Article

Prediction of Gas Chromatographic Retention Indices of Coumarins

Míriam de Freitas Soares^a, Franco Delle Monache^b, Vilma Edite Fonseca Heinzen^{a*}, and Rosendo A. Yunes^b

^aLaboratório de Estrutura-Atividade, Departamento de Química, CFM, Universidade Federal de Santa Catarina, 88040-900 Florianópolis - SC, Brazil ^bInstituto di Chimica Recettori Molecole Biologicamente Attive del C.N.R., Università Cattolica S. Cuore, Largo F. Vito 1,00168 Rome, Italy

O estudo de correlação entre estrutura-retenção (QSRR) foi usado para relacionar a retenção cromatográfica de diferentes cumarinas substituídas as suas características estruturais.

Diferentes parâmetros estruturais foram selecionados tais como: descritores topológicos, geométricos, eletrônicos, químico-quânticos e físico-químicos para encontrar uma equação que melhor explique o comportamento cromatográfico destes compostos.

O método proposto por Dimov que classifica os descritores em diferentes grupos de acordo com seus valores de coeficientes de correlação foi utilizado neste estudo.

As melhores equações de correlação linear múltipla foram obtidas com os seguintes descritores: área total (A_T), índice do estado eletrotopológico (S_{-O}) e orbital molecular ocupado de maior energia (E_{HOMO}), mostrando que a retenção experimental, usando fase estacionária de baixa polaridade está relacionada principalmente com fatores relacionados a forma e também eletrônicos.

Os modelos selecionados apresentaram uma boa predictabilidade, a qual foi estabelecida através dos valores do coeficiente de correlação de validação cruzada (r^2_{cv}). As equações encontradas podem ser utilizadas para auxiliar na elucidação da estrutura ou retenção cromatográfica de cumarinas similares às estudadas.

Quantitative structure-retention relationships (QSRR) were used in this study to relate the chromatographic retention of different substituted coumarins to molecular structure. Different structural parameters were selected, such as topological, geometric, electronic, quantum-chemical and physico-chemical descriptors, in order to find an equation that fitted the chromatographic retention of these compounds.

The method proposed by Dimov that classifies the descriptors in different groups in agreement with their values of correlation coefficients was analysed.

Significant correlation equations were obtained with the following molecular descriptors: the total surface area (A_T), the electrotopological state index (S₍₋₀₋₎) of the oxygen in position 1 of coumarin, and the highest occupied molecular orbital energy (E_{HOMO}), showing that the experimental retention, using stationary phases with low polarity, was related with the shape and electronic factors of the solutes.

The models found have a good predictive ability as established by cross-validation r_{cv}^2 values and thus, can be used to aid in the elucidation of the structure or the chromatographic retention of similar coumarins.

Keywords: *QSRR, retention indices, coumarins, molecular descriptors, multiple linear regression*

Introduction

The quantitative structure-retention relationships $(QSRR)^1$, establishes the relationship between a chemical structure and its chromatographic retention value. The

chromatographic retention is due to the integral effect of molecular interactions between the analyte and both mobile and stationary phase molecules. To define the structural descriptors best related to the characteristic of a particular solute to undergo both polar and dispersive interactions is an important step to understanding the process of chromatographic separation.

Using the QSRR approach, structural descriptors such as topological, geometric and electronic or physico-chemical descriptors can be proposed for molecules with similar structural features, and a subset of them can be selected in order to describe and predict the gas chromatographic retention indices². Numerous authors have attempted to correlate and predict retention indices of a variety of compounds by use of molecular structural information or physico-chemical and quantum-chemical parameters³⁻²⁰.

In this study, our aim was to select the best descriptors related to the chromatographic retention of different substituted coumarins (some of them are interesting natural products) using the QSRR, to broaden the approach of Dimov *et al.*^{3,4} which takes into account only hydrocarbons (alkylbenzenes, alkylnaphthalenes, isoalkanes and alkenes).

Dimov *et al.*^{3,4} suggested that the descriptors should be divided in groups according to correlation coefficient values for the simple linear regression. After this, the descriptors of different groups would be related through multiple regression to obtain the best equations. These equations

would be formed by two groups of descriptors: basic and tuning. The basic descriptors are those that permit the calculation of the retention index values closest to the experimental values. The tuning descriptors are those that further tune the calculated value to experimental ones.

