between the two C# programs is that the first

one foresees the real-time management of the sleep by

Xenomai co-kernel, whilst the other one does not exploit

the real-time features of Xenomai co-kernel, as the

management of the sleep of the process is given to Linux

OS.

Figure 7: C# language-based programs acting on receipt

of GPIO #1 signal.

Figure 8 points out the behaviour of the C# program

described by Figure 7 using the C# Thread.sleep(). The

signal number 1 (on the top) refers to the setting of the

GPIO #1 done by the C# program shown by Figure 6; it

easy to verify that the period of this signal is 5ms as it is

synchronised with DRDY. Signal number 2 (on the

bottom) refers to the GPIO #2 and is set/reset by the C#

program shown by Figure 7 when C# Thread.sleep() is

used.

Figure 9 refers to the C# program described by Figure

7 when rt_task_sleep_wrap() is used. Again, the signal

number 1 (on the top) refers to the setting of the GPIO #1

done by the first C# program shown by Figure 6. Signal

number 2 (on the bottom) refers to the GPIO #2 and is

set/reset by the C# program shown by Figure 7 when

rt_task_sleep_wrap() is used.

Comparison of the two Figures 8 and 9 points out that

the C# Thread.sleep is not able to wake-up the process in

time to catch each single setting/resetting of the GPIO #2.

The use of Xenomai API allows total respect of real-time

requirements here presented.

A huge set of other tests not shown here for space

limitation, allowed to reach the same conclusions just

pointed out: use of Native API Xenomai wrapper

functions here defined according to the software solution

shown by Figure 4, allows to fully exploit the real-time

capabilities offered by Xenomai co-kernel and allows the

respect of time-critical constraints. For these reasons, the

software solution presented in Figure 4 will be used in the

remainder of this paper.

5 Overview of the proposed

framework
As pointed out in the Introduction, the main aim of this

paper is that to present a framework based on the use of

CLR-based virtual machine, able to deploy an IEC 61131-

3 application on a computing system supporting CLR VM.

The framework is made up by the two modules shown in

Figure 10 with the grey coloured backgrounds: C#

Translator and PLC Framework.

C# Translator is in charge to process a generic IEC

61131-3 application in order to produce C# language-

based classes (contained in .cs files). These classes include

all the information relevant to the different sections of the

IEC 61131-3 application (e.g., program, configuration,

DRDY received

yes

no

Set GPIO #1

Reset GPIO #1

rt_task_sleep_wrap(1 ms)

Start

GPIO #1 is ON

yes

no

Set GPIO #2

rt_task_sleep_wrap(2 ms) or

Thread.sleep(2 ms)

Reset GPIO #2

Start

Figure 6: C# language-based program acting on receipt

of DRDY and setting GPIO #1.

Figure 8: Performance achieved using C#

Thread.sleep().

Figure 9: Performance using rt_task_sleep_wrap().

A CLR Virtual Machine Based Execution Framework for... Informatica 43 (2019) 263–279 269

resource, including task definitions with periods and

priorities). These classes will be used by the real-time

environment shown by Figure 10, as explained in the

remainder of this section.

A very important feature to be pointed out is that the

C# Translator may be used stand-alone, i.e. not linked to

the real-time environment shown by Figure 10. C#

Translator allows to achieve a C# code that in principle

may be executed by a common CLR-based platform, using

a common C# language-based integrated development

environment (IDE).

Introduction pointed out a main trend in automation,

relevant to the reallocation of applications away from the

field level into so-called compute pools. Real-time

environment shown by Figure 10 is strictly linked to the

concept of compute tools, as it will be shown better later.

About C# Translator, no constraints exist for its

installation; it may be installed in a compute poll or may

be installed close to the system where the IEC 61131-3

development environment is running.

PLC Framework has the aim to realise a real-time

environment implementing the same behaviour of a PLC.

Mainly it allows the realisation of the Program Scan loop

execution and allows the real-time scheduling of the tasks

associated to the IEC 61131-3 Programs and the relevant

executions.

On the basis of what said in the Introduction, and on

the basis of the software solution shown by Figure 4,

implementation of PLC Framework requires the presence

of a CLR-based VM running on a real-time operating

system, as shown by Figure 10. The CLR VM has been

realised by MONO [9]. For the real-time operating system

it has been assumed to adopt a Linux OS and a Xenomai

co-kernel [10]; choice of Xenomai has been supported by

the analysis of the relevant performances, shown in the

previous section.

The remainder of this section will focus on the main

technical details of the architecture shown by Figure 10.

5.1 C# translator

Given an IEC 61131-3 application, the main aim of the C#

Translator module is to create a .cs file containing classes

that can be used to execute a C# program which exactly

behaves as the original IEC application. In the following,

a detailed description of the procedure adopted by the C#

Translator to map an IEC 61131-3 application to the C#

classes, will be given.

Figure 11 shows the structure of a typical .cs file

produced by C# Translator.

Figure 11: File structure produced by C# Translator.

The .cs file produced contains three main classes:

ProgramName, ConfigurationName and

ExternalProgramName.

The class ProgramName is the translation of the

PROGRAM section in the IEC61131-3 application; it

mainly includes a method called IECRoutine() that

translates the software describing the IEC61131-3

Program.

The class ConfigurationName is relevant to the

CONFIGURATION section in the IEC61131-3

application and is made up by the class ResourceName,

related to the RESOURCE section. Class ResourceName

may include the declaration of Global Variables; in this

case the class GlobalDeclaration is present. The other

class contained in ResourceName, class TaskName,

represents a single task (so many classes may be present if

several IEC tasks have been defined); inside this class, the

program to be associated with the task is specified.

Finally, class ExternalprogramName is a singleton

class needed for the usage of the External Variables

defined in the IEC61131-3 Program and declared as

variables of the GlobalDeclaration class. This class has to

contain a single instance of the GlobalDeclaration class,

that IECRoutine can use so sharing the variables among

all its instances. Furthermore, the class must implement

suitable mechanisms able to guarantee that concurrent

access to the shared variables must occur through use of

critical section.

