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Abstract 41 

Unstructured citizen-science data are increasingly used for analysing the abundance and distribution 42 

of species. Here we test the usefulness of such data to predict the seasonal distribution of migratory 43 

songbirds, and to analyse patterns of migratory connectivity.  44 

We used bird occurrence data from eBird, one of the largest global citizen science databases, to 45 

predict the year-round distribution of eight songbird taxa (Agropsar philippensis, Calliope calliope, 46 

Cecropis daurica, Emberiza aureola, Hirundo rustica, Locustella certhiola, Oriolus chinensis, Saxicola 47 

torquatus stejnegeri) that migrate through East Asia, a region especially poor in data but globally 48 

important for the conservation of migratory land birds. Maximum entropy models were built to 49 



predict spring stopover, autumn stopover and wintering areas. Ring recovery and geolocator tracking 50 

data were then used to evaluate, how well the predicted occurrence at a given period of the annual 51 

cycle matched sites where the species were known to be present from ringing and tracking data. 52 

Predicted winter ranges were generally smaller than those on published extent-of-occurrence maps 53 

(the hitherto only available source of distribution information). There was little overlap in stopover 54 

regions. The overlap between areas predicted as suitable from the eBird data and areas that had 55 

records from geolocator tracking was high in winter, and lower for spring and autumn migration. Less 56 

than 50 % of the ringing recoveries came from locations within the seasonal predicted areas, with the 57 

highest overlap in autumn. The seasonal range size of a species affected the matching of 58 

tracking/ringing data with the predictions. Strong migratory connectivity was evident in Siberian 59 

Rubythroats and Barn Swallows.  We identified two migration corridors, one over the eastern 60 

mainland of China, and one along a chain of islands in the Pacific. 61 

We show that the combination of disparate data sources has great potential to gain a better 62 

understanding of the non-breeding distribution and migratory connectivity of Eastern Palearctic 63 

songbirds. Citizen-science observation data are useful even in remote areas to predict the seasonal 64 

distribution of migratory species, especially in periods when birds are sedentary and when 65 

supplemented with tracking data.  66 

 67 

1. Introduction 68 

Species distribution models (SDMs) have been proven to be useful tools to understand the spatio-69 

temporal occurrence of species, and allow to predict their distribution in areas that are poorly 70 

covered by observational data (Guisan & Thuiller 2005). Observations from citizen scientists are 71 

available in ever-increasing numbers, and commonly used for SDMs (Kéry et al. 2010; van Strien et al. 72 

2013; Tye et al. 2017; Fink et al. 2020). However, the usefulness of such data for assessing abundance 73 

and distribution remains controversial (Conrad & Hilchey 2011; Kamp et al. 2016), as several 74 



systematic errors can affect the results. First,  species identification might be wrong (Lotz & Allen 75 

2007). Second, the data might be biased towards conspicuous species (due to uneven detection 76 

probability), towards species-rich or easy-to-reach areas (resulting in spatial bias), and towards 77 

certain times of the day or year (resulting in temporal bias) (Boakes et al. 2010; Bird et al. 2014). To 78 

increase data quality, some citizen-science databases have established standard protocols and a 79 

rigorous quality check (Bonter & Cooper 2012; Freitag et al. 2016). Novel analytical techniques allow 80 

to correct for observer bias (Johnston et al. 2018, 2020), spatial bias (Hochachka et al. 2012) and 81 

differences in detection probability (Isaac et al. 2014; Guillera-Arroita 2017). 82 

 The prediction of seasonal distributions or periods of movement for highly mobile and migratory 83 

species remains challenging. Species may widen or change their niche during different times of the 84 

annual cycle, which is a common pattern in migratory fish (Forseth et al. 1999; Weng et al. 2005), 85 

mammals (Cherel et al. 2007, 2009) and birds (e.g. Martínez-Meyer et al. 2004; Nakazawa et al. 86 

2004). Phenological changes in behaviour (such as density-dependent singing activity during the 87 

breeding season and on spring migration in songbirds) can cause variation in detection probability 88 

