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Abstract

Software watermarking is a defence technique used to prevent software piracy by embedding a signature,
i.e., an identifier reliably representing the owner, in the code. When an illegal copy is made, the ownership
can be claimed by extracting this identifier. The signature has to be hidden inside the program and it
has to be difficult for an attacker to detect, tamper or remove it. In this paper we show how the ability
of the attacker to identify the signature can be modelled in the framework of abstract interpretation as
a completeness property. We view attackers as abstract interpreters that can precisely observe only the
properties for which they are complete. In this setting, hiding a signature in the code corresponds to
inserting it in terms of a semantic property that can be retrieved only by attackers that are complete for
it. Indeed, any abstract interpreter that is not complete for the property specifying the signature cannot
detect, tamper or remove it. The goal of this work is to introduce a formal framework for the modelling, at
a semantic level, of software watermarking techniques and their quality features.
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1 Introduction

Software developers are interested in protecting the intellectual property of their
products against software piracy, namely to prevent the illegal reuse of their code.
Software watermarking is a technique for embedding a signature, i.e., an identifier
reliably representing the owner, in a cover program. This allows software developers
to prove their ownership by extracting their signature from the pirated copies. In
the last two decades researchers have developed a variety of software watermarking
techniques (e.g., [3,4]) that can be classified in three main categories according
to their extraction process: static, dynamic and abstract watermarking. Static
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watermarking inserts signatures in the cover program either as data or code and then
extracts them statically, namely without executing the code [4]. Conversely, dynamic
watermarking inserts signatures in the program execution state (i.e., in its semantics)
and the extraction process requires the execution of the program, often on a special
enabling input [4]. Abstract watermarking, introduced in [10], encodes the signature
in such a way that it could be extracted only by a suitable abstract execution of
the program. A watermarking scheme is typically evaluated w.r.t. the following
features: credibility (how strongly it proves authorship), secrecy (how difficult it is
to extract the mark), transparence (how difficult it is to realize that a program is
marked), accuracy (observational equivalence of the marked and original program),
resilience to attacks (how difficult it is to compromise the correct extraction of the
signature) and data-rate (amount of information that can be encoded). The quality
of each existing watermarking technique is specified in terms of their features that
are typically claimed to hold w.r.t. the peculiar embedding and extraction methods.
There exists a variety of embedding and extraction algorithms that often work on
different objects (control flow graph, variables, registers, etc.) and this makes it
difficult to compare the efficiency of different watermarking systems. It is therefore
difficult to formally prove and compare limits and potentialities of the different
watermarking systems and to decide which one is better to use in a given scenario.

These problems derive also by the fact that, at the state of the art, there is
a poor theoretical investigation about software watermarking. The concept was
formally defined in [1] and, in the same work, the authors showed that the existence
of indistinguishability obfuscators implies that software watermarking cannot exist.
Furthermore the recent candidate construction of an indistinguishability obfuscator
[12] lowers the hope of building meaningful watermarking scheme. Fortunately this
impossibility result relies on the fact that the signed program computes the same
function as the original program. Indeed, in [1] the authors suggested that if we
relax this last constraint, i.e., we require that the watermarking process has only to
preserve an “approximation” of original program’s functionality, then positive results
may be possible. This naturally leads to reason about software watermarking at
semantic level, as we do in the present work.

A first attempt to provide a formal definition, in the semantics setting, of a
watermarking system has been proposed in [13]. Here the author introduced the
idea that static and dynamic watermarking are instances of abstract watermarking.
Intuitively, the latter can be seen like static watermarking because the extraction
of the signature requires no execution. But, at the same time, it can be seen like
dynamic watermarking because the signature is hidden in the semantics. So all
these three types of techniques could be seen as particular instances of a common
watermarking scheme based on program semantics and abstract interpretation.

In this work, we start from that intuition and we transform the scheme proposed
in [13] in a formal and consistent definition of what a software watermarking system
is. The idea is to model the embedding of the secret signature s as the encoding of s
in a semantic property M(s) that is then inserted in the semantics of the cover pro-
gram. In this setting, the extraction process requires an analysis of the marked code
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that has to be at least as precise as M(s). This notion of precision of the extraction
corresponds to the notion of completeness of the analysis in abstract interpretation.
This means that in order to extract the signature it is necessary to know how it is
encoded. In this view the semantic property for which the analysis has to be com-
plete in order to extract the signature plays the role of an extraction key. Indeed, the
signature is hidden to any observer of the program’s semantics which is not complete
for M(s), namely which does not know the “secret key”. Based on these ideas we
provide a formal semantics-based definition of a watermarking system. Moreover,
we provide a specification of the features of a watermarking system in the semantic
framework in terms of semantic program properties (this problem was not addressed
at all in [13]). For example, it turns out that a watermarking scheme is transparent
w.r.t. an observer when the embedding process preserves the program properties in
which the observer is interested. Moreover, the resilience of a watermarking scheme
to collusive attacks, that attempt to remove the signature by comparing different
marked programs, can be modelled as a property of abstract non-interference among
programs.