Experimental

Samples and standards

The different coumarins studied were obtained by extraction in the *Instituto di Chimica Recettori Molecole Biologicamente Attive del C.N.R., Università Cattolica S. Cuore.* The 6-methylcoumarin, 7-methylcoumarin, 4-hydroxycoumarin, coumarin and 3,4-dihydrocoumarin were obtained commercially from the Aldrich Chemical Company Inc. The analytical standards of hydrocarbons (n-alcanes, nC₁₂ to nC₂₂) were supplied by Aldrich Chemical Company Inc.

Method of chromatographic analysis

The gas chromatographic retention data for 20 substituted coumarins chromatographed on two stationary phases with low polarities are indicated in Table 1. The sample solutions were prepared with acetone, and to some of them

Table 1. Experimental retention indices on the CBP5 (RICBPS) and LM-1 (RILM-1) stationary phases at 170 °C, 190 °C and 210 °C for the coumarin series.

No.	Compound	RI _{CBP5} (170 °C)	RI _{CBP5} (190 °C)	RI _{CBP5} (210 °C)	RI _{LM-1} (170 °C)	RI _{LM-1} (190 °C)	RI _{LM-1} (210 °C)
1	Coumarin	1492	1510	1533	1434	1458	1472
2	3,4-Dihydrocoumarin	1451	1473	1494	1398	1422	1430
3	6-Methylcoumarin	1588	1607	1631	1545	1564	1574
4	7-Methylcoumarin	1586	1607	1630	1545	1562	1574
5	6-Methoxycoumarin	1835	1850	1867	1762	1776	1780
6	7-Ethoxycoumarin	1815	1829	1846	1754	1771	1779
7	4-Hydroxycoumarin	1740	1739	1733	1656	1665	1652
8	6-Hydroxycoumarin	1840	1849	1864	1760	1771	1770
9	7-Hydroxycoumarin	1866	1875	1886	1789	1797	1795
10	6-Acetocoumarin	1846	1853	1869	1768	1784	1790
11	7-Acetocoumarin	1851	1864	1881	1779	1796	1803
12	6-Aminocoumarin	1872	1880	1917	1784	1806	1816
13	6-Chlorocoumarin	1639	1652	1675	1578	1599	1607
14	7-Chlorocoumarin	1643	1657	1677	1586	1608	1616
15	6-Iodocoumarin	1859	1879	1906	1780	1805	1818
16	6-Nitrocoumarin	1875	1889	1912	1775	1795	1805
17	7-Nitrocoumarin	1877	1894	1913	1784	1809	1821
18	6-Formaldehydecoumarin	1759	1770	1788	1673	1693	1701
19	6-Carboxycoumarin	1942	1949	1962	1858	1871	1870
20	6-Cyanocoumarin	1638	1651	1674	1579	1599	1608

methanol was added. Samples of 1 µL were injected into a gas chromatograph Shimadzu (Model GC-14A) equipped with a flame ionisation detector, connected to a recorder (Shimadzu Model C-R6A). The carrier gas was hydrogen at a flow-rate of 2.0 mL min⁻¹ in all instances. Two fused silica capillary columns of LM 1 no. 360696 (L&M São Carlos, SP, Brazil) a polydimethylsiloxane liquid phase with 0.25 mm i.d. and of CBP5 PN 221-28636-25 (Shimadzu Co., Kyoto, Japan) a polydimethylphenylsiloxane 5% phenyl, bonded liquid phase with 0.22 mm i.d. were utilised. Both the columns were 25 m long and with 0.25 µm film thickness. The injector and detector temperatures were 250 °C and 280 °C, respectively. The retention times were measured at different isothermal column temperatures: 170 °C, 190 °C, 210 °C, 220 °C and 230 °C. The experimental retention time (t_R) was obtained using the average of three experimental determinations. The standard deviations are less than 0.01%.

The dead time (t_M) was determined by the Method of Sharles and Vermon²¹. The measurements were always taken before each determination of the retention time.

The Kovàts retention indices were determined through the adjusted retention times ($t_R - t_M$), according to the equation of Kovàts²², using n-alcanes as standards.

Method of calculation of molecular descriptors

The structural descriptors used in the present study were topological and quantum-chemical indices and physicochemical properties.