In order to clarify better the structure of the .cs file

produced by the C# Translator, the IEC 61131-3

application shown by Figure 2 will be considered. After

the processing operated by C# Translator, the .cs file

shown by Figure 12 is achieved.

As it can be seen, the .cs file produced contains the

three main classes: MyProgram, MyConfiguration and

ExternalMyProgram.

The class MyProgram is the translation of the

PROGRAM MyProgram section shown by Figure 2; it

contains the local variable of the program, declared as

class ProgramName {
 public ProgramName(){}

 public void IECRoutine() {

 }
}

class ConfigurationName {
 class ResourceName {

 class GlobalDeclaration{

 }
 class TaskName {

 ProgramName instanceName;

 public TaskName(){
 instanceName = new ProgramName();

 }

 }

 }

}

class ExternalProgramName {

}

Figure 10: Architecture of the Framework proposed.

270 Informatica 43 (2019) 263–279 S. Cavalieri et al.

variables of the class (i.e., ComputedResult), and the

method IECRoutine() that translates the algorithm of the

PROGRAM MyProgram. Just like the IEC 61131-3

application, the C# algorithm uses global variables, as it

will be explained in the following.

The class MyConfiguration refers to the IEC 61131-3

CONFIGURATION MyConfiguration section. As it

occurs for the IEC 61131-3 application, it is made up by

the class MyResource related to the RESOURCE section.

The class MyResource contains three classes:

GlobalDeclaration, MyTask1 and MyTask2. Class

GlobalDeclaration allows the definition of the global

variables of the original IEC61131-3 application (i.e.,

StepSizeVar, MaxValueVar and MinValueVar). The

classes MyTask1 and MyTask2 represent the IEC 61131-

3 Tasks: inside these classes there are the variables that

indicate the properties of the tasks as period and priority,

a variable that indicates the program associated with the

task (MyProgram) and a constructor with the aim of

initializing these variables.

The class ExternalMyProgram contains a variable of

type GlobalDeclaration (i.e., Gd), representing the

External Variable of IEC61131-3 Program. This variable

is used by the IECRoutine(), as shown by Figure 12. The

ExternalMyProgram class implements a critical section

using the lock mechanism, allowing a safe and unique

instantiation of the single class instance and the safe

concurrent access to it.

Again, it is important to point out that the classes

produced by C# Translator could be directly used on a

common CLR-based platform. They only requires a C#

program using them; for example, execution of the

IECRoutine() may be achieved through one or more

instances of the class MyProgram.

In principle, implementation of C# Translator can be

realised using whatever technology and language. In this

work, the authors chosen to implement this module in C#

as a CLR VM-based application. The implementation has

been based on the use of the GOLD Parser system [15], by

means of which parse tables have been created. In

particular, its Builder component has been used to read a

source grammar written in the GOLD Meta-Language and

to produce the parse tables needed by the C# Translator.

5.2 PLC framework

During the design phase, it has been assumed that the PLC

Framework had to comply with the following

assumptions.

For each IEC 61131-3 periodic task, a Xenomai real-

time task is created with the same period; priority value of

the original IEC 61131-3 task is converted into the range

1 to 99, where 99 is given to the IEC 61131-3 tasks with

the highest priority. It is important to recall that task

priorities in Xenomai ranges from 0 to 99; as explained in

the following, the value 0 has been reserved for a special

purpose.

The native scheduling mechanism based on pre-

emption adopted by Xenomai has been left unchanged;

this means that execution of a Xenomai task is suspended

when a higher priority Xenomai task has to be performed.

Program Scan loop has been realised through a

Xenomai real-time task with the lowest priority, i.e. 0.

This means that all the other tasks (to which priority values

ranging from 1 to 99 have been assigned) can act pre-

emption on the Program Scan task. This choice has been

made in order to allow execution of a very urgent task,

delaying the program scan loop.

The reading and writing operations shown by Figure

1, have been implemented in atomic way, in the sense that

during their execution they cannot be interrupted by no

other tasks. In order to make atomic the Program Scan

execution, a semaphore-based mechanism has been

Figure 12: .cs file produced by C# Translator on the IEC

61131-3 application of Figure 2.

 class MyProgram {
 double ComputedResult;

 public MyProgram(){}

 public void IECRoutine() {
 ExternalMyProgram.Gd.StepSizeVar=

ExternalMyProgram.Gd.MaxValueVar-

ExternalMyProgram.Gd.MinValueVar;
 ComputedResult = ExternalMyProgram.Gd.StepSizeVar;

 }

}

class MyConfiguration {

 class MyResource {
 class GlobalDeclaration{

 double StepSizeVar;

 double MaxValueVar;
 double MinValueVar;

 }

 class MyTask1 {
 double period;

 int priority;

 MyProgram MyInstance1;
 public MyTask1(){

 MyInstance1 = new MyProgram();

 period=100;
 priority=1;

 }

 }
 class MyTask2 {

 double period;

 int priority;
 MyProgram MyInstance2;

 public MyTask2(){

 MyInstance2 = new MyProgram();
 period=150;

 priority=2;

 }
 }

 }
}

class ExternalMyProgram {
 private static ExternalMyProgram instance = null;

 private static readonly object padlock = new object();

 private GlobalDeclaration Gd = new GlobalDeclaration();

 ExternalMyProgram() {}

 public static ExternalMyProgram Instance {

 get {
 lock (padlock) {

 if (instance == null) {

 instance = new ExternalMyProgram();
 }

 return instance;

 }
 }

 }

}

A CLR Virtual Machine Based Execution Framework for... Informatica 43 (2019) 263–279 271

implemented. In particular, a Xenomai semaphore is

created and locked when the Xenomai task implementing

the Program Scan is started. The semaphore is deleted

each time the Xenomai Program Scan task ends. All the

other tasks, even if featuring higher priority cannot

interrupt the Program Scan task if the Xenomai semaphore

is locked.

Association of a C# program to a periodic Xenomai

task has been realised according to the procedure

described in Section 3. In particular, for each Xenomai

task an instance of the task_function() method shown by

Figure 13 is associated through the rt_task_start_wrap().

Figure 13: task_function() method whose instance is

associated to each Xenomai task.