(Warren et al. 2013).  89 

The combination of tracking and citizen-science data holds a high potential to improve species 90 

distribution models. Laughlin et al. (2013) used observation data from different sources to determine 91 

habitat use and stopover sites of Tree Swallows Tachycineta bicolor. However, the authors did not 92 

model the spatial distribution based on the observation data, but used them only to analyse 93 

temporal migration patterns. In contrast to field observations based on citizen science, individual 94 

tracking data are spatially unbiased, and can therefore be used to model species distributions in 95 

regions of low observer density (Jiguet et al. 2011; Gschweng et al. 2012; Williams et al. 2017). But 96 

the availability of tracking data is usually limited to larger species and few individuals (Bridge et al. 97 

2011). Alternatively, bird ringing data can be used to predict seasonal distributions, but information 98 

on recovery probabilities needs to be available (Thorup & Conn 2009). In many parts of the world, 99 

few ringing recoveries are available for most species (Clark et al. 2009).  100 



The increasing spatial and temporal resolution of citizen-science data allows the modelling of 101 

migratory movements in unprecedented temporal and spatial resolution (Hurlbert & Liang 2012; 102 

Sullivan et al. 2014; Supp et al. 2015). The potential for predicting seasonal priority areas for the 103 

conservation of rare species by using citizen-science observations is huge (Devictor et al. 2010). 104 

However, the inclusion of individuals from resident populations might affect the predictions (Supp et 105 

al. 2015), and biased predictions might result in ineffective conservation measures (Loiselle et al. 106 

2003). Citizen-science based models of seasonal distributions have not been evaluated by comparing 107 

the predictions with spatially unbiased tracking data so far. 108 

The East Asian-Australasian flyway holds the highest number of migratory land birds, including the 109 

highest number of globally threatened species of any flyway (Yong et al. 2015). Habitat loss due to 110 

deforestation (Brooks et al. 1999; Wilcove et al. 2013; Estoque et al. 2019),the conversion to 111 

cropland and agricultural management intensification are major drivers of biodiversity loss (Kehoe et 112 

al., 2017; Zhao et al., 2006). During the past four decades such land use change happened across vast 113 

areas in East and South East Asia and has been linked to declines in migratory land birds (Higuchi & 114 

Morishita 1999). Russia, where most of the migratory species breed (Ravkin & Ravkin 2005; Yong et 115 

al. 2015), showed an opposite development with large scale abandonment of agricultural land since 116 

the break-down of the Soviet Union (Lesiv et al. 2018). Unsustainable trapping for consumption 117 

(Kamp et al. 2015), cage bird trade (Shepherd et al. 2016) and religious purposes (“merit release”, 118 

Gilbert et al. 2012) has further contributed to the rapid population declines of several songbird 119 

species that move along the East Asian flyway. 120 

Species-specific causes and mechanisms for these declines are still poorly understood, as knowledge 121 

on land bird migration routes, stopover sites and wintering grounds in East and South-East Asia is still 122 

rudimentary (Amano & Yamaura 2007; Yong et al. 2015). Key to the conservation of migratory 123 

animals is the linking of breeding, stopover and wintering areas, known as migratory connectivity 124 

(Marra et al. 2011). For Asia, data is available for large birds such as geese (Palm et al. 2015) and 125 



bustards (Combreau et al. 2011), but data on migratory connectivity in songbirds is lacking (Yong et 126 

al. 2015).  127 

Several million birds have been marked with metal rings in Asia since the 1950´s. However, the last 128 

large-scale analysis of ringing and recovery data from Asia was published almost 50 years ago 129 

(McClure 1974). Moreover, new technology has revolutionized bird migration research: Light-level 130 

based geolocators enable us to follow the migration of songbirds down to 10 g body weight, which 131 

are too small to carry satellite transmitters (Bridge et al. 2011). Dozens of geolocation studies were 132 

conducted in the American and European-African flyways, but only few published results are 133 

available for the Asian migration routes (McKinnon & Love 2018).  134 

Here, we use observational data from citizen scientists to predict the seasonal distribution of 135 

songbird species that migrate along the East Asian route. We then validate the predicted 136 

distributions with bird ringing and tracking data.  137 

Our aims were A) to test the usefulness of citizen-science observation data to predict the seasonal 138 

distribution of migratory species in a data-poor region by validating it with ringing and tracking data, 139 

and B) to analyse migratory connectivity and patterns of non-breeding distribution of a set of East 140 