Several extensive reviews have been published which give detailed descriptions of the theory and method of calculation of all topological indices used in the present investigation²³⁻²⁸.

The Wiener indices $(W)^{23}$, the molecular connectivity indices of different orders $(^{1}X, ^{2}X, ^{3}X_{p}, ^{4}X_{p}, ^{5}X_{p}, ^{3}X_{c}, ^{4}X_{pc}, ^{1}X^{v}, ^{2}X^{v}, ^{3}X^{v}_{p}, ^{4}X^{v}_{p}, ^{5}X^{v}_{p}, ^{3}X^{v}_{c}$ and $^{4}X^{v}_{pc})^{24}$, indices of molecular shape, kappa values $(^{1}K, ^{2}K, ^{3}K)^{25}$, indices of electrotopological state $(Si)^{26,27}$ and topological state indices $(T_{i})^{28}$, were calculated by the method of Kier and Hall, utilizing the Molconn-X computer program for molecular topological analysis²⁹.

The topological state index T_i , of an atom, gives information on the topological environment of the atom according to the presence of the other atoms in the molecule. The values of $T_i = T_{(=O)}$, are related to the oxygen of the carbonyl in the basic structure of coumarins. $T_{(-O-)}$ indices are related to the oxygen of position 1 in the coumarin. They distinguish also all the compounds studied (see Table 2).

The electrotopological state index (S_i) gives information about the electronic and topological state of an atom according to the presence of other atoms in the molecule. It was considered that $S_{(-O-)}$, related to the oxygen of position 1 in the coumarin molecule, distinguished all the compounds studied (Table 2).

The molecules were drawn using the PcModel version 3.01 computer program, and the figures were exported to be geometrically energy-minimised using the PM3 quantum mechanical method. Subsequently, the energy-optimised molecular structure was used for generating a number of molecule parameters utilising the semi-empirical molecular orbital Mopac program³⁰.

The following quantum mechanical molecular properties were chosen for the study: the highest occupied molecular orbital energy (E_{HOMO}), and the lowest unoccupied molecular orbital energy (E_{LUMO}). Other derived properties obtained were: the total surface area (A_T), saturated area (A_S), unsaturated area (A_{UNS}), polar area (A_P), molecular volume (V_{MOLEC}), molar volume (V_{MOLAR}), total energy (E_T), molar refractivity (RM). In addition, the following physical properties of the coumarins were also selected: molecular mass (M_M) and boiling point (T_b). Some of the values are given in Table 2.

The best regression equations were selected on the basis of the multiple correlation coefficient (r), r-squared, standard deviation (SD), the overall F value and the F-remove for individual descriptors (F-to-remove: 4.00) in the stepwise selection. Finally, in order to estimate the predictive power of the model, cross-validation, following the leave-one-out scheme was performed^{32,33}. The reliability of the model was tested in a cross-validation with determination of r^2_{cv} ³².

All the calculations of single and multiple linear regression analyses were carried out using the *Statgraf* and *Origin* computer programs.

Results and Discussion

The basic structure of mono-substituted coumarins with the corresponding substituents studied are given below:

$$\begin{array}{l} R_4 = \text{-OH}; \ R_7 = R_6 = H \\ R_6 = \text{-OH}; \ \text{-COCH}_3; \ \text{-NO}_2; \ \text{-CHO}; \ \text{-OCH}_3; \ \text{-I}; \\ \quad \text{-NH}_2; \ \text{-CI}; \ \text{-COOH}; \ \text{-CN}; \ R_4 = R_7 = H \\ R_7 = \text{-OH}; \ \text{-OCH}_2\text{CH}_3; \ \text{-COCH}_3; \ \text{-CI}; \ \text{-NO}_2; \\ R_4 = R_6 = H \end{array}$$

The values of the chromatographic retention indices (RI) of different coumarins studied, using the stationary phases LM-1 (RI_{LM-1}) and CBP5 (RI_{CBP5}) at different isothermal temperatures of columns 170-210 °C, are given in Table 1.

Table 2. Molecular connectivity indices of 1^{st} and 2^{nd} orders $\binom{l}{X}$, $\binom{2}{X}$, Wiener indices (W), Kappa index $\binom{l}{K}$, topological state indices (T_i), electrotopological state indices (S_i) for the oxygen of position-1 (S₍₋₀₋₎, T₍₋₀₋₎) and for the oxygen of carbonyl in the lactone group (S₍₌₀₎, T₍₌₀₎). Total surface area (A_T), Polar area (A_P), Molecular volume (V_{Moled}), Total energy (E_T), Energy of the highest occupied molecular orbital (E_{HOMO}), for the coumarin series.