Finally we do a more precise validation than the one done in [13] (which is just
sketched). We take into account two known watermarking techniques and we define
them in our framework. Our investigation and study in this direction has led to the
following contributions.

• Specification of a formal framework based on program semantics and abstract
interpretation for the modelling of software watermarking. The framework refines
and extends the one proposed in [13].

• Formalization of the features (resilience, secrecy, transparence, accuracy) used to
measure the quality of a watermarking system in the framework.

• Validation of the framework on two watermarking techniques.

2 Preliminaries

Mathematical notation

Given two sets S and T , we denote with ℘(S) the powerset of S, with S \T the set-
difference between S and T , with S ⊂ T strict inclusion and with S ⊆ T inclusion.
Let S⊥ be set S augmented with the undefined value ⊥, i.e., S⊥ = S ∪ {⊥}. 〈P,≤〉
denotes a poset P with ordering relation ≤, while a complete lattice P , with ordering
≤, least upper bound (lub) ∨, greatest lower bound (glb) ∧, greatest element (top)
�, and least element (bottom) ⊥ is denoted by 〈P,≤,∨,∧,�,⊥〉. � denotes the
pointwise ordering between functions. If f : S −→ T and g : T −→ Q then
g ◦ f : S −→ Q denotes the composition of f and g, i.e., g ◦ f = λx.g(f(x)).
f : P

c−→ Q on posets is (Scott)-continuous when f preserves lub of countable
chains in P . f : C −→ D on complete lattices is additive [co-additive] when, for
any Y ⊆ C, f(∨CY ) = ∨Df(Y ) [f(∧CY ) = ∧Df(Y )]. The right [left] adjoint of a
function f is f+ def

= λx.
∨{y | f(y) ≤ x} [f− def

= λx.
∧{y | x ≤ f(y)}].
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Abstract Interpretation

Abstract interpretation is based on the idea that the behaviour of a program at
different levels of abstraction is an approximation of its (concrete) semantics [7,8].
The concrete program semantics is computed on the concrete domain 〈C,≤C〉, while
approximation is encoded by an abstract domain 〈A,≤A〉. In abstract interpretation
abstraction is specified as a Galois connection (GC) (C,α, γ,A), namely as an ab-
straction map α : C −→ A and a concretization map γ : A −→ C that are monotone
and that form an adjunction: ∀y ∈ A, x ∈ C : α(x) ≤A y ⇔ x ≤C γ(y) [7,8]. α [resp.
γ] is the left[right]-adjoint of γ [α] and it is additive [co-additive], i.e. it preserves
the lub [glb] of all the subsets of the domain (empty set included). Abstract domains
can be equivalently formalized as upper closure operators on the concrete domain [8].
An upper closure operator, or closure, on a poset 〈C,≤〉 is an operator ϕ : C −→ C

that is monotone, idempotent and extensive (i.e. ∀c ∈ C : c ≤ ϕ(c)). Closures are
uniquely determined by the set of their fixpoints ϕ(C). The set of all closures on C is
denoted by uco(C). The lattice of abstract domains of C is therefore isomorphic to
uco(C) [7,8]. If C is a complete lattice, then 〈uco(C),�,�,�, λx.�, id〉 is a complete
lattice, where id def

= λx.x and for every ρ, η ∈ uco(C), ρ � η iff ∀y ∈ C : ρ(y) ≤ η(y)

iff η(C) ⊆ ρ(C).
Precision of an abstract interpretation is typically defined in terms of complete-

ness. Depending on where we compare the concrete and the abstract computa-
tions we obtain two different notions of completeness [15]. If we compare the re-
sults in the abstract domain, we obtain what is called backward completeness (B-
completeness) while, if we compare the results in the concrete domain, we obtain
the so called forward completeness (F-completeness). Formally, if f : C −→ C and
ρ, η ∈ uco(C), then 〈ρ, η〉 is a pair of B[F ]-complete abstractions for f if ρ◦f = ρ◦f◦η
[f ◦ η = ρ ◦ f ◦ η] (equivalently, we say that f is B[F ]-complete for 〈ρ, η〉). The least
fixpoint (lfp) of an operator F on a poset 〈P,≤〉, when it exists, is denoted by lfp≤F ,
or by lfpF when ≤ is clear. Any continuous operator F : C −→ C on a complete
lattice 〈C,≤,∨,∧,�,⊥〉 admits a least fixpoint: lfp≤F =

∨
n∈N F i(⊥), where for

any i ∈ N and x ∈ C: F 0(x) = x; F i+1(x) = F (F i(x)).