Asian songbirds. 141 

 142 

2. Materials and Methods 143 

2.1 Study region 144 

Our study region covered the area that is likely to be reached by birds migrating in the East Asian 145 

flyway: eastwards from the Ural Mountains to Kamchatka (from 60° to 160° longitude) and 146 

northward from Indonesia to the Arctic Circle (-10° to 60° latitude).  147 

2.2 Predicting seasonal species’ distributions 148 



We built maximum entropy (MaxEnt) models, a class of SDMs allowing to model the geographic 149 

distribution with presence-only data (Phillips et al. 2006), using the R package dismo (Hijmans et al. 150 

2016b).  151 

To feed our models, we used unstructured citizen science data from eBird, the world’s largest 152 

database of bird observations (Sullivan et al. 2009; La Sorte & Somveille 2019). We selected all land 153 

bird species for which also tracking data were available (see below), namely Yellow-breasted Bunting 154 

Emberiza aureola, Siberian Rubythroat Calliope calliope, Pallas´s Grasshopper Warbler Locustella 155 

certhiola, Barn Swallow Hirundo rustica, Red-rumped Swallow Cecropis daurica, Black-naped Oriole 156 

Oriolus chinensis, Stejneger´s Stonechat Saxicola torquatus stejnegeri and Chestnut-cheeked Starling 157 

Agropsar philippensis. We downloaded all observations available up to October 2018. We defined 158 

April and May as spring migration, September and October as autumn migration, and November to 159 

March as wintering periods. We used two approaches to correct for spatial bias in the eBird 160 

observation data. First, we randomly selected only one observation per grid cell (see below) for each 161 

species and season (Kramer-Schadt et al. 2013). Such systematic sampling has been shown to be the 162 

most efficient method for correcting sampling bias (Fourcade et al. 2014). Second, we included a bias 163 

file (representing the sampling probability surface based on available species records, Fourcade et al. 164 

2014) as most observations come from densely populated areas and places where birdwatchers 165 

congregate (Boakes et al. 2010). Models containing a bias file had a poorer fit than those without 166 

bias correction (Suppl. 1), therefore the bias grid was not used in the final models. An overview of the 167 

sample sizes per species and season is given in Table 1. MaxEnt models rely on a comparison of 168 

probability densities of presence-only records with background data (Elith et al. 2011). For each 169 

model, we sampled 10,000 random points across the study area and considered these background 170 

locations. 171 

As predictors, we used climatic variables (Fick & Hijmans 2017) and altitude (Jarvis et al. 2008), which 172 

are the main factors that determine large-scale distributional patterns in birds (Rahbek & Graves 173 

2001). From the BioClim dataset (Fick & Hijmans 2017), we extracted mean monthly precipitation, 174 



maximum monthly temperature and mean monthly water vapour pressure, and calculated the 175 

average mean for all seasons (autumn, winter, spring) for all available years (1970-2000). We also 176 

calculated the mean Normalized Difference Vegetation Index (NDVI) for each season based on the 177 

MODIS product MOD13C1 (Didan 2015). Many songbirds are known to track seasonal resource 178 

availability (Thorup et al. 2017), and the NDVI has been shown to be correlated with migration 179 

phenology (Robson & Barriocanal 2011), including in Siberian Rubythroats migrating along the East 180 

Asian flyway (Heim et al. 2018). Additionally, we included land cover (10 classes, 30 m resolution) as 181 

a predictor variable (downloaded from http://www.globallandcover.com, Chen et al. 2017) as it 182 

influences species distributions on regional scales (Thuiller et al. 2004). All layers were resampled to 183 

a resolution of 0.05 degrees (approximately 5.55 by 5.55 km at equator) using the resample function 184 

from the R package raster.  185 

We built separate models for spring migration, autumn migration and winter based on the seasonal 186 

records from eBird as defined above, including the climatic and NDVI data from the respective 187 

months (Williams et al. 2017). For land cover and altitude, the same layers were used for all seasons.  188 

Model performance was assessed using the area under a receiver-operator curve (AUC) and Cohen´s 189 

Kappa (Manel et al. 2001). We used three different thresholds to translate the gradual predictions of 190 

habitat suitability into binary presence-absence maps to map the range predicted as suitable: 191 

maximum kappa, maximum specificity and sensitivity, and zero omissions of presence points from 192 

the predicted range. Predicted values above the corresponding threshold were interpreted as 193 

suitable range, while values below the threshold were interpreted as unsuitable range (Jiménez-194 