Each task_function() method is made up by a

while(true) cycle, inside which a particular C# code is

defined; it may be the ScanProgram() or the

IEC61131Program(), both described in the following.

Then, the call to the wrapper function

rt_task_wait_period_wrap() described before in this

paper, is achieved. As said before, it forces the Xenomai

task associated to the instance of task_function() to wait

for the next periodic release point in the processor time

line. Figure 13 points out that the local variables (if

present) used by the ScanProgram() or by

IEC61131Program(), could be defined at the three

different scopes shown by the same figure; the definition

of the proper scope will be discussed later in this paper.

ScanProgram() is a C# program in charge to emulate the

typical Program Scan of a PLC. It is shown by Figure 14,

by means of a flow-chart graphical representation.

Figure 14: ScanProgram().

At the beginning of the ScanProgram(), a semaphore

is created by rt_sem_create_wrap(). Then, the C#

program calls the rt_sem_p_wrap() in order to lock it. In

this way, the ScanProgram() cannot be interrupted from

this moment on; reading and writing operations are

executed without pre-emption. Reading operations

involve I memory, whilst writing operations are relevant

to the Q memory (see Figure 1). When they are completed,

the semaphore is deleted, by rt_sem_delete_wrap(); the

relevant waiting queue on the same semaphore is deleted,

so all the other task pending on it are released. These tasks

may be scheduled for their execution by Xenomai co-

kernel.

Figure 15 shows the algorithm implemented inside the

IEC61131Program(). As it can be seen, it executes a

program called IECRoutine(); during the description of

the C# Translator module, it has been said that among the

classes produced for each IEC 61131-3 application there

is the class named ProgramName. As shown in Figure 11,

this class contains a public void IECRoutine(). The

program IECRoutine() executed inside

IEC61131Program is made up by the same C# code

extracted by the public void IECRoutine() contained in the

class ProgramName. In the following, the extraction

operation performed by the PLC Framework will be

pointed out.

At the beginning, the IEC61131Program() checks the

existence of Xenomai semaphore (by using the

rt_sem_p_wrap()). As said before, this semaphore is

created by the ScanProgram() and is deleted by the same

routine when no more needed. If the IEC61131Program()

does not find the semaphore, it runs the IECRoutine().

If semaphore exists, the IEC61131Program() must

check if it is locked (e.g., by ScanProgram()). The check

is again done using the rt_sem_p_wrap(), which locks the

semaphore if it is found unlocked; this happens for

example when the semaphore has been created by

ScanProgram() but it was not already locked by it. In this

case, the IEC61131Program() must suddenly unlock the

semaphore (by using rt_sem_v_wrap()). This is needed as

this task may be pre-empted by a higher priority task

which must find the semaphore unlocked, otherwise it

cannot be executed. Once the semaphore is unlocked, the

class name {

// local variables

 void task_function () {

// local variables

 while (true) {
// local variables

 ScanProgram() or IEC61131Program();

 rt_task_wait_period_wrap (null);
 }

 }

}

Read Inputs and put data into I Memory Area

Delete Xenomai Semaphore

Create a Xenomai Semaphore

Write Outputs from Q Memory Area

Start

Lock the Xenomai Semaphore

Figure 15: IEC61131Program().

272 Informatica 43 (2019) 263–279 S. Cavalieri et al.

IEC61131Program() executes the IECRoutine(). Figure

15 points out that if the IEC61131Program() finds the

semaphore locked, it will wait until it is deleted (by

ScanProgram) or it is unlocked (e.g., by another Xenomai

task).

On the basis of what said until know, for each

IEC61131-3 application received by the C# Translator (in

terms of C# classes contained by the .cs files already

described), the PLC Framework has to performs two main

activities.

The first is to produce the task_function() methods

shown by Figure 13. One and only one method must

contain the ScanProgram(), shown by Figure 14; each of

the other task_function() methods must contain a

IEC61131Program(), described by Figure 15.

The second important activity performed by PLC

Framework is to associate a Xenomai task to each instance

of task_function() method, and then activate them so they

can be executed by Xenomai co-kernel.

These two activities are performed by two main

modules running inside the PLC Framework:

ProgramsCreator and TasksCreator. ProgramsCreator is

in charge to produce the task_function() method on the

basis of the C# classes received from the C# Translator.

TasksCreator creates and activates the Xenomai tasks

associated to these methods. Figure 16 shows them.

Figure 17 gives an overview of the main activities

carried out by the ProgramsCreator on the reception of a

.cs files produced by C# Translator. It analyses class

ProgramName (see Figure 11) here contained. From this

class, it extracts the class variables and the C# code

contained in the IECRoutine() method; this method is

placed into the IEC61131Program() as shown by Figure

15. Finally, the ProgramsCreator creates the class

containing the task_function() method shown by Figure

13, placing the IEC61131Program() and placing the

variables extracted as said before in one of the scopes

shown by the same figure. Choice of the right scope will

be discussed later in this paper, as said before. When no

more ProgramName classes received from C# Translator

are present, the ProgramsCreator will produce the class

containing the task_function() method with the

ScanProgram(), as shown by Figure 13.

The TasksCreator module has the main goal to create

and run Xenomai tasks, starting from the task_function()

methods created by the ProgramsCreator module. Figure

18 shows the details of the algorithm implemented by this

module.

At the beginning, the TasksCreator analyses each .cs

file received from C# Translator. In particular, it focuses

on the classes TaskName shown by Figure 11, extracting

information (i.e., period and priority) of the entire set of

IEC 61131-3 tasks. For each IEC 61131-3 task, a Xenomai

real-time task is created through the

rt_task_create_wrap(); a priority (ranging from 1 to 99) is

specified for the Xenomai task to be created. As said

Figure 17: ProgramsCreator.

Figure 16: PLC Framework main components.

Figure 18: TasksCreator.

A CLR Virtual Machine Based Execution Framework for... Informatica 43 (2019) 263–279 273

before, priority value is assigned according to the priority

of the IEC 61131-3 task, mapping the highest priority IEC

61131-3 task with the highest Xenomai priority value

(e.g., 99). Once a Xenomai task with a certain priority has

been created, the same period of the relevant IEC 61131-

3 task is assigned; this is done by the

rt_task_set_periodic_wrap().