Semantics of programs

We consider an imperative programming language Imp, similar to the one described
in [9], equipped with a command inputX that receives an input value from the
user. The input stream given to the program is modelled as a sequence of values.
At the beginning this sequence contains all the input values given, in order, to the
program from its first element to its last. Each statement input “consumes” the first
element of the sequence and so when the sequence is empty there are no more values
that can be passed to the program. The small-step operational semantics of Imp
induces a transition system 〈Σ,S〉, where Σ is the set of possible program states. A
program state is a pair 〈C, ζ〉 where C is the command that has to be executed in
the context ζ = 〈ρ, ι〉 that specifies both the assignment of values to variables ρ and
the input stream ι that still needs to be consumed. As usual, the transition relation
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S ∈ Σ −→ ℘(Σ) over program states specifies the set of states that are reachable
from a given state. Let us denote with ΣP the set of states of a program P , and with
SP : ΣP −→ ℘(ΣP ) the transition relation over states of P . As usual Σ+ denotes
the set of all possible finite non-empty sequences of states and ε the empty sequence.
Given a sequence of states σ = ς0 . . . ςn−1 ∈ Σ+, let |σ| = n ∈ N denote its length
and σi its i-th element. A trace σ ∈ Σ+ is a sequence of states ς0 . . . ςn−1 such that:
∀i ∈ [1, n) . ςi ∈ S(ςi−1).

A state ς is a blocking state, for the program P , when SP (ς) = ∅. Let ΣT
P be

the set of blocking states of P . A maximal finite trace of P , is a finite trace of P
where the last state is blocking. The maximal finite traces semantics �P �+ of the
program P is given by the union of all maximal finite traces of length n > 0 and can
be expressed as the least fixpoint of the transfer function F+ ∈ ℘(Σ+)

m−→ ℘(Σ+)

defined as: F+
def
= λS .ΣT

P ∪ {ςς ′σ | ς ′ ∈ SP (ς) ∧ ς ′σ ∈ S}. We can define the
maximal input semantics function �P �+def

= λX.{σ ∈ �P �+ | σ0 ∈ X} that returns the
set of maximal traces with initial state in X. It is possible to compute �P �+(X)

as λX.lfp�
∅F

X
+ , where the fixpoint of function FX

+ : ℘(Σ+)
c−→ ℘(Σ+), defined on

the DCPO 〈℘(Σ+),�,�,∅〉, is the maximal finite traces semantics starting from
X. The partial order �⊆ ℘(Σ+) × ℘(Σ+) is defined as: X � Y ⇔ (∀σ ∈ X ∃σ′ ∈
Y . σ ∈ pref(σ′)) ∧ ((∀σ′ ∈ Y ∃σ ∈ X .σ ∈ pref(σ′)) ⇒ Y ⊆ X). Here pref :

Σ+ −→ ℘(Σ+) is a function that returns the set of prefix of a given trace, so
pref(σ)

def
= {σ′ ∈ Σ+ ∪ {ε} | ∃σ′′ ∈ Σ+ . σ = σ′σ′′}. The least upper bound

⊎
is

defined as:
⊎X def

= {σ ∈ ⋃
X∈X X | ∀σ′ ∈ ⋃

X∈X X .σ ∈ pref(σ′) ⇒ σ = σ′}. The
bottom element is ∅ ∈ ℘(Σ+). Finally FX

+
def
= λS . {ς ∈ ΣP | ς ∈ X} � {σς ′ς | ς ∈

SP (ς
′) ∧ σς ′ ∈ S}. We have: lfp�

∅F
X
+ =

⊎
n∈N FX

+
n
(∅) = {σ ∈ �P �+ | σ0 ∈ X}.

Semantics can be abstracted by computing the least fixpoint of the best correct
approximation (bca) of the corresponding transfer function on the desired abstract
domain. Given the concrete domain 〈℘(Σ+),⊆,∪,∩,Σ+,∅〉, the bca of �P �+ in
ρ ∈ uco(℘(Σ+)) is �P �ρ+ def

= lfp⊆
∅ρ ◦ F+ ◦ ρ. Let 〈℘(Σ+),�,�,∅〉 be the concrete

domain, the bca of �P �+ in ρ is: �P �ρ+def
= λS . lfp�

∅ρ ◦ FS
+ ◦ ρ.

Abstract non-interference

Abstract non-interference (ANI) [14] is a natural weakening of non-interference by
abstract interpretation. In order to model non-interference in code transforma-
tions, such as software watermarking, we consider an higher-order version of ANI
(HOANI), where the objects of observations are programs instead of values. Hence,
we have a part of a program (semantics) that can change and that is secret, and
the environment which remains the same up to an observable property. Let P be
the set of cover programs, Q the set of secret programs and I : Imp× Imp −→ Imp
an integration function. As usual, the attacker is modelled as a couple 〈η, ρ〉, with
η, ρ ∈ uco(℘(Σ+)), that represents the input and output public observation power.
In contrast, φ ∈ uco(℘(Σ+)) is the property of the secret input. We say that the
integration I, given η, φ, ρ ∈ uco(℘(Σ+)), satisfies HOANI w.r.t. 〈η, φ, ρ〉 and 〈P,Q〉,
denoted as H

+[η]I(φ⇒ ρ)bca, if ∀P1, P2 ∈ P ∀Q1, Q2 ∈ Q: �P1�η+ = �P2�η+ ∧ �Q1�φ+ =

M. Dalla Preda, M. Pasqua / Electronic Notes in Theoretical Computer Science 331 (2017) 71–85 75



�Q2�φ+ ⇒ �I(P1, Q1)�ρ+ = �I(P2, Q2)�ρ+. This means that the integration function
permits to the attacker to distinguish nothing more than the property φ of the se-
cret programs. As done in [14] for ANI, we provide a characterization of the most
concrete attacker for which a program is safe. Consider η, φ, ρ ∈ uco(℘(Σ+)) and
an integration function I, such that H

+[η]I(φ⇒ ρ)bca does not hold. We define the
higher-order abstract secret kernel as the most concrete ρ̂ more abstract than ρ such
that H

+[η]I(φ⇒ ρ̂)bca holds, namely KH+
I,η,(φ)

def
= λρ .