Valverde & Lobo 2007). We chose the most sensitive threshold for each seasonal model that would 195 

minimize the predicted range to gain maximum specificity. Preparation of the layers was done using 196 

the R packages raster (Hijmans et al. 2016a), rgdal (Bivand et al. 2015), rJava (Urbanek 2009) and 197 

rgeos (Bivand et al. 2016). 198 

2.3 Validating predictions of seasonal distributions 199 



To validate the MaxEnt seasonal range predictions, we used different sources of data (Figure 1): 200 

Published and unpublished geolocation tracking data, and ringing recoveries. Geolocation data are 201 

spatially unbiased, but the precision of the location estimates varies strongly due to shading by 202 

vegetation, bird behaviour, length of stay at a given site and time of the year (Lisovski et al. 2012). 203 

Ringing recovery data are spatially biased towards areas of higher activities of ringers and more 204 

densely populated areas with a higher detection probability of dead birds (Thorup et al. 2014). 205 

 Geolocation data were available from our own field studies (6 species, Heim et al. 2018, Heim et al. 206 

unpublished, Figure 2) and were analyzed using the R package GeoLight (Lisovski & Hahn 2012). All 207 

positions with a minimum stopover duration of five days were considered, for details see Suppl. 2 208 

and Heim et al. (2018). Geolocation data for two more species were gathered from publications 209 

(Koike et al. 2016; Yamaura et al. 2017).  210 

Ringing data were obtained from the national ringing archives of Russia (Moscow Bird Ringing 211 

Centre) and the ringing recovery archive of the Ministry of the Environment, Tokyo, Japan, managed 212 

by the Yamashina Institute for Ornithology, Abiko, Chiba, Japan. Additional ringing recovery data 213 

were gathered from McClure (1974). We only included long-distance recoveries (≥200 km between 214 

ringing and recovery site) within our study area. 215 

To identify out-of-range predictions, we overlaid our predictions with coarse extent-of-occurrence 216 

(EOO) maps available from BirdLife International (BirdLife International 2019). These maps were 217 

available for winter distribution as well as for spring and autumn combined. We calculated the 218 

overlap between the predictions and the EOO maps using the gArea function in R package rgeos 219 

(Bivand et al. 2016). We give both the percentage of the predicted areas covered by the EOO maps, 220 

and the percentage of the EOO map extent covered by the predictions. 221 

To externally validate our seasonal range predictions, we calculated the proportion of geolocator 222 

positions and ring recoveries that fell onto the area predicted as suitable in the given season (for 223 

season definitions see above). For geolocator positions, we used mean coordinates (Suppl. 3). To 224 



incorporate uncertainty associated with the estimated mean coordinate, we identified the area 225 

covered by the range of the latitude and longitude standard deviation of the mean coordinate 226 

(resulting in polygons of varying size). We then evaluated whether these polygons showed any 227 

overlap with the area predicted as suitable by the MaxEnt model. 228 

In a second step, we modelled the probability of our validation locations to fall within the predicted 229 

ranges using generalized linear mixed-effect models (GLMMs) in R package lme4 (Bates et al. 2014). 230 

We used models with a binomial error distribution and logit link (i.e. binary logistic regression). 231 

Locations that fell within the predicted range were considered successes (1), locations that were out 232 

of range were considered failures (0). Data type (geolocator or ringing data), season (winter, spring 233 

and autumn) were fitted as fixed independent effects. The extent of the seasonal predicted range 234 

was fitted as covariate. Species identity was included as random effect. We built two sets of 235 

candidate models, one defining the matching/non-matching of the tracking locations with the 236 

predicted distribution by the mean coordinates of the geolocation fixes, the other using a polygon of 237 

the mean coordinate plus the area added by considering the standard deviation. Model assumptions 238 

were graphically tested using residual plots in the DHARMa package (Hartig 2019). Goodness of fit 239 

was examined with the conditional and marginal R² (Nakagawa & Schielzeth 2013). 240 

2.4 Connectivity analyses 241 

We analysed migratory connectivity by correlating the longitude of the location during breeding 242 

season with the longitude during the non-breeding season for ring recoveries and geolocation 243 

positions (Trierweiler et al. 2014) using a Pearson´s product moment correlation coefficient. A 244 

significant correlation would indicate high migratory connectivity, i.e. the use of population-specific 245 

routes (Finch et al. 2017). If more than one site was available for one individual, we chose the final 246 

winter site with the longest duration of stay. To estimate the strength of migratory connectivity we 247 

conducted a Mantel test (with 9,999 random permutations) using the R package ade4 (Dray & Dufour 248 

