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Abstract 

In the present paper computational applications are illustrated with reference to elasto/viscoplastic problems. The 
influence of different loading programs on the inelastic behaviour of rate-sensitive elasto/viscoplastic materials is 
illustrated with specific numerical examples. An associated formulation of the evolutive laws is adopted. Different 
loading procedures are taken into account by considering different values of the loading rates and of the intrinsic 
properties of the material. A suitable integration scheme is applied and a numerical example is considered by 
analysing different loading programs. Numerical computations and results are reported which illustrate the rate-
dependency of the constitutive model in use. Consequently the significance of the loading program is emphasized 
with reference to the non-linear response of rate-dependent elasto/viscoplastic materials.  
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__________________________________________________________________________________________________________ 

1. Introduction 

In  elastoplasticity, the system of variational inequalities  is associated with a class of return mapping 
algorithms based on the generalized mid-point rule. Application of  this operator split methodology is 
based on an elastic prediction and a plastic correction phase, see e.g. Wilkins [1], Krieg and Key [2], 
Krieg and Krieg [3], Nagtegaal [4], Ortiz and Popov [5], Simo and Taylor [6]. Accuracy analysis and use 
of generalized midpoint rule algorithms have been analysed in detail by Ortiz and Popov  [5]. 
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The need to take into account the numerical integration procedure into the evaluation of the tangent 
operator was first indicated  by Nagtegaal [4] and then developed by Simo and Taylor [6] by the 
application of a consistent tangent operator  which restores the  quadratic rate of convergence typical of 
iterative solution schemes based on Newton's method.  

In viscoplasticity, the derivation of a class of return mapping algorithms associated with the system of 
variational inequalities is still a considerable task relative to the rate-independent behaviour, see e.g. 
Crisfield [7] and Zienkiewicz and Taylor [8]. In particular  Zienkiewicz and Cormeau [9] discussed  
integration procedures  and  considered time step restrictions for the Euler forward difference method  in 
quasi-static elasto/viscoplasticity. Hughes and Taylor [10] reconsidered the application of implicit 
methods,  by the use of an algorithmic procedure which requires the inversion of a compliance matrix. 
Integration algorithms for viscoplastic  models involving non-smooth yield surfaces are reported by Simo  
et al. [11], while stability properties of algorithms are investigated in Simo and Govindjee [12].  
Integration procedures for viscoplastic models are also found in Ju [13] and in  Peric [14],  who proposed 
a perturbation method for the solution of stiff equations  arising in low-rate-sensitive materials. A  
summary of the various generalized mid-point rule algorithms may be found in Croizet et al. [15]. Models  
including non-linear kinematic hardening behaviour and integration procedures applied for complex 
material models are analysed by Chaboche and Cailletaud [16]. A comprehensive account can be found 
e.g. in Simo and Hughes [17].  

In the present paper the consequences of the loading rate on the non-linear response of  
elasto/viscoplastic materials is illustrated and a specific numerical example is detailed. A solution 
procedure is pursued which may be applied to general cases, see e.g. De Angelis [18]. In order to take into 
account different loading rates a non-dimensional loading program parameter is introduced which 
accounts for the velocity of the imposed displacement, the intrinsic properties of the material and the 
geometry of the problem.  

Numerical computations and results for both rate-independent and rate-dependent material models are 
finally reported in order to illustrate the significance of different loading rates on the non-linear behaviour 
of elasto/viscoplastic materials.  

1. Constitutive problem of evolution in elasto/viscoplasticity 

Let us consider a body B, whose reference configuration Ω in Re
n , 1≤ n ≤3, defines a bounded region  

with particles labelled x ϵ Ω. Let T ϵ R+ be the time interval of interest, while V indicates the space of  
displacements, D the strain space and S the dual stress space. We denote by u: Ω ͯ T → V the 
displacement of particle and by σ: Ω ͯ T → S the stress tensor. The strain tensor is defined as ɛ = ∆s(u) : Ω ͯ

T → D, where ∆s is the symmetric part of the gradient. The assumption of  an infinitesimal theory with  
quasi-static deformations is adopted. Consequently the total strain ɛ is additively decomposed into an 
elastic part ɛe and a part ɛvp where combined plastic and viscous effects are represented, so that  ɛ = ɛ

e + 
ɛ

vp.  
Within the framework of the generalized standard material (Halphen and Nguyen [19], Lemaitre and 

Chaboche [20]) we introduce a dual pair of internal variables, a kinematic one  α ϵ R ͯ X  and  the 
corresponding static one χ ϵ R ͯ X’ defined as α=(αiso, αkin) and χ=(χiso, χkin) where αiso ϵ R and χiso ϵ R 
model isotropic hardening while αkin ϵ X  and χkin ϵ X’ model kinematic  hardening, being X and X’ dual 
spaces.  In case of a linear hardening behaviour  static and kinematic internal variables are connected by 
the hardening relation χ=H α,  where H denotes the hardening  matrix  H = diag[Hiso, Hkin].  