�{β | ρ � β ∧ H
+[η]I(φ⇒ β)bca}.

3 Semantics-based Software Watermarking

We follow the nomenclature introduced in [10] for describing the basic components
of a watermarking technique for programs written in Imp and signatures s ∈ S.

Stegomarker M : S −→ Imp, a function that generates a program which is the
encoding of a given signature s ∈ S, i.e., it generates the stegomark M(s) ∈ Imp

Stegoembedder L : Imp × Imp −→ Imp, a function that generates a program
which is the composition of a stegomark and a cover program, the stegoprogram
L(P,M(s)) ∈ Imp.

Stegoextractor F : Imp −→ S, a function that extracts the signature from a
stegoprogram; for all s ∈ S it must be s = F(L(P,M(s))).

When L and M are clear from the context we denote the stegoprogram L(P,M(s))

as Ps. The stegoextractor takes a stegoprogram, analyses it either statically or
dynamically or by abstract interpretation and then it returns the signature encoded
in the stegomark. It is well known [8] that static analysis can be modelled in the
context of abstract interpretation, where a property is extensionally represented as a
closure operator representing the abstract domain of data satisfying it. In particular,
static analysis is performed as an abstract execution of programs, namely as the
(fixpoint) semantics computation on the abstract domain. Instead, dynamic analysis
can be modelled as an approximated observation of a potentially abstract execution
since it describes partial knowledge of the execution (only on certain inputs). This
means that, in all cases, the encoded signature can be seen as a property of the
stegomark’s semantics and therefore of the stegoprogram’s semantics. In this view
a stegoextractor is an abstract interpreter that executes the stegoprogram in the
abstract domain β ∈ uco(℘(Σ+)) that allows it to observe the hidden signature.
In order to deal with dynamic watermarking we need to model the enabling input
that allows to extract the signature. Since in our model the residual input stream is
part of the program state, the enabling input can be modelled as a state property
η ∈ uco(℘(Σ)). We consider a set P ⊆ Imp of cover programs and we specify a
watermarking system as a tuple 〈L,M, β〉.

Definition 3.1 [Software Watermarking System] Given L : Imp × Imp −→ Imp,
M : S −→ Imp and β ∈ uco(℘(Σ+)), the tuple 〈L,M, β〉 is a software watermarking
system for programs in P and signatures in S if M is injective and there exists
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η ∈ uco(℘(Σ)) such that ∀P ∈ P ∀s ∈ S:

�L(P,M(s))�β+= λX .

{
�M(s)�β+(X) if X ∈ η(℘(Σ))

�P �β+(X) otherwise

X ∈ η(℘(Σ))⇒ �M(s)�β+(X) = �M(s)�β+

This means that when computing the semantics in the abstract domain β, the
stegoprogram L(P,M(s)) behaves like the stegomark M(s) on the enabling inputs,
and like the cover program P otherwise. Here �M(s)�β+ is precisely the information
representing the watermark at semantic level, namely the property of the stegomark
where the signature is hidden. It is clear that, in this setting, it is possible to reduce
the precise extraction of the signature to a completeness problem. To this end we
associate the stegomarker M with its semantic counterpart M : S −→ uco(℘(Σ+)),
which encodes a signature in a semantic program property. In particular, given
the watermarking system 〈L,M, β〉 we define M

def
= λs.{∅, �M(s)�β+,Σ+} 5 . Indeed,

M(s) provides a semantic representation of the signature s. Observe that, by con-
struction, we have that ∀s ∈ S . β �M(s) and this ensures that β is precise enough
for extracting the signature.

Moreover, the abstract semantics computed on β of the stegoprogram reveals the
watermark information �M(s)�β+ ∈M(s) under the enabling input X ∈ η only if it
is F-complete for η and M(s). This means that the stegoembedder makes programs
in a way that the stegoextractor has a full comprehension of their semantics and so
it is able to extract the property which represents the signature.

If �Ps�β+ is F-complete then �Ps�β+◦η = M(s) ◦ �Ps�β+◦η holds. When the input
X belongs to η, we have that �Ps�β+(X) = M(s) ◦ �Ps�β+(X) and consequently we
have that �Ps�β+(X) ∈M(s). This means that �Ps�β+(X) is an element of M(s) and,
excluding the non interesting case where X = ∅ or X = Σ, it is precisely �M(s)�β+,
so it represents the signature s. If X does not belong to η, the system should
guarantee that the abstraction of the stegoprogram doesn’t reveal the signature, so
we have to chose β in a way that M(s)(�P �β+(X)) = Σ+ minimizes false positive.
Note that if the abstract semantics of the stegoprogram is complete, it may well
happen that the concrete semantics of the stegoprogram is not complete, i.e., �Ps�+
is not F-complete for η and M(s). This means that the knowledge of the stegomark
may not be sufficient in order to extract the signature without knowing the semantic
property used to embed it.