No	¹ X	2X	A_{T} (A ²)	A_P (A ²)	V _{MOLEC} (A ³)	E _T (eV)	E _{HOMO} (eV)	W	¹ K	S(-O-)	S(=0)	T(-o-)	T(=0)
1	5.3602	4.7228	154.66	32.443	172	-1745.2	-9.4875	643	7.6389	4.9060	10.717	13.137	10.973
2	5.3602	4.7228	161.58	32.304	182	-1776.9	-9.5136	643	7.6389	4.9929	10.803	12.884	10.748
3	5.7540	5.3566	174.06	32.198	194	-1895.0	-9.3281	776	8.5917	4.9611	10.802	13.403	11.192
4	5.7540	5.3566	174.67	32.149	193	-1895.0	-9.3530	761	8.5917	4.9869	10.828	13.375	11.196
5	6.2920	5.2557	186.54	41.123	203	-2188.2	-9.1229	880	9.5510	4.9500	10.840	13.618	11.620
6	6.7920	5.9061	205.98	38.642	226	-2337.6	-9.1716	949	10.516	5.0131	10.945	13.680	11.548
7	5.7709	5.2623	163.44	50.456	177	-2039.2	-9.5160	761	8.5917	4.8269	10.778	13.577	11.340
8	5.7540	5.3566	165.87	51.494	178	-2039.1	-9.1628	776	8.5917	4.8500	10.739	13.468	11.234
9	5.7540	5.3566	165.46	50.922	176	-2039.2	-9.2253	761	8.5917	4.8269	10.746	13.439	11.239
10	6.6647	6.2555	197.59	55.256	219	-2306.9	-9.6973	986	10.516	4.9295	10.869	13.764	11.693
11	6.6647	6.2555	200.28	55.581	218	-2306.9	-9.6556	985	10.516	4.9447	10.913	13.756	11.706
12	5.7540	5.3566	170.38	59.030	184	-1923.2	-8.7628	776	8.5917	4.9055	10.770	13.446	11.220
13	5.7540	5.3566	177.54	61.099	197	-2157.3	-9.7346	776	8.5917	4.9024	10.769	13.395	13.395
14	5.7540	5.3566	171.71	32.174	188	-2046.6	-9.4254	761	8.5917	4.9024	10.785	13.367	11.190
15	5.7540	5.3566	183.94	32.223	206	-2018.4	-9.1559	776	8.5917	4.9577	10.800	13.346	11.154
16	6.6647	6.2555	180.89	69.597	201	-2476.6	-10.233	986	10.516	4.8182	10.802	13.824	11.621
17	6.6647	6.2555	181.20	69.924	200	-2476.6	-10.189	985	10.516	4.7924	10.828	13.823	11.631
18	6.2920	5.5257	171.48	32.161	190	-2046.6	-9.3665	880	9.5510	4.8896	10.802	13.611	11.403
19	6.6647	6.2555	186.52	76.236	201	-2451.6	-9.8071	986	10.516	4.8479	10.819	13.799	13.799
20	6.2920	5.5257	177.91	51.313	193	-2009.5	-9.8185	880	9.5510	4.8962	10.806	13.626	13.626

The retention times were determined at three different temperatures within the linear range of the curve. The correlation coefficients of these curves are in the range of 0.9992 - 0.9998 in CBP5 and 0.9962 - 0.9991 in LM-1.

Some molecular descriptors values are given in Table 2.

According to the r values, the molecular descriptors were classified in agreement with the method proposed by Dimov *et al.*^{3,4}, into four groups depending on their individual significance for the retention studied. These groups are identified as follows: substantial, important, likely and specific.

In the present study, none of the available descriptors were enclosed in the group of the substantial and important ones, that is no r was obtained above 0.80. This classification is also shown in Table 3.