When no more TaskName classes are present, a

Xenomai task must be created in order to be subsequently

associated to the task_function() method including the

ScanProgram(). On the basis of the hypotheses explained

in this section, the Xenomai task is created by using

rt_task_create_wrap(), specifying the priority value 0 (the

lowest Xenomai priority value). A period is assigned to

this task according to the user settings; this is the period of

the Program Scan loop the user has to apply. Period

assignment is realised using again the

rt_task_set_periodic_wrap().

Finally all the previous Xenomai tasks are started

using the rt_task_start_wrap(). This wrapper function

calls the native Xenomai API rt_task_start(), passing the

address of the instance of the task_function() method,

created by the ProgramsCreator, to be associated to each

Xenomai task with priority ranging from 1 to 99. Address

of the instance of the task_function() method containing

the ScanProgram(), is passed to the Xenomai task with

priority 0.

In order to better understand the main activities

performed by the ProgramsCreator and TasksCreators

modules, let us consider the .cs file shown by Figure 12.

ProgramsCreator will produce the C# code shown by

Figure 19; it includes the IEC61131Program() which in

turns is made up by the IECRoutine() given by Figure 20.

As shown by Figure 19, the ExternalMyProgram class

contained in the .cs file of Figure 12 is imported. The

ExternalMyProgram class is made up by the instance Gd

of GlobalDeclaration class inside which the external

variables of the IEC 61131-3 MyProgram program

(StepSizeVar, MaxValueVar, MinValueVar) are defined.

Figure 20 points out that IECRoutine() accesses these

external variables through the instance Gd contained in the

ExternalMyProgram class.

Figure 19: C# code produced by ProgramsCreator.

The TaskCreator module extracts from the MyTask1

and MyTask2 classes produced by the C# translator the

information about Xenomai tasks to be created; this

information is about periodicity, priority and about the

Program to be associated. On the basis of the information

contained in the .cs file shown by Figure 12, it is clear that

two Xenomai tasks must be created. Their period values

are 100ms and 150ms, respectively; priority values of the

original IEC 61131-3 tasks are 1 and 2, which could be

mapped to Xenomai priority values 99 and 98,

respectively, as priority 1 is the highest priority value

according to IEC 61131-3 and must be mapped to the

highest Xenomai priority value (i.e., 99). Finally,

according to the information contained in the MyTask1

and MyTask2 classes, two instances of the same

task_function() method shown by Figure 19 is associated

to these two Xenomai tasks.

Figure 20: IECRoutine().

As said many times until now, in the Figure 19

declaration of the local variable of the IEC 61131-3

MyProgram program (ComputedResult) is not defined;

the figure points out only the three different scopes where

declaration may occur. The following section will

definitely clarify the position of the declaration of local

variables, through a deep analysis of the impact of the

possible choices on the run-time performance of the

system.

6 Performance evaluation
It is well known that execution of a generic C# application

on a CLR VM may be delayed by the activation of the

Garbage Collection. When a collection starts, it causes the

stop of all the tasks associated to the C# program,

including the Xenomai real-time tasks in the real-time

environment architecture shown by Figure 10. The main

consequence is the increase of each single execution time

of C# programs; furthermore, the periodicity of one or

more tasks could be not respected if the time interval

needed by the Garbage Collector to conclude its work is

higher than the task period.

It is clear that a performance evaluation is strongly

required in order to point out if what written can actually

occur in the framework here defined, and, in in this case,

suitable mechanisms to prevent performance deterioration

must be proposed and evaluated.

During the description of the PLC Framework it has

been left unsolved the problem relevant to the declaration

of the local variables of a IEC 61131-3 program inside the

class containing the task_function() method, shown by

Figure 13. The possible scopes where this declaration

could occur have been highlighted but no indication about

the right choice has been given. Actually, this choice

seems to play a very strategic role from the performance

point of view of the entire real-time environment

proposed. In fact, each of the three possible scopes shown

by Figure 13 may led to a very different impact of the

import ExternalMyProgram;

class MyProgram {
 //double ComputedResult;

 void task_function () {

 //double ComputedResult;

 while (true) {

 //double ComputedResult;

 IEC61131Program();
 rt_task_wait_period_wrap (null);

 }

 }

}

public void IECRoutine(){
 ExternalMyProgram.Gd.StepSizeVar=

ExternalMyProgram.Gd.MaxValueVar-

ExternalMyProgram.Gd.MinValueVar;
 ComputedResult = ExternalMyProgram.Gd.StepSizeVar;

}

274 Informatica 43 (2019) 263–279 S. Cavalieri et al.

Garbage Collector on the overall behaviour of the

IEC61131-3 programs execution.

On account of what said until now, performance

evaluation was carried out by the authors with the main

aim to analyse the impact of the Garbage Collector on the

behaviour of the real-time environment depicted by Figure

10, considering the effect of the three different scopes of

local variables pointed out by Figure 13. As it will be

shown, this analysis allowed to find the best choice, able

to minimise the impact of the Garbage Collector over the

framework here defined.

The performance evaluation has been carried out on

two different architectures: the embedded system

described in Section 4.1 and a general purpose computer.

Only one IEC 61131-3 ST-based Program has been

considered for the performance evaluation. Several

periodic tasks were associated to this Program. This

choice has been done in order to make simpler the analysis

of the results, removing their dependence from possible

differences in the program codes executed.

Figure 21 shows the IEC 61131-3 ST language-based

implementation of the Goertzel Algorithm [16] considered

for the performance evaluation.

The PROGRAM section features several variables.

Q0, Q1 and Q2 are output arrays used for the per-sample

processing; the samples are stored in the sbuffer array. The

coeff array is another basic variable of the Goertzel

Algorithm; it sores some of the precomputed constants

foreseen by the algorithm, needed during processing [16].

The magnitude array is used to store the magnitude values

of the signals coming from the channels and relevant to

different harmonics. ch and num_ch variables refer to the

number of channels, whilst i and k_max refer to the

number of harmonics. The number of samples is

represented by variables n and j.