The different kinds of software watermarking techniques can be seen as instances
of Definition 3.1.

• Static and abstract watermarking correspond to a system where η = id and β is
decidable (i.e., implementable with static analysis). This captures the fact that the
interpretation of the stegoprogram always reveals the stegomark, independently
from the input.

5 This is the atomic closure of �M(s)�β+.
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• Dynamic watermarking corresponds to a system where η �= id and β is a generic
(concrete) interpreter. In this case the concrete semantics of the stegoprogram
reveals the stegomark only when a particular input sequence is given.

Now we provide a semantic formalization of the features typically used to measure
the quality of a watermarking system. Of course there are features strictly related
to implementation, like data-rate [5] or credibility, for which we do not provide a
characterization.

3.1 Resilience

Resilience concerns the capacity of a software watermarking system to be immune
to attacks. There exist four types of attacks [4]: distortive attacks, that change
the stegoprogram in order to compromise the extraction of the stegomark; collusive
attacks, that compare different stegoprograms of the same cover program in order to
obtain information on the stegomark; subtractive attacks, that try to eliminate the
stegomark from the stegoprogram; additive attacks, that add another stegomark into
the stegoprogram. Observe that subtractive attacks and collusive attacks are related
to the localization of the stegomark and the resilience to these attacks reduces to
problems of secrecy (explained below). In fact, following [4], we denote as subtractive
only the attacks which locate, in some way, the stegomark. Those which perform
a subtractive attack without knowing anything about the embedded watermark
by creating a functionally equivalent program without the signature, in our work
are considered as distortive attacks (they can be seen as distortive attacks which
preserve the denotational semantics). Resilience to additive attacks is very difficult
to obtain; in fact, if an attacker adds another signature (with another technique) it
is practically impossible to prove which stegomark was inserted first. For this reason
in the following we focus on the resilience to distortive attacks.

A distortive attack can be seen as a program transformer t : Imp −→ Imp
that modifies programs preserving their functionality. So there will be program
properties that the attacker preserves and others that it does not preserve. According
to [11] we denote with δt ∈ uco(℘(Σ+)) the most concrete property preserved by
transformation t on program semantics, namely such that ∀P ∈ Imp . δt(�P �+) =

δt(�t(P )�+). Observe that when δt �
�{M(s) | s ∈ S} it means that the attacker

preserves the semantic encoding of all the signatures and therefore the watermarking
system is resilient against t. Otherwise, it could be that t preserves M(s) for only
certain signatures, in particular for those which δt �M(s). So we can characterize
which stegoprograms are immune to t and which are not. In the worst case, when
∀s ∈ S . δt �� M(s), the software watermarking system is not able to fend off the
attacker t. This leads to the definition of the following levels of resilience.

Definition 3.2 [t-resilience] A software watermarking system 〈L,M, β〉 is:

• t-resilient, when δt �
�{M(s) | s ∈ S}

• t-vulnerable, when ∃s ∈ S . δt ��M(s)

• t-ineffective, when ∀s ∈ S . δt ��M(s)
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Often distortive attacks use code obfuscation for modifying programs while pre-
serving their functionality, and obfuscating transformations typically preserve the
denotational semantics of programs, DenSem ∈ uco(℘(Σ+)) 6 . For this reason we say
that a watermarking system is resilient when it is t-resilient to all those distortive
attacks t that preserve DenSem, i.e., when DenSem � �{M(s) | s ∈ S}. A software
watermarking system which exhibits such behaviour has not yet been found and it
is an open research topic to demonstrate its existence or not 7 .

This formalization of resilience allows us to compare two watermarking systems
w.r.t. resilience. Given two software watermarking systems A1 = 〈L1,M1, β1〉 and
A2 = 〈L2,M2, β2〉, if it holds that

�{M1(s) | s ∈ S} �
�{M2(s) | s ∈ S} then we

have that {t | δt � {M1(s) | s ∈ S}} is contained in {t | δt � {M2(s) | s ∈ S}}.
Therefore A2 is, in general, more resilient than A1.

3.2 Secrecy

Secrecy concerns the difficulty of recovering the stegomark embedded in a stegopro-
gram. A watermarking system is secret when it is impossible to extract the signature
from a stegoprogram without knowing the stegoextractor. In practice, secrecy can
be seen as the ability of the watermarking system to make indistinguishable to the
attacker a set of signatures embedded in a program. This clearly relates to the re-
silience to collusive attacks, which requires that an attacker is not able to distinguish
between stegoprograms that embed different signatures in the same cover program.
This notion can be formalized in terms of HOANI where the private input is the
set of possible stegomarks Q = {M(s) | s ∈ S}, while the public input is the set
of cover programs P = P . Let φ ∈ uco(℘(Σ+)) be a property that represents some
stegomarks, and indeed some signatures. We assume that the attacker doesn’t have
access to cover programs, so the abstraction of the public input is id.