In the multiple linear regression, the contributors to the retention in agreement with the method proposed by Dimov *et al.*^{3,4} were divided into two groups, basic and tuning:

$$RI_{calc} = b_0 + \sum_{i=1}^{n} b_i B_i + \sum_{j=n+1}^{n+k} b_j T_j$$
(1)

where RI_{calc} represents the calculated retention. The *Bi* parameters include those solute descriptors which allow the calculation of the RI_{calc} value closest to the experimental retention (RI_{exp}). The parameters T_j are solute descriptors, which tune the RI_{calc} value to that of RI_{exp}. Owing to the restriction of statistically-permitted intercorrelations, there is normally only one basic descriptor to be used. The problem is choice which basic descriptor forms the best combination with tuning contributor(s).

Different combinations of the variables representing each of two terms described above were tried to obtain the equation of best fit, which would relate the RI values of the reference compounds to their molecular structure. Multiple linear equations with two variables produced correlation coefficients with low values (the best was r = 0,8498 with A_T and S_(-o-) in LM-1).

The series of compounds studied can be described by an equation comprising three types of terms: the size of the

Table 3. Individual correlation coefficients, r, between coumarin retention indices obtained using two stationary phases with low polarities at $170 \,^{\circ}\text{C}$ and corresponding descriptors.

Descriptors	Abbreviation	Stationary Phase			
		LM-1	CBP5		
Group of likely parameters	(0.80 > r > 0.45)	5)			
Wiener	W	0.7327	0.7361		
Kappa index	¹ K	0.7087	0.7097		
Molecular connectivity	^{2}X	0.7166	0.7174		
index	$^{3}X_{p}$	0.7061	0.7115		
	⁵ X _p	0.7561	0.7606		
Polar Area	A _P	0.7119	0.7342		
Total Energy	ET	-0.7487	-0.7498		
Topological state	T(-O-)	0.7948	0.7945		
index	T(C2)	0.7618	0.7644		
	T(C6)	0.7568	0.7717		
	T _(=O)	0.7006	0.7003		
Molecular connectivity index	¹ X	0.6873	0.6885		
Kappa index	² K	0.6199	0.6201		
	³ K	0.6797	0.6776		
Molecular connectivity	$^{4}X_{p}$	0.6912	0.6857		
index	⁴ X _{pc}	0.6928	0.6971		
	$^{3}X_{c}$	0.7061	0.7115		
	⁶ X _p	0.6873	0.6865		
Total Area	A _T	0.5806	0.5614		
Molar Refractivity	MR	0.5578			
Volume Molecular	V_{M}	0.4629	0.4500		
Volume Molar	V _{Molar}	0.4521	0.4188		
Group of specific parameters	(r < 0.45)				
Electrotopological state	S(-O-)	-0.4081	-0.4362		
index	$S_{(=O)}$	0.3187	0.2940		
Molecular connectivity	$^{1}X^{v}$	0.4033	0.3840		
index	${}^{4}X_{pc}{}^{v}$	0.3659	0.3553		
	${}^{3}X_{p}{}^{v}$	0.3178	0.3046		
	$^{2}X^{v}$	0.3169	0.3069		
	${}^{3}X_{c}^{v}$	0.2258	0.2183		
	${}^{4}X_{p}{}^{v}$	0.2018	0.1866		
	${}^{5}X_{p}{}^{v}$	0.1459	0.1349		
Saturated area	As	-0.2244	0.3498		
Unsaturated area	A _{UNS}	-0.2220	0.3193		
HOMO energy	Еномо	-0.0812	-0.1123		

molecule, and the topological and electronic factors. The best equations were obtained with A_T , 1K , W, 3X_p and V_M as the first term of the equation (basic descriptors), reflecting the bulk properties of the molecule. These basic descriptors have high colinearity to each other. However, only one of them was used in each equation. The second and third terms (tuning descriptors) were represented by $S_{(-0-)}$ related with the topological and electronic factors and E_{HOMO} related with the ionisation potential of the molecule. The colinearities between them were also checked.