The first FOR cycle present in the ST code of the

PROGRAM section, iterates for all the samples; the

second FOR cycle allows iteration for all the harmonics to

be analysed. Finally, the last cycle refers to all the

channels producing the samples. The boolean condition (j

= n-1) indicates the completion of the analysis of all the

samples; when this condition occurs the algorithm

calculates the magnitude relevant to a specific channel and

to a specific harmonic, given by the value of index.

Figure 21 also shows the CONFIGURATION and

RESOURCE sections containing the global constants and

variables and an example of periodic task associated to the

Program Goertzel. In particular, TASK MainTask1

defines a periodic task with period 100 ms and priority

value 1; an instance of Program Goertzel (called

MainInst1) is associated to the MainTask1. As said before,

it was assumed to associate a huge number of periodic

tasks to the Program Goertzel shown in Figure 21; only

for reason of space limits, the other tasks are not shown in

the RESOURCE section of Figure 21.

5.3 Performance Evaluation on Embedded

System

Figures 22 and 23 show the C# code produced by

ProgramsCreator on the basis of the Goertzel algorithm

shown in Figure 21, considering the local variables inside

the while(true) cycle. Figure 23 details the C# code

realising Goertzel’s algorithm inside the IECRoutine(). As

already explained in the previous section, the external

variables of the IEC61131-3 PROGRAM Goertzel are

defined inside class GlobalDeclaration and are used

though the access to the class ExternalGoertzel, which

contains the instance Gd of GlobalDeclaration. The

ExternalGoertzel class contained in the .cs file is

imported, as shown by Figure 22.

It has been assumed to execute the Goertzel’s code

with a number of harmonics equals to 6 (i.e.,

ExternalGoertzel.Gd.k_max constant was set to 6).

PROGRAM Goertzel
 VAR_EXTERNAL CONSTANT

 k_max: INT :=12;

 num_ch: INT :=8;
 END_VAR

 VAR_EXTERNAL

 coeff : ARRAY [0..k_max] OF REAL;
 END_VAR

 VAR

 count : INT;
 i : INT;

 j : INT;

 ch : INT;
 index : INT;

 n : INT;

 sbuffer : ARRAY [0..num_ch*n] OF REAL;
 Q0 : ARRAY [0..num_ch*k_max] OF REAL;

 Q1 : ARRAY [0..num_ch*k_max] OF REAL;

 Q2 : ARRAY [0..num_ch*k_max] OF REAL;

 magnitude : ARRAY [0..num_ch*k_max] OF REAL;

 END_VAR

 FOR j:= 0 TO n-1 DO
 FOR i:= 1 TO k_max DO

 count:= i * 8 - 8;

 FOR ch:= 0 TO num_ch-1 DO
 index := count + ch;

 Q0[index] := (coeff[i - 1] * Q1[index]) –

 (Q2[index] + sbuffer[j + ch * n]);
 Q2[index] := Q1[index];

 Q1[index] := Q0[index];

 IF j = n-1 THEN
 magnitude[index] := SQRT(Q1[index] *Q1[index] +

Q2[index] * Q2[index] –

(Q1[index] * Q2[index] * coeff[i - 1]));
 END_IF;

 END_FOR;

 END_FOR;
 END_FOR;

END_PROGRAM

CONFIGURATION Config

 RESOURCE Resource1
 VAR_GLOBAL CONSTANT

 k_max: INT :=12;

 num_ch: INT :=8;
 END_VAR

 VAR_GLOBAL

 coeff : ARRAY [0..k_max] OF REAL;
 END_VAR

 TASK MainTask1(INTERVAL :=T#100ms, PRIORITY := 1);

 PROGRAM MainInst1 WITH MainTask1 : Goertzel;
 END_RESOURCE
END_CONFIGURATION

Figure 21: IEC 61131-3 ST-based application relevant to

the Goertzel Algorithm.

A CLR Virtual Machine Based Execution Framework for... Informatica 43 (2019) 263–279 275

In order to analyse the execution of the Goertzel

Algorithm though the use of an oscilloscope, the GPIO #2

is set at the beginning of the execution of the

IECRoutine(). The GPIO #2 is reset at the conclusion of

the execution of the same code. Set and reset operations

are not shown in the code of Figures 22 and 23.

Figure 24 points out the GPIO #2 values during the

time; the time interval during which GPIO #2 is on

represents the single execution time of the Goertzel

Algorithm. As pointed out by Figure 24, results achieved

show that duration of the each algorithm execution

maintains about the same value in time. But the figure

highlights that execution of the Goertzel algorithm does

not occur with the same frequency; the

rt_task_wait_period_wrap() called in the in the C# code of

Figure 22 is not able to guarantee that execution of the

Goertzel algorithm occurred after a deterministic time

interval.

Figure 23: Details of C# Goertzel Algorithm Code

contained in the IECRoutine().

Figure 24: Execution of the Goertzel Algorithm shown by

Figure 22 with k_max=6.

Utilisation of the CPU has been increased considering

a higher number of harmonics (setting k_max to 12).

Figure 25 shows the results achieved, pointing out that

now the behaviour of the system is completely

unpredictable. Both duration of each execution and

repetition of the execution occur in an arbitrary fashion.

The behaviours depicted by Figures 24 e 25 are due to

the intervention of the Garbage Collector whose execution

has been forced by the choice to define the local Goertzel

variables inside the while(true) loop of Figure 22. This

means that, for each loop execution, these variables are de-

allocated and re-allocated, producing garbage that must be

collected, causing the intervention of the Garbage

Collector which stops the real-time tasks producing the

bad behaviour depicted by Figures 24 and 25.

Figure 25: Execution of the Goertzel Algorithm shown by

Figure 22 with k_max=12.

We proceeded to test the performance of the Goertzel

algorithm by changing the scope of the local variables.

The scope represented by Figure 26 has been considered;

in this case, the Goertzel variable are global variable of the

C# class Goertzel.

Figure 27 shows the executions of the algorithm

during the time, considering a number of harmonics equal

to 12 (k_max=12). As it is possible to see, now the

duration of each execution is quite the same and the

repetition in time of the Goertzel’s algorithm is

predictable because the impact of the Garbage Collector is

much less than in the previous case. The variables are

allocated only when the class is instantiated, and the

Garbage Collector does not collect them until the

deallocation of the class, that will occur only at the end of

the associated task.