Definition 3.3 [φ-secrecy] A software watermarking system 〈L,M, β〉 is φ-secret
w.r.t. an attacker ρ if H

+[id]L(φ⇒ ρ)bca holds, i.e., if ∀P ∈ P ∀Q1, Q2 ∈ Q we have
that: �Q1�φ+ = �Q2�φ+ ⇒ �L(P,Q1)�ρ+ = �L(P,Q2)�ρ+.

This means that if we mark a cover program with two different signatures that
are equivalent in φ, then the attacker ρ does not distinguish between the two
generated stegoprograms. Thus, any signature with the same property φ can be
used for generating stegoprograms resilient to collusive attacks from the attacker
ρ. We say that a system is secret when it is �-secret, meaning that the set of
indistinguishable signatures is S. Given a property φ, specifying a set of signa-
tures, we can characterize the most concrete observer ρ̂ for which H

+[id]L(φ⇒ ρ̂)bca
holds, called most powerful φ-secret attacker. It can be characterized in terms of
the secret kernel of higher-order abstract non-interference. Indeed it corresponds
to the most concrete domain ρ̂ more abstract than id such that H

+[id]L(� ⇒ ρ̂)bca

6 This domain can be obtained from maximal finite traces semantics with the abstraction DenSem(X) =
{σ ∈ Σ+ | ∃σ′ ∈ X .σ0 = σ′0 ∧ σ|σ|−1 = σ′|σ|−1

}.
7 The results in [1] and recently in [12] about impossibility of watermarking seem to lead to a negative
answer.
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holds, i.e., ρ̂ = KH+
L,id,(φ)(id). For example, the most powerful �-secret attacker is

KH+
L,id,(	)(id) = {X ∈ ℘(Σ+) | P ∈ P, X =

⋃
Q∈Q�L(P,Q)�+}∪{Σ+} and it abstracts

in the same object the traces of all possible stegoprograms related to the same cover
program. Of course, any attacker with at least the same precision of the extractor
β violates the secrecy property. Thus, the secrecy level of a watermarking system
is given by the most abstract property φ and by the most concrete observer ρ̂ for
which non-interference H

+[id]L(φ⇒ ρ̂)bca holds. The more φ is abstract, the more
the system is secret. Vice versa, more ρ̂ is concrete and more the system is secret.
Observe that φ can range from id (all the signatures are distinguishable) to � (no
signature is distinguishable). When the most powerful φ-secret attacker ρ̂ is equal
to � then every attacker is able to distinguish the signatures. Otherwise, the more
ρ̂ is concrete, the more secret the system is.

This formalization of secrecy allows us to compare two watermarking sys-
tems w.r.t. secrecy. Given two watermarking systems A1 = 〈L1,M1, β1〉 and
A2 = 〈L2,M2, β2〉 we consider their most powerful φ-secret attackers ρ̂1 and ρ̂2.
If ρ̂1 � ρ̂2 we have that A1 is more secret than A2 w.r.t. φ. Indeed a stronger
attacker is necessary in order to violate φ-secrecy in A1 than in A2.

3.3 Transparence

Transparence concerns the ability to make hard to discover if a generic program is a
stegoprogram. A watermarking system is invisible w.r.t. an observer if the latter is
not able to distinguish a generic cover program from every stegoprogram generated
starting from it.

Definition 3.4 [Transparence] A software watermarking system 〈L,M, β〉 is trans-
parent w.r.t. an attacker ρ ∈ uco(℘(Σ+)) if ∀P ∈ P ∀s ∈ S . �P �ρ+ = �L(P,M(s))�ρ+.

The greatest is the set of observers for which the system is transparent, the
greatest is the level of transparence. So the characterization of the most concrete
observer ρ̃ for which the system is invisible is a good measure of the transparence of
the software watermarking system. This observer ρ̃ is called most powerful transpar-
ent attacker. This attacker can be characterized with a slightly differentiation of the
most powerful �-secret attacker. In fact a system, in order to be invisible w.r.t. an
attacker has clearly to be also �-secret w.r.t. that attacker. Clearly the system is
not invisible for the extractor β.

Similarly to what we have done for secrecy, given two software watermarking
systems A1 and A2, if ρ̃1 � ρ̃2 we have that A1 is more transparent than A2.

3.4 Accuracy

A watermarking system is accurate if it preserves the functionality of the cover
program, i.e., the cover program and the stegoprogram have to exhibit the same
observable behaviour. This concept can be defined as “behaviour as experienced by
the user” [5]. Precisely, the stegoprogram can do something that the cover program
doesn’t do, but this side-effects must be not visible to the user. Clearly this definition
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is very loose and it depends on what the user is able to observe of program execution.
We formalize this by requiring that the stegoprogram and the original program have
the same observable denotational semantics. This means that, fixed what the user
wants to (or is able to) observe, the stegoprogram and the cover program must
exhibit the same input/output behaviour, w.r.t. the fixed observation level.