The best multiple linear regression Eqs. 2 - 3 with three variables with LM-1 and CBP5 stationary phases $(170 \text{ }^{\circ}\text{C})$ were:

$I_{LM-1(170 \circ C)} = 9.4$	$-74 (\pm 0.815) A_T$	+220.2	
$(\pm 32.2)E_{HOMO} - 201$	3 (±192)S(-O-) -	- 11957 (±1081)	(2)
n = 20	r = 0.9561	s = 41.90	
F-ratio = 56.74	$r^2_{cv} = 0.8573$		
(F-to-remove: 4.	00)	$F(A_T) = 135.1$	
$F(E_{HOMO}) = 46.7$	'9	$F(S_{(-O-)}) = 109.4$	
$I_{CBP5(170 \circ C)} = 10$.07 (±0.95)A _T +	- 233.8 (±37.3)E _{HO}	мо -
2271 (±223)S _(-O-) +	13319 (±1254)		(3)
n = 20	r = 0.9507	s = 48.61	
F-ratio = 50.16	$r^2_{cv} = 0.8265$		
(F-to-remove: 4.	00)	$F(A_T) = 113.3$	
$F(E_{HOMO}) = 39.2$	22	$F(S_{(-Q-)}) = 103.5$	

The best simple regressions were obtained with descriptors related to the shape, size, area, volume and molecular refractivity of the substance studied. In the multiple linear regression the electronic descriptors were introduced.

The total area was the first parameters introduced into the multiple linear equations as it was found to be the most significant (see the values of F, Eqs. 2-3). The positive sign of the coefficient in the Eqs. 2-3 indicates that retention indices increase with the total area values as is observed in Table 2. The second parameter introduced in the equations (the second most significant according to the values for F, Eqs. 2 and 3) was the electrotopological index (Si) related to the oxygen atom in the position 1 of the coumarins. The nature of the substituents in the molecule influences this index. Substituents with electron-donating effect contribute to increase the value of the index and those with electron-withdrawing effect decrease it. The negative sign of the coefficient in Eqs. 2 and 3 indicates that retention indices increase as the electrotopologic indices (S-o-) in the molecule decrease. In agreement with the experimental retention indices, it can be observed that in a general way, compounds with more electronegative substituents have larger retention values.

The third parameter introduced in the multiple regression equations according to its significance (see the values of F in the Eqs. 2 and 3) was the energy of the highest occupied molecular orbital of the solute, E_{HOMO} . The intro-

Table 4. Experimental and calculated retention indices (RI and RI_{calc}) determined on LM-1 and CBP5 stationary phases at 170 °C and its residual, Δ (RI – RI_{calc}) and standardized residual, S_R, of Eqs. 2 and 3 for the coumarins used in this study.

No.	Compound	RI LM-1	RI _{calc} (Eq. 2)	Δ (Eq. 2)	S _R (Eq. 2)	RICBP5	RI _{calc} (Eq. 3)	Δ (Eq. 3)	S _R (Eq. 3)
1	Coumarin	1434	1460	-26	-0.70	1492	1517	-25	-0.59
2	3,4-Dihydrocoumarin	1398	1345	54	1.82	1451	1383	68	2.02
3	6-Methylcoumarin	1545	1568	-23	-0.56	1588	1625	-37	-0.79
4	7-Methylcoumarin	1545	1516	29	0.75	1586	1566	20	0.43
5	6-Methoxycoumarin	1762	1753	8	0.21	1835	1823	12	0.25
6	7-Ethoxycoumarin	1754	1800	-46	-1.44	1815	1864	-49	-1.32
7	4-Hydroxycoumarin	1656	1696	-40	-1.04	1740	1778	-38	-0.86
8	6-Hydroxycoumarin	1760	1750	10	0.26	1840	1833	7	0.15
9	7-Hydroxycoumarin	1789	1779	10	0.27	1866	1867	-1	-0.02
10	6-Acetocoumarin	1768	1773	-5	-0.12	1846	1847	-1	-0.02
11	7-Acetocoumarin	1779	1782	-3	-0.07	1851	1854	-3	-0.07
12	6-Aminocoumarin	1784	1769	15	0.42	1872	1846	26	0.64
13	6-Chlorocoumarin	1578	1629	-51	-1.31	1639	1698	-59	-1.29
14	7-Chlorocoumarin	1586	1642	-56	-1.43	1643	1712	-69	-1.51
15	6-Iodocoumarin	1780	1706	74	2.06	1859	1772	87	2.10
16	6-Nitrocoumarin	1775	1721	54	1.61	1875	1806	69	1.79
17	7-Nitrocoumarin	1784	1785	-1	-0.03	1877	1878	-1	-0.03
18	6-Formylcoumarin	1673	1679	-6	-0.14	1759	1752	7	0.14
19	6-Carboxycoumarin	1858	1808	50	1.32	1942	1895	47	1.05
20	6-Cyanocoumarin	1579	1627	-48	-1.22	1638	1696	-58	-1.29