Another important performance improvement could

be achieved defining the variable inside the

task_function() as shown in Figure 28.

Public void IECRoutine() {
 for (j = 0; j < n; j++) {

 for (i = 1; i < ExternalGoertzel.Gd.k_max + 1; i++) {

 count = (UInt16)(i * 8 - 8);
 for (ch = 0; ch < ExternalGoertzel.Gd.num_ch; ch++) {

 index = (UInt16)(count + ch);

 Q0[index] = (ExternalGoertzel.Gd.coeff[i - 1] *
Q1[index]) – (Q2[index] + sbuffer[j + ch *n]);

 Q2[index] = Q1[index];

 Q1[index] = Q0[index];
 if (j == n - 1) {

 magnitude[index] = Math.Sqrt(Q1[index] *
Q1[index] + Q2[index] * Q2[index] –

(Q1[index] * Q2[index] *

ExternalGoertzel.Gd.coeff[i - 1]));
 }

 }

 }
 }

}

import ExternalGoertzel;

class Goertzel {

 void task_function () {
 double[] sbuffer =

new double[ExternalGoertzel.Gd.num_ch * n];

 double[] Q0 = new double[ExternalGoertzel.Gd.num_ch *
ExternalGoertzel.Gd.k_max];

 double[] Q1 = new double[ExternalGoertzel.Gd.num_ch *

ExternalGoertzel.Gd.k_max];
 double[] Q2 = new double[ExternalGoertzel.Gd.num_ch *

ExternalGoertzel.Gd.k_max];

 double[] magnitude =
new double[ExternalGoertzel.Gd.num_ch *

ExternalGoertzel.Gd.k_max];

 UInt16 count, n, index, i, j, ch;
 while (true) {

 IEC61131Program();

 rt_task_wait_period_wrap (null);

 }

 }

}

Figure 22: C# code produced by ProgramsCreator.

276 Informatica 43 (2019) 263–279 S. Cavalieri et al.

Figure 26: C# code produced by ProgramsCreator.

In this case, it is well known that the variable access

is faster than the scenario shown by Figure 16. In addition,

the task_function() method is instanced only once before

the creation and activation of the relevant task; this means

that the so-defined variables are always active and never

deallocated by Garbage Collector until the end of the task

exactly like global variables. Figure 29 points out

execution of the Goertzel algorithm in this scenario.

Figure 27: Execution of the Goertzel Algorithm shown by

Figure 26 with k_max=12.

Figure 28: C# code produced by ProgramsCreator.

Figure 29: Execution of the Goertzel Algorithm shown by

Figure 28 with k_max=12.

Comparing Figure 29 with Figure 27, it is possible to

point out that the scope for the local variable considered

in Figure 28 allows to improve performance of the system,

as the execution time is now decreased.

5.4 Performance evaluation on general

purpose computer

The algorithm shown by Figure 28 has been considered,

as it allowed to achieve the best results in the performance

evaluation on embedded system, as said before.

Performance evaluation has been carried out using a

computer made up by a six-core Xeon processor (X5650

Intel) and 100 GB of RAM. The following software was

installed on it: Ubuntu 16.04 (Kernel Linux 3.18.20),

Xenomai co-kernel 3.0.2, and Mono 4.4.

Several periodic Xenomai tasks were associated to the

task_function() method shown by Figure 28. It has been

assumed to consider several groups of tasks; tasks

belonging to each group share the same period and

priority.

During execution of each Xenomai task, jitter values

were measured. Figure 30 shows how jitter has been

evaluated; each arrow represents a real execution of a

Xenomai task.

Figure 30: Jitter evaluation.

For each task, Ti-1, Ti, Ti+1 are generic time intervals

between consecutive Xenomai periodic task executions.

Said T the period of the Xenomai task, Ji-1, Ji, Ji+1 values

shown in Figure 30 are the relevant jitter values. For each

single task, the average absolute value of the jitters was

calculated. It was said that tasks were divided into several

group, each group sharing the same period and priority;

for each group of tasks, the minimum and the maximum

average absolute jitter values were pointed out.

Performance evaluation has been carried out

considering different scenarios featured by different

groups of tasks, different numbers of tasks for each group

and different period values associated to a group.

Scenarios were chosen in order to be comparable in terms

import ExternalGoertzel;

class Goertzel {

 double[] sbuffer = new double[ExternalGoertzel.Gd.num_ch * n];
 double[] Q0 = new double[ExternalGoertzel.Gd.num_ch *

ExternalGoertzel.Gd.k_max];

 double[] Q1 = new double[ExternalGoertzel.Gd.num_ch *
ExternalGoertzel.Gd.k_max];

 double[] Q2 = new double[ExternalGoertzel.Gd.num_ch *

ExternalGoertzel.Gd.k_max];
 double[] magnitude = new double[ExternalGoertzel.Gd.num_ch

*

ExternalGoertzel.Gd.k_max];
 UInt16 count, n, index, i, j, ch;

 void task_function () {
 while (true) {

 IEC61131Program();

 rt_task_wait_period_wrap (null);

 }

 }

}

import ExternalGoertzel;

class Goertzel {

 void task_function () {
 while (true) {

 double[] sbuffer =

new double[ExternalGoertzel.Gd.num_ch * n];
 double[] Q0 = new double[ExternalGoertzel.Gd.num_ch *

ExternalGoertzel.Gd.k_max];

 double[] Q1 = new double[ExternalGoertzel.Gd.num_ch *
ExternalGoertzel.Gd.k_max];

 double[] Q2 = new double[ExternalGoertzel.Gd.num_ch *
ExternalGoertzel.Gd.k_max];

 double[] magnitude=

new double[ExternalGoertzel.Gd.num_ch *
ExternalGoertzel.Gd.k_max];

 UInt16 count, n, index, i, j, ch;

 IEC61131Program();

 rt_task_wait_period_wrap (null);

 }
 }

}

Ti-1 Ti Ti+1

Ji-1=Ti-1-T Ji=Ti-T Ji+1=Ti+1-T

A CLR Virtual Machine Based Execution Framework for... Informatica 43 (2019) 263–279 277

of bandwidth utilisation, otherwise comparison between

their performances was meaningless.