2007; Ambrosini et al. 2009). 249 



3. Results 250 

3.1 Predicted distributions 251 

The predicted non-breeding ranges covered almost exclusively South and South-East Asia in all 252 

species, only very few suitable areas were predicted in Russia, Kazakhstan, Mongolia and NW China 253 

(Fig. 3). A migration corridor through Central Asia, appearing as a high predicted suitability in spring 254 

and/or autumn west of the Himalayas, was only found for Barn Swallow and Red-rumped Swallow 255 

(Fig. 3). The predictive performance of the models varied across seasons and species, but was 256 

acceptable in all cases (AUC > 0.75, Tab. 2). Models with more presence points exhibited the best fit 257 

(Tab. 2). The predicted ranges were smallest when using the threshold that maximized kappa (Suppl. 258 

1). This threshold was used for all range maps and further calculations. The size of the predicted 259 

ranges varied considerably (range: 22-900 grid cells) and seasonal differences were also species-260 

specific (Fig. 3). Smallest ranges were predicted for the Chestnut-cheeked Starling during autumn and 261 

winter and for the Yellow-breasted Bunting during autumn, largest ranges were predicted for Barn 262 

Swallow and Red-rumped Swallow in all seasons. 263 

3.2 Geolocator tracks 264 

We gathered 171, 43 and 28 geolocation positions of 8 species for autumn, winter and spring, 265 

respectively (Tab. 1, Suppl. 3). 266 

All individuals of all species tagged in the Russian Far East migrated south-westward in autumn, 267 

stopped over in China and wintered in South-East Asia (Fig. 3). No movements were detectable 268 

during winter, except for one Yellow-breasted Bunting which moved in February from southern 269 

Myanmar to the north of the country. All winter locations were located on the Indochinese peninsula 270 

and adjacent China (Yunnan province), except for the Yellow-breasted Buntings, which wintered 271 

more to the west in Myanmar or northeast India. Spring migration data were only available for three 272 

species: one single Pallas´s Grasshopper Warbler and one Black-naped Oriole used almost identical 273 

stopover areas for their return migration, whereas all Siberian Rubythroats moved slightly more to 274 



the east, with the stopover sites situated in southern China and not in northern China as during 275 

autumn migration.  276 

The standard deviation of positions was highest for latitude during autumn (Suppl. 3), as most 277 

species migrate around the autumnal equinox. 278 

3.3 Ring recoveries 279 

Long-distance ring recoveries were available for six of the included species (Tab. 1). Siberian 280 

Rubythroats and Barn Swallows ringed during the breeding season or on migration in Japan and 281 

easternmost Russia (Sakhalin, Kamchatka) were mainly recovered in winter in Taiwan and the 282 

Philippines, and vice versa (Fig. 3). A Yellow-breasted Bunting ringed on the breeding grounds in 283 

Kamchatka was recovered during autumn migration near Beijing in mainland China, and one 284 

Stejneger´s Stonechat migrated from southern Japan to South Korea in autumn. Birds ringed in the 285 

Russian Far East (mainland) were exclusively recovered on the South-East Asian mainland, and vice 286 

versa. For Barn Swallow, Red-rumped Swallow and Chestnut-cheeked Starling geolocation and 287 

ringing recovery data were available from the same areas of origin, and the main direction of 288 

migratory movements was similar in all cases. 289 

3.4 Validation 290 

The predicted ranges were generally smaller than the distribution ranges given by BirdLife, and on 291 

average covered only 40 % (± 28 %, range: 5-80 %) of the BirdLife winter distributions (Tab. 4). On 292 

average, only 61 % (± 29 %, range: 7-90 %) of the area predicted as suitable ranges were within the 293 

BirdLife ranges. Very low overlap (< 10 %) was found for the Chestnut-cheeked Starling, whereas 294 

good concordance (> 70 %) was evident for Siberian Rubythroat and Red-rumped Swallow.  295 

The proportion of the mean geolocation positions that fell onto the predicted range was rather low 296 

in all seasons for all species combined (23, 35 and 18 % for autumn, winter and spring, respectively, 297 