duction of this parameter, that is less significant, resulted in an increase of the multiple correlation coefficients (r). E_{HOMO} is related to the energy necessary to remove an electron from a molecule. The sign of the coefficient in the Eqs. 2-3 is positive, thus the negative values of E_{HOMO} that correspond to more electron-donating molecules, contribute to decrease the chromatographic retention. This is, in accordance with the value of $S_{(-0-)}$, thus E_{HOMO} should correct the values of $S_{(-0-)}$, considering that E_{HOMO} is a molecule global value and not localised in an atom as $S_{(-0-)}$.

The validation of the model was checked through the values of r_{cv}^2 (coefficient of validation of the capacity of prediction of the model) which was better for the Eqs. 2 and 3, where the total area was the most significant parameter.

The calculated retention indices with the Eqs. 2 and 3, residuals and standard residuals are given in Table 4.

The correlation between experimental retention indices (LM-1 and CBP5) and those calculated by Eqs. 2 and 3 is shown in Fig. 1.

It is observed in Fig. 1 that two points corresponding to compounds 2 and 15 (Table 4) exhibit a significantly large *s*. When the correlation is made without these outliers the

correlation coefficient is improved, r = 0.9647 for the I_{LM-1} and r = 0.9642 for I_{CBP5} .

The interactions between the molecules of the solute and those of the two stationary phases used in this work are similar. These are observed by the simple linear correlations obtained between the experimental retention indices (or calculated) of the two stationary phases, whose correlation coefficient is excellent.

$I_{CBP5} = 1.094 \ (\pm 0.000)$	0.040)) I_{LM-1} -	- 86.25 (±69.16)	(4)
n = 20	r = 0.9971	s = 11.17	
<u>F = 3132.42</u>	$r^2_{cv} = 0.9930$		

The angular coefficient of this Eq. 4 demonstrates that there is not appreciable discrimination between the phases. However, the intercept shows that the values of I_{CBP5} are smaller than that of I_{LM-1} . This fact could be explained by different diffusion rates in the stationary phases or other dynamic factors.

Figure 1. Correlation between experimental indices (LM-1 and CBP5) and calculated retention indices (Eqs. 2 and 3) for the coumarins used in this study.

Conclusions

This study demonstrates that the methodology used previously by Dimov to model GC retention characteristics of the hydrocarbons (alkylbenzenes, alkylnaphthalenes, isoalkanes and alkenes) can also be applied to model the retention indices of substituted coumarins, although the correlations were not as good as the first ones.

The descriptors that are able to describe the phenomena that took place in the process of the retention of the studied compounds are related with the shape and the electronic characteristics of the molecules.

The models found have good predictive ability as established by cross-validation r^2_{cv} values and thus can be used to help in the elucidation of molecular structures or prediction of chromatographic retention indices of similar compounds.

Acknowledgement

The authors thank CNPq (Brazil) for financial support.