For each group of tasks, the bandwidth utilisation has

been defined by:

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 =
1

𝑇
∗ 𝑛 ∗ 𝑡 (1)

where n is the number of tasks belonging to the group

and sharing the same period T, and t is the execution time

of the Program associated to the task.

Use of the parameter given by (1) allowed to compare

scenarios featured by the same bandwidth utilisation,

during the performance evaluation carried out.

Tables 1 and 2 show two of the scenarios considered.

Three groups of tasks have been considered for each

scenario. Inside each scenario, the groups differs for the

number of tasks and the relevant period. Comparing the

different scenarios, they feature groups with the same

bandwidth utilisation.

Tables 3 and 4 presents some of the results achieved.

They show the minimum and maximum average absolute

jitter values for each scenario and for each of the three

groups. As it can be seen, the average absolute jitter values

are always very close to zero.

Table 1: Scenario 1: Groups of Tasks with Period,

Number of Tasks and Bandwidth Utilisation.

Group Period

(ms)

Number of

Tasks

Bandwidth

Utilisation

1 50 100 30%

2 30 100 50%

3 25 100 60%

Table 2: Scenario 2: Groups of Tasks with Period,

Number of Tasks and Bandwidth Utilisation.

Group Period

(ms)

Number of

Tasks

Bandwidth

Utilisation

1 25 50 30%

2 15 50 50%

3 12.5 50 60%

Table 3: Scenario 1: Minimum and Maximum Average

Absolute Jitters.

Group Period (ms) Min (ms) Max (ms)

1 50 6.58 E-05 3.40 E-04

3 30 5.03 E-05 3.59 E-04

4 25 5.89 E-05 6.45 E-04

Table 4: Scenario 2: Minimum and Maximum Average

Absolute Jitters.

Group Period (ms) Min (ms) Max (ms)

1 25 5.27 E-05 1.89 E-04

2 15 5.39 E-05 3.41 E-04

3 12.5 5.86 E-05 6.96 E-04

These results seem to demonstrate that Garbage

Collector does not affect at all the performance of the

system. They confirm the same results achieved through

the experiments carried out by the embedded system and

shown in the previous subsection.

In order to verify this result, in the following an

analysis will be presented in order to point out what could

occur when the Garbage Collector intervenes. The C#

code shown by Figure 22 has been considered. As said, in

this scenario the local variables are mapped inside the

while(true) cycle; this means that the entire set of variables

are re-located for each cycle. This affects the heap

memory capacity, going to fill it and forcing the Garbage

Collector to intervene to free the unused variables, as each

cycle uses another set of the same local variables.

Tables 5 and 6 show the minimum and maximum

average absolute jitter values for the same scenarios seen

before. It is important to point out the higher values of the

jitter. Furthermore, it is important to compare the

maximum average absolute jitter values with the period of

each group; in some cases, the values are close to the same

periods, pointing out the very bad performance achieved.

Time instants of each Xenomai task execution have

been recorded during the performance evaluation,

considering again the C# code shown by Figure 22. The

entire set of the execution times for the tasks belonging to

each group has been carefully analysed. Analysis pointed

out that Xenomai task executions sometimes featured the

behaviour depicted by Figure 31. Each vertical arrow in

the figure represents a real execution; Ti is the time

interval between two consecutive executions, and the

dotted vertical arrows represents the instant at which a

periodic execution is expected but does not occur.

Table 5: Scenario 1: Minimum and Maximum Average

Absolute Jitters.

Group Period (ms) Min (ms) Max (ms)

1 50 9.38 11.30

2 30 5.62 11.12

3 25 4.77 12.56

Table 6: Scenario 2: Minimum and Maximum Average

Absolute Jitters.

Group Period (ms) Min (ms) Max (ms)

1 25 2.12 2.56

2 15 1.30 2.49

3 12.5 1.10 2.62

As shown by Figure 31, during a task execution, jitter

values greater than a multiple value of the task period may

occur. It has been observed that the generic Ti may be

greater than two or three times the task period, in the worst

cases. The only event which could cause this behaviour is

the running of Garbage Collector causing the stop of the

Figure 31: Xenomai task executions.

Ti

Ti

Ti

278 Informatica 43 (2019) 263–279 S. Cavalieri et al.

Xenomai tasks. Values of the time interval Ti clearly

depends on the execution times of the Garbage Collector

needed to collect all the garbage produced by the

programs.

7 Final remarks
Paper has presented a software solution allowing the

execution of IEC 61131-3 applications into computing

systems based on a CLR VM. The software solution is

made up by two main components.

The first component is a software able to realise

translation of a generic IEC 61313-3 application into C#

code. For each IEC 61131-3 application a .cs file is

produced containing several classes relevant to the

original IEC 61131-3 sections; these classes may be

directly instantiated and used in a generic C# program

running inside a CLR VM. Otherwise, the output

produced may be passed to the second component here

presented, which is a real-time execution environment. It

is a framework able to realise the exact behaviour of a PLC

(e.g., Program Scan loops and real-time task scheduling).

It requires the presence of a CLR VM running on the top

of a real-time operating system. The framework receives

the C# classes produced by the first component described

before, achieved for an IEC 61131-3 application. On the

basis of these classes, it produces suitable C# programs

and real-time tasks associated to the programs to be

submitted to the underlying real-time operating system. In

this paper, use of Xenomai real-time co-kernel has been

presented.

After a description of both the software components,

the paper focused on a performance evaluation of

capability of the real-time environment to respect the

periodic constraints of real-time tasks. As known, in a

CLR VM-based environment, execution of a generic C#

program may be delayed by the activation of the Garbage

Collection. When a collection starts, it may cause the stop

of all the tasks associated to the C# program and the

increase of their execution time. The periodicity of one or

more tasks could be not respected for the same reason. The

results of the performance evaluation carried out by the

authors, pointed out that although Garbage Collector may

be a cause of performance degradation, its impact on the

performance of the system may be drastically limited. This

can be achieved by realising the right mapping between

the IEC 61131-3 original local variables defined inside

IEC 61131-3 PROGRAM section and the variables used

by the C# classes generated by the real-time environment.