Definition 3.5 [Accuracy] Given a poset 〈DO,≤O〉 and an observational abstrac-
tion αO : ℘(Σ) −→ DO such that (〈℘(Σ),⊆〉, αO, α+

O, 〈DO,≤O〉) is a GC, we have
that a watermarking system 〈L,M, β〉 is accurate, w.r.t. αO, if for each program
P ∈ P and for each signature s ∈ S it holds that αO(�L(P,M(s))�DenSem) =

αO(�P �DenSem). 8

So the accuracy says that, for a fixed observational abstraction αO, every cover
program P is αO-observationally equivalent (in the sense of [9]) to any stegoprogram
Ps embedding a generic signature s.

As regarding accuracy, this is a property that is not directly comparable among
different watermarking techniques since it is defined w.r.t. the observational abstrac-
tion of interest. Namely, we can say that a system is accurate and another system is
not accurate, w.r.t. an observational abstraction, but we cannot say that a system is
more accurate than another. However, the proposed formal framework provides the
right setting for formally proving the accuracy of a watermarking system w.r.t. a
specific observational property.

4 Model Validation

In order to validate our model we have formalized two known watermarking tech-
niques, one dynamic and one static, in our framework (the case of abstract water-
marking is immediate). Doing so we want emphasise our main claim, i.e., that static
and dynamic watermarking are instances of abstract watermarking.

4.1 Path-based watermarking

One dynamic technique, conceived by Collberg et al.[2], that encodes the signature
(a natural number) in the sequence of choices (true/false) made at conditional state-
ments during a particular execution of the program. This execution is generated by
a particular sequence of enabling input values. The embedder takes the program
code and it adds bogus branches in order to generate the desired false/true sequence
when executed on the enabling input.

Let I0, I1, . . . Ik be the enabling input, i.e., the sequence of input values which
“activates” the watermark. The embedder takes the program and it adds bogus
branches in a way that the sequence of choices at conditional statements during the
execution on the enabling input is equal to the binary encoding of the signature.

8 Here �P �DenSem is the angelic denotational semantics of [6]. Note that �P �DenSem is isomorphic to
DenSem(�P �+), so both formulations indicate the denotational semantics of P .
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Let Bin : N −→ {0, 1}� be a function that returns the binary encoding of a
number and Branch : Σ+ −→ {0, 1}� be a function that extracts the sequence of
choices at conditional statements in a trace. For example, for a tt guard it can
be assigned the value 1 and it can be assigned the value 0 for a ff guard. Let
E : N −→ ℘(Σ+) be the function E def

=λk . {σ ∈ Σ+ | |σ| = n + 1 ∧ Branch(σ) =

Bin(k) ∧ σn = 〈C, 〈ρ, ι〉〉 ∧ top(ι) = ε} 9 . The semantics �P �β+ has to extract the
sequence of choices at conditional statements for the program P , so the domain β is
β

def
= {X ∈ ℘(Σ+) | k ∈ N, X = E(k)} ∪ {∅,Σ+} and it contains all the sets of traces

which have done the same choices, when all the input values are consumed. With
Ws = E(s) we indicate the set of traces for which, when all the input values are
consumed, the sequence of choices at conditional statements codify the signature s.

This is a dynamic technique, so η = ℘(I) ∪ {Σ}, where I represents the set of
states enabling the watermark, i.e., I def

= {ς ∈ Σ | ς = 〈C, 〈ρ, ι〉〉 ∧ |ι| = |I| ∧ ∀j ∈
[0, |I|) . top(next(ι)j) = Ij}. Clearly �M(s)�β+ =Ws and so M(s) = {∅,Ws,Σ

+}.
Let N def

= {⊥,N}∪N. The domain β can be defined as β def
=βγ◦βα where βα : ℘(Σ+) −→

N and βγ : N −→ ℘(Σ+) are

βα
def
= λX .

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ if X = ∅

k ∈ N if ∀σ ∈ X :
|σ| = n+ 1, σn = 〈C, 〈ρ, ι〉〉,
top(ι) = ε, Branch(σ) = Bin(k)

N otherwise

βγ
def
= λk .

⎧
⎪⎨

⎪⎩

∅ if k = ⊥
E(k) if k ∈ N

Σ+ otherwise

If X ∈ η(℘(Σ)) then X ⊆ I, therefore the choices at conditional statements made by
L(P,M(s)) starting from states in X are equal to Bin(s), i.e., �L(P,M(s))�β+(X) =

Ws. The same reasoning can be done for M(s), because it codifies the signature by
design (starting from the sets of input states which encode the enabling input) and
therefore �M(s)�β+(X) =Ws for every X ∈ η(℘(Σ)).