Tab. 3). We found species-specific differences – between 0 and 100 % of the exact positions (without 298 

standard deviation of the coordinates) were within the predicted species´ ranges. When including the 299 



standard deviation of the geolocation positions, most of the positions were within the predicted 300 

range (51, 67 and 78 % for autumn, winter and spring, respectively, Tab. 3). SDM prediction showed 301 

highest overlap with the geolocator positions in winter, and least overlap in autumn. Highest overlap 302 

was found for the Siberian Rubythroat, whereas most locations were outside of the predicted range 303 

for the Chestnut-cheeked Starling.  304 

Only around a third of the ringing and recovery sites were situated within the corresponding seasonal 305 

predicted range (37, 32 and 34 % for autumn, winter and spring, respectively, Tab. 3). Species-306 

specific differences were high, ranging from 0 to 100 %, but seasonal differences were low. Detailed 307 

results of the comparisons can be found in Table 3 and Supplement 5.  308 

Our models revealed that the probability of a point falling onto the predicted range was dependent 309 

on the seasonal range size (Tab. 5), while the random factor species explained little or no variance. 310 

Seasonal effects on the probability were only found when the mean coordinates of geolocation 311 

positions were considered, while the data type had only a significant effect when the standard 312 

deviation around geolocation points was included (Tab. 5). However, both models explained only 313 

very little of the overall variance (R² < 0.05, Tab. 5). 314 

3.5 Migratory connectivity 315 

We had sufficient data to analyse migratory connectivity in two species. The longitudes of breeding 316 

and non-breeding sites were positively correlated in both Siberian Rubythroat (Pearson´s, r = 0.91, p 317 

< 0.001, n = 14 individuals) and Barn Swallow (r = 0.53, p < 0.001, n = 110). We found evidence of 318 

strong migratory connectivity in the Siberian Rubythroat and to a lesser degree in the Barn Swallow 319 

(Mantel correlation coefficients of 0.80 (p < 0.001) and 0.25 (p < 0.001), respectively). 320 

 321 

4. Discussion 322 

4.1 Predicted seasonal distributions 323 



We predicted the spatio-temporal occurrence of a set of Eastern Palearctic Passerines during 324 

autumn, winter and spring based on unstructured citizen-science data. The predicted distributions 325 

varied significantly in their extent. For some species (e.g. Barn and Red-rumped Swallows), huge 326 

parts of the study region were predicted suitable, with high overlap between seasons. This pattern is 327 

most likely caused by the existence of sedentary populations in the south of the range (BirdLife 328 

International 2019), which may bias seasonal predictions (Supp et al. 2015). Strong seasonal 329 

differences in occurrence can be more easily detected in true long-distance migrants (Supp et al. 330 

2015), such as Yellow-breasted Bunting, Pallas´s Grasshopper Warbler and Stejneger´s Stonechat in 331 

our study. In some of the species, migration of the northernmost breeding populations might take 332 

place outside of the migration periods that we used for our models (e.g. June and August), and 333 

therefore observations of migrating individuals might have been disregarded or mixed up with 334 

breeding season observations from southern populations (Supp et al. 2015). This might be the case 335 

for the Black-naped Oriole, for which only areas in South-East Asia were predicted suitable, but no 336 

stopover areas further north during spring or autumn migration. Our geolocation data revealed 337 

pronounced differences in the timing of migration between and within species. For example, some 338 

Siberian Rubythroats have already arrived in October at their wintering sites, but one only in 339 

December. The precision of the predictions could have been increased by building monthly or full-340 

year models instead of seasonal models (Williams et al. 2017). However, fitting a full-year model 341 

would have required many more data points for all months, which were not available from the eBird 342 

dataset for most of the studied species. A limited number of presence points will often result in 343 

poorer model outcomes, and single erroneous observations can have a stronger impact on the 344 

predicted ranges when low numbers of presence records are available for modeling (Wisz et al. 345 

2008). Observations of birds outside their usual geographic range, known as vagrants, tend to get 346 

more comprehensively reported by birdwatchers (Callaghan et al. 2018). This might explain the 347 

model result for the Chestnut-cheeked Starling, where single observations of vagrants from the 348 