Results presented in the paper, pointed out that the

mapping choices operated by the authors avoid the

intervention of the Garbage Collector. Under their

adoption, performance evaluation allowed to demonstrate

the capability of the real-time environment here presented

to respect real-time constraints of periodic tasks.

To the best of authors’ knowledge, current literature

does not provide solutions aimed to deploy IEC 61131-3

applications on CLR VM, using C# language as

intermediate code. Due to the spread current use of C#

language in the development of industrial applications,

adoption of the software solutions here presented seems

attractive. Typical candidate platforms on which

deployment may be achieved, are those based on general

purpose computer architecture (on which CLR VM allows

the use of common operating systems like Linux and

Windows), but also all the embedded systems supporting

a CLR VM may be considered.

Furthermore, the paper gives a contribution to a very

spread research field currently present in literature; in

particular it introduces a solution able to move

computation further away from the field level into the so-

called compute pools, which are decentralised and may be

also realised inside cloud computing solutions. In the

scenario proposed, the PLC is migrated to the compute

pool which can be realised by a computer architectures

based on CLR VM, as demonstrated by the research

presented in the paper.

Although the paper has been presented considering

Just-in-Time compilation, it is important to point out that

the procedures presented in the paper and aimed to

translate original IEC 61131-3 language-based programs

may be applied also into the case the Ahead-of-Time

(AOT) compilation was adopted.

References
[1] R.W.Lewis (1998). Programming Industrial Control

Systems Using IEC 1131-3, IEE, ISBN-13: 978-

0852969502, 1998.

[2] J. D. Decotignie (2009). The many faces of industrial

ethernet [past and present]. IEEE Industrial

Electronics Magazine, vol. 3, no. 1, pp. 8–19.

https://doi.org/10.1109/mie.2009.932171

[3] M. Becker, K. Sandstrom, M. Behnam, T. Nolte

(2015). A many-core based execution framework for

IEC 61131-3. Proceedings of 41st IEEE Annual

Conference IECON 2015, pp.4525-4530,

https://doi.org/10.1109/IECON.2015.7392805.

[4] S. Mubeen, M. Becker, X. Zhao, L. Gan, M.

Behnam, T. Nolte (2016). Towards automated

deployment of IEC 61131-3 applications on multi-

core systems. Proceedings of IEEE World

Conference on Factory Communication Systems

(WFCS 2016), pp.1-4,

https://doi.org/10.1109/WFCS.2016.7496531.

[5] M. Simros, S. Theurich and M. Wollschlaeger

(2012). Programming Embedded Devices in IEC

61131-Languages with Industrial PLC Tools using

PLCOPEN XML. Proceedings of 10th Portuguese

Conference on Automatic Control (2012), pp.51-56.

[6] O. Givehchi, H. Trsek, and J. Jasperneite (2013).

Cloud computing for industrial automation systems

- a comprehensive overview. Proceedings of IEEE

18th Conference on Emerging Technologies Factory

Automation (ETFA 2013), pp.1–4.

https://doi.org/10.1109/etfa.2013.6648080

[7] O. Givehchi, J. Imtiaz, H. Trsek, and J. Jasperneite

(2014). Control-as-a-service from the cloud: A case

study for using virtualized PLCs. Proceedings of

10th IEEE Workshop on Factory Communication

Systems (WFCS 2014), pp.1–4.

https://doi.org/10.1109/wfcs.2014.6837587

https://doi.org/10.1109/mie.2009.932171
https://doi.org/10.1109/IECON.2015.7392805
https://doi.org/10.1109/WFCS.2016.7496531
https://doi.org/10.1109/etfa.2013.6648080
https://doi.org/10.1109/wfcs.2014.6837587

A CLR Virtual Machine Based Execution Framework for... Informatica 43 (2019) 263–279 279

[8] I. Kühl and A. Fay (2011). A Middleware for

Software Evolution of Automation Software.

Proceedings of IEEE 16th Conference on Emerging

Technologies and Factory Automation (ETFA 2011),

pp.1-9.

https://doi.org/10.1109/etfa.2011.6059109

[9] Mono official website, available on

http://www.mono-project.com/

[10] Xenomai official website, available on

https://xenomai.org

[11] S. Cavalieri, L. Galvagno, M.S.Scroppo (2016). A

Framework based on CLR Virtual Machine to

deploy IEC 61131-3 programs. Proceedings of 14th

International Conference on Industrial Informatics

(INDIN 2016), University of Poitiers, Poitiers,

France,pp.126–131,

https://doi.org/10.1109/INDIN.2016.7819146.

[12] S. Cavalieri, L. Galvagno, G. Puglisi, M.S. Scroppo

(2016). Moving IEC 61131-3 applications to a

computing framework based on CLR Virtual

Machine. Proceedings of 21th International

Conference on Emerging Technologies and Factory

Automation (ETFA 2016), Berlin, Germany, pp.1-8,

https://doi.org/10.1109/ETFA.2016.7733632.

[13] Xenomai official API reference website, available on

https://xenomai.org/api-reference/

[14] Freescale Semiconductor, MPC8309 (2014).

PowerQUICC II Pro Integrated Communications

Processor Family Hardware Specifications, Data

Sheet. Document Number MPC8309EC, Rev 4,

12/2014. Available on http://www.nxp.com/

[15] Gold parsing system official website, available on

http://www.goldparser.org/

[16] G. Goertzel (1958). An algorithm for the evaluation

of finite trigonometric series. American

Mathematical Monthly, Vol. 65, No. 1, pp. 34-35,

https://doi.org/10.2307/2310304

https://doi.org/10.1109/etfa.2011.6059109
http://www.mono-project.com/
https://doi.org/10.1109/INDIN.2016.7819146
https://doi.org/10.1109/ETFA.2016.7733632
http://www.nxp.com/
http://www.goldparser.org/
https://doi.org/10.2307/2310304

280 Informatica 43 (2019) 263–279 S. Cavalieri et al.