If X /∈ η(℘(Σ)) then X �⊆ I and therefore the choices at conditional state-
ments made by L(P,M(s)) starting from states in X are not equal to Bin(s). So,
when the set of initial states X encodes the enabling input, we have that both
�L(P,M(s))�β+(X) and �M(s)�β+(X) are equal to Ws, which represents the signa-
ture s. We can also note that, as expected, for every signature s, we have that
�L(P,M(s))�β+ is F-complete for η and M(s). The system is not resilient since it
is not immune to distortive attacks that preserve the denotational semantics, i.e.,
DenSem �� �{M(s) | s ∈ S}. Indeed the system is vulnerable to control flow obfus-
cation techniques (like edge-flipping and opaque predicate insertion attacks).

4.2 Static graph-based watermarking

One static technique, conceived by Venkatesan et al.[16], that codifies the signature
(a natural number) as a graph which is added to the CFG (Control Flow Graph) of
the cover program while preserving its semantics. In particular, a program whose
CFG is equal to the graph generated starting from the signature is derived and then

9 top(ι) returns the current input value to be passed to the program and next(ι) returns the tail of the
input sequence ι.
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added to the cover program’s CFG, in a way that its semantics remains unmodified.
The nodes of the added graph are marked before the embedding, in order to be
identifiable at extraction time.

The embedder takes the program and it adds bogus code in a way that the CFG
of the transformed program contains a graph which is the encoding of the signature.
The basic blocks that form this graph are marked, in order to be distinguishable
from the basic blocks of the original program.

Let E : N −→ G be a function that codify a signature in a graph. Let Mark :
Σ+ −→ G be a function that, given a trace σ, outputs the marked subgraph of the
CFG of σ for a certain marking criterion 10 . The semantics �P �β+ extracts the marked
subgraph of the CFG of P , so the extraction domain β is β

def
= {X ∈ ℘(Σ+) | ∃g ∈

G . X = {σ ∈ Σ+ | Mark(σ) = g}} ∪ {∅,Σ+}. In β there are all the sets of traces
whose CFG contains the same marked graph. WithWs

def
= {σ ∈ Σ+ | E(s) = Mark(σ)}

we indicate the set of traces whose CFG contains the marked graph which codify
the signature s. This is a static technique so η = id. Clearly �M(s)�β+ = Ws and
so M(s) = {∅,Ws,Σ

+}. Let G
def
= {⊥,G} ∪ G. The domain β can be defined as

β
def
=βγ ◦ βα where βα : ℘(Σ+) −→ G and βγ : G −→ ℘(Σ+) are

βα
def
= λX .

⎧
⎪⎨

⎪⎩

⊥ if X = ∅

g if ∀σ ∈ X . g = Mark(σ)

G otherwise
βγ

def
= λg .

⎧
⎪⎨

⎪⎩

∅ if g = ⊥
{σ ∈ Σ+ | g = Mark(σ)} if g ∈ G

Σ+ otherwise

The input domain is id so there is not an enabling input, or equivalently, all the
inputs reveal the watermark. Thus, for every possible set of initial states, the CFG
of L(P,M(s)) is the same, i.e., it exists g ∈ G such that ∀σ ∈ �L(P,M(s))�+ we have
g = CFG(σ). For how the technique is designed, into g there is a marked subgraph
equal to E(s). So we have that �L(P,M(s))�β+(X) = Ws for every possible set of
initial states. Now, the CFG of M(s) is exactly E(s) and it is marked by design,
so �M(s)�β+(X) = Ws for every possible set of initial states. So, for every set of
initial states X, we have that both �L(P,M(s))�β+(X) and �M(s)�β+(X) are equal to
Ws, which represents the signature s. We can also note that, as expected, for every
signature s, �L(P,M(s))�β+ is F-complete for η and M(s).

The system is not resilient, since it is not immune to distortive attacks that
preserve the denotational semantics, i.e., DenSem �� �{M(s) | s ∈ S}. Indeed the
system is vulnerable to control flow obfuscation techniques (like a CFG flattening
attack).

5 Conclusion

In this paper we introduce a semantics-based definition of software watermarking and
of its qualifying features that is general enough to allow the specification of the static,
abstract and dynamic watermarking techniques. Indeed, all these techniques can be
seen as the exploitation of a completeness hole for the insertion of the signature in

10Building the CFG and locating its marked nodes are both tasks easily implementable by analysing program
traces.

M. Dalla Preda, M. Pasqua / Electronic Notes in Theoretical Computer Science 331 (2017) 71–85 83



an efficient way. Only attacks that are complete w.r.t. the semantic encoding of the
signature are able to observe the signature and potentially tamper with it. This
means that the abstract domain used for the semantic encoding of the signature
M(s) acts like a secret key that allows to disclose the signature to attackers that are
complete w.r.t. M(s).

Regarding the quality of a watermarking scheme our general framework provides
a formal setting in which to prove the efficiency of a watermarking scheme w.r.t. re-
silience, secrecy, transparence and accuracy. To validate our theory we have proved
the efficiency of two known watermarking systems. Thus, we provide a general the-
ory where researchers can reach a formal evidence of the quality of the watermarking
system that they propose. We believe that this is an important contribution that can
be considered as the first step towards a formal theory for software watermarking
where new and existing techniques can be certified w.r.t. their efficiency.
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