References

- Kaliszan R. Quantitative Structure-chromatographic Retention Relationships; John Wiley & Sons; New York, 1987.
- 2. Sutter, J.M.; Peterson, T.A.; Jurs, P.C. Anal. Chim. Acta 1997, 342, 113.
- Dimov, N.; Osman, A. Anal. Chim. Acta 1996, 323, 15.
- 4. Dimov, N.; Osman, A.; Mekenyan, Ov.; Papazova, D. *Anal. Chim. Acta* **1994**, 298, 303.
- 5. Heinzen, V.E.F.; Yunes, R.A. J. Chromatogr. 1992, 598, 243.
- 6. Heinzen, V.E.F.; Yunes, R.A. J. Chromatogr. 1993, 654, 83.
- Arruda, A.C.; Heinzen, V.E.F.; Yunes, R.A. J. Chromatogr. 1993, 630, 251.
- 8. Heinzen, V.E.F.; Yunes, R.A. J. Chromatogr. A **1996**, 719, 462.
- 9. Salabert-Salvador, M.T.; Garcia-March, F.J.; Pérez-Giménez F. et al. Chromatographia **1995**, 41, 702.
- Righezza, M.; Hassani, A.; Meklati, B.Y.; Chrétien, J.R. J. Chromatogr. A 1996, 723, 77.
- Garcia-March, F.J.; Antón-Fos, G.M.; Pérez-Giménez, F.; Salabert-Salvador, M.T.; Cercós-del-Pozo, R.A.; Julian-Ortiz, J.V. J. Chromatogr.A 1996, 719, 45.
- 12. Zhang, X.; Lu, P. J. Chromatogr. A 1996, 731, 187.
- 13. Peng, C.T. J. Chromatogr. A 1994, 687, 189.
- 14. Li, J.; Carr, P.W. J. Chromatogr. A 1994, 659, 367.
- 15. Hilal, S.H.; Carreira, L.A. J. Chromatogr. A 1994, 662, 269.
- 16. Kalliszan, R. Anal. Chem. 1992, 64, 619A.
- 17. Mihalic, Z.; Trinajstic, N. J. Chem. Educ. 1992, 69, 701.
- Kier, L.B. In *Physical Chemical Properties of Drugs*, Yalkowsky, S.H.; Sinkula, A.; Valvani, S.C., eds., Marcel Dekker; N. Y., Ch. 9, p. 277, 1980.
- Hansch, H; Leo, A. Exploring QSAR. Fundamentals and Applications in Chemistry and Biology; Washington, ACS, 1995.
- 20. Santos, H.F.; Almeida, W.B. J. Molec. Struct. 1995, 335, 129.
- 21. Sharples, W.E.; Vermon, F. J. Chromatogr. 1978, 161, 83.
- Tarjan, G.; Nyiredy, Sz.; Gyor, M. et al. J. Chromatogr. 1989, 472, 1.
- 23. Wiener, H. J. Am. Chem. Soc. 1947, 69, 17 and 2636.
- Kier, L.B.; Hall, L.H. Molecular Connectivity in Structure-Activity Analysis; Wiley; New York, 1986.
- 25. Kier, L.B. Quant. Struct.-Act. Relat. 1987, 6, 8.
- 26. Kier, L.B.; Hall, L.H. Pharm. Res. 1990, 7, 801.
- 27. Hall, L.H.; Mohney, B.; Kier, L.B. J. Chem. Inf. Comput. Sci. 1991, 31, 76.

- 28. Hall, L.H.; Kier, L.B. Quant. Strut.-Act. Relat. 1990, 9, 115.
- 29. Hall, L.H.; Kier, L.B. Molconn-X, a Program for Molecular Topology Analysis; User's Guide. 1. ed. Quincy; Massachusetts, 1991.
- Stewart, J.J.P. MOPAC, version 6.0, J. Seiler Research Laboratory, US Air Force Academy, Colorado Springs. CO80840-6528, USA, 1990.
- Makovskaya, V.; Dean, J.R.; Tomlinson, W.R.; Comber, M. Anal. Chim. Acta 1995, 315, 193.
- 32. Muresan, S.; Bologa, C.; Mracec, M.; Chiriac, A.; Jastorff, B.; Simon, Z.; Naráy-Szabó, G. J. Molec. Struct. 1995, 42, 161.
- 33. Wagener, M.; Sadowski, J.; Gasteiger, J. J. Am. Chem. Soc. **1995**, 117, 7769.

Received: May 5, 1998

- 28. Hall, L.H.; Kier, L.B. Quant. Strut.-Act. Relat. 1990, 9, 115.
- 29. Hall, L.H.; Kier, L.B. Molconn-X, a Program for Molecular Topology Analysis; User's Guide. 1. ed. Quincy; Massachusetts, 1991.
- Stewart, J.J.P. MOPAC, version 6.0, J. Seiler Research Laboratory, US Air Force Academy, Colorado Springs. CO80840-6528, USA, 1990.
- Makovskaya, V.; Dean, J.R.; Tomlinson, W.R.; Comber, M. Anal. Chim. Acta 1995, 315, 193.
- 32. Muresan, S.; Bologa, C.; Mracec, M.; Chiriac, A.; Jastorff, B.; Simon, Z.; Naráy-Szabó, G. J. Molec. Struct. 1995, 42, 161.
- 33. Wagener, M.; Sadowski, J.; Gasteiger, J. J. Am. Chem. Soc. **1995**, 117, 7769.

Received: May 5, 1998