The closed convex elastic domain in the generalized stress space is expressed as  C = {(σ, χ) ϵ S  ͯ R ͯ
X’: f(σ, χ)≤0}, where the zero level set of the convex function f: S  ͯ R ͯ X’→R defines the generalized 
yield criterion of the material by providing the boundary of  the elastic domain ∂C = {(σ, χ) ϵ S  ͯ R ͯ X’: 
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f(σ, χ)=0}. Constitutive equations in viscoplasticity  derive from the  optimality conditions of a properly 
regularized functional  representing  viscoplastic dissipation.  In fact the viscoplastic model problem may 
be viewed as a regularization with penalization (Yosida [21]) of the plastic problem. As a consequence   
different specializations of the viscoplastic constitutive relations are obtained by properly specializing the 
penalty function (see e.g. De Angelis [18]). For instance adopting the Perzyna [22] viscoplastic 
constitutive model the evolutive equations are expressed as   

ɛ̇
vp = (1/η)˂Φ(f(σ , χ )) ˃∂

σ
 f(σ , χ )       (1) 

-α̇  = (1/η)˂Φ(f(σ , χ )) ˃∂
χ
 f(σ , χ ) 

where  η˃0 has the meaning of a viscosity coefficient and the MacAuley bracket ˂·˃ is defined as 
˂x˃=(x+|x|)/2. A standard choice of the flow function for linear viscous effects is Φ(f(σ, χ))=f(σ, χ). 
Other proposed expressions of the flow function for nonlinear viscous effects are reported e.g. in 
Skrzypek and Hetnarski [23].  
A von Mises yield criterion with linear hardening is considered in the form f(σ, χkin, χiso)=||dev σ - χkin||- 
κ(χiso) = || η ||- (√(2/3))(σyo + χiso) ≤0, where dev σ is the stress deviator, η = dev σ - χkin is the relative 
stress,  κ(χiso) = (√(2/3))(σyo + χiso) represents the current radius of the yield surface in the deviatoric plane 
and  σyo denotes the uniaxial yield stress of the vergin material. In the assumption of linear hardening 
behaviour, the static internal variable related to isotropic hardening is specified as χiso=Hisoαiso, and the 
dual kinematic internal variable αiso is represented by the equivalent viscoplastic strain evp=∫(√(2/3))||ɛ̇vp|| 
dt.  

                                           

Fig. 1. Perforated strip: geometry of  the problem and finite element mesh;  
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Fig. 2. Perforated strip: load vs. displacement curves; 

2. Effects of different loading rates on the material behavior: computational applications 

The effect of different loading rates on the mechanical response of elasto/viscoplastic material 
behavior is investigated by considering the boundary value problem of an infinitely long rectangular strip   
with a circular hole in its axial direction, subjected to increasing extension in a direction perpendicular to 
the axis of the strip and parallel to  one of its sides. For symmetry reasons only one quarter of the section 
is analysed. Loading is performed by controlling the vertical displacement of the top and bottom 
boundaries of the strip.   The geometry of the problem and the loading conditions are illustrated in fig. 1.     

The adopted mesh consists of 325 nodes and 288 elements, in particular a 4-node bilinear 
isoparametric quadrilateral element has been used. The mechanical properties of the material are: elastic 
modulus E=70·103 MPa, Poisson's ratio ν=0.2, yield limit σyo= 243 MPa, hardening moduli Hiso= 
Hkin=1.5·102 MPa. The imposed displacement is given in single steps ∆u, up to a final displacement  umax. 
In the computational analysis a  constitutive  model of the Perzyna type is assumed, with linear viscous 
effects. Furthermore, in order to take into account the rate-dependence of the material behaviour, a  non-
dimensional   loading program parameter τ = (tR/Lc)(∆u/∆t) is  introduced, which  accounts for  the 
velocity ∆u/∆t of the  imposed displacement ∆u,  the intrinsic properties  of the material by means of the 
relaxation time tR = η/2G and the geometry through a characteristic length of the structural model   
Lc=L/c, where L is the length of the strip, c is  a suitably chosen  constant assumed equal to 2900 and G is 
the shear modulus. In  fig. 2 load versus displacement curves are plotted for different loading rates, where  
the load is considered to be the sum of the nodal reactions on the bounded upper edge. The rate-
independent plastic  behaviour is correctly  recovered for τ =0. Non-null increasing values of the loading 
program parameter correspond to increasing values of the rate of the prescribed displacement on the 
bounded upper edge.  
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Fig. 3. Contour plot of equivalent plastic strain for  u = 6 cm and τ = 0 ; 

                                

Fig. 4. Contour plot of equivalent plastic strain for  u = 6 cm and τ = 0.1 ; 

The evolution of the plastic process shows that the plastic strain evolves from the inner boundary of 
the circular hole to the right edge of the external boundary (fig. 3). A straightforward evaluation of the 
rate-dependent material behaviour is readily accomplished by comparing the contour plots of the 
equivalent plastic strain obtained for a prescribed displacement u=6 cm with different loading programs, 
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respectively τ=0 which corresponds to a rate-independent material behavior (see fig. 3), and τ=0.1 which 
corresponds to a rate-dependent material behavior (see fig. 4).  
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