South-East Asian mainland outside of the known wintering range (Robson 2008) affected our model 349 

strongly, leading to a limited overlap of the BirdLife range with our predictions. Furthermore, caused 350 



by the rather coarse resolution of our background layers, many coastal sites might have been 351 

classified as water (and therefore as unsuitable for the species) by our SDMs. For all other species, 352 

the larger part of the predicted distributions overlapped with the BirdLife EOO maps, suggesting an 353 

overall good fit. The BirdLife ranges are coarser, and is expected to include unsuitable habitats within 354 

the area of occurrence, whereas our modeled predictions might depict the actual distribution more 355 

precisely (Graham & Hijmans 2006; Hurlbert & Jetz 2007; Cantú-Salazar & Gaston 2013).  356 

Our SDMs predicted some regions to be suitable for most of the studied songbirds, and those might 357 

therefore constitute important areas for the conservation of migratory land birds in East Asia (Fig. 3), 358 

although the set of species included here is small and not necessarily representative for all East Asian 359 

songbirds. During winter, the south-eastern end of mainland South-East Asia and the Ganges-360 

Brahmaputra floodplain in Bangladesh were predicted as suitable for many of the species. Hebei 361 

province, surrounding the Chinese capital Beijing, was predicted as the main autumn stopover area 362 

for Siberian Rubythroat, Stejneger´s Stonechat, Barn Swallow and the critically endangered Yellow-363 

breasted Bunting. The lower Yangtze River valley was predicted to be an important stopover area 364 

during spring for Pallas´s Grasshopper Warbler, and during both spring and autumn seasons for 365 

Yellow-breasted Bunting, Siberian Rubythroat, Barn and Red-rumped Swallow as well as Stejneger´s 366 

Stonechat. Many of the key stopover areas in eastern China are currently not protected (Lei et al. 367 

2019). However, the lack of citizen-science records from western China, where birds might utilize 368 

different stopover habitats (caused by climate-driven differences in habitat availability), and the 369 

overrepresentation of observations from the densely populated Shanghai and Beijing areas might 370 

have biased our predictions (Guillera-Arroita 2017), despite our correction for sampling bias. 371 

Parts of the predicted areas of occurrence well beyond the known range limits of the species´ might 372 

be suitable, but might not have been colonized so far or are not reachable during migration by the 373 

studied species (Engler et al. 2014). This is most likely true for predicted areas outside of the BirdLife 374 

range maps in Indonesia for Siberian Rubythroat and Pallas´s Grasshopper Warbler and for areas in 375 



South-East India for Siberian Rubythroat, Pallas´s Grasshopper Warbler, Stejneger´s Stonechat and 376 

Chestnut-cheeked Starling (Fig. 3). 377 

4.2 Validation of the predictions 378 

The validation with spatially unbiased geolocation positions, ring recoveries and with the available 379 

BirdLife range maps suggested that our predictions were more accurate for winter compared to 380 

spring or autumn migration. This might be explained by the fact that our study species are much less 381 

mobile during winter compared to the migration seasons – only one of the geolocator-tagged birds 382 

moved over a longer distance in winter. During migration, birds temporarily use a variety of sites and 383 

habitats, which could lead to a decreased precision in model predictions (Williams et al. 2017). The 384 

stronger overlap of the model predictions with tracking data during winter might also be caused by 385 

inherent seasonal differences in the precision of geolocation data. First, latitude can hardly be 386 

estimated during equinox periods (Fudickar et al. 2012), a time coinciding with autumn and spring 387 

migration for most species. Second, location errors are decreasing with the length of the stationary 388 

period, so that short stopovers during migration can less precisely be determined than long stays on 389 

the wintering grounds (Rakhimberdiev et al. 2016).  390 

On the contrary, based on our GLMMs, season had no or only a weak effect on the probability that 391 

our validation points fell into the predicted ranges. Instead, the range extent was the best predictor. 392 

This is most likely linked to seasonal differences in the size of the predicted ranges: in our study, 393 

smaller ranges were predicted for autumn migration (Suppl. 4). Narrower distributional ranges or 394 

ecological niches during periods of migration are known from many species (e.g. Suárez-Seoane, de 395 

la Morena, Prieto, Osborne, & de Juana, 2008).  396 

We also found a better overlap of the predicted ranges with point locations of ring recoveries than 397 

with the mean geolocation points. While geolocation data are spatially unbiased, the probability of 398 

recovery of a ringed bird is linked to human density or targeted ringing activities (Thorup & Conn 399 

2009). The bird ringing data used in our study mainly reflects the high activity of Japanese ringing 400 



groups, whereas only few recoveries were available for birds migrating over the Asian mainland. The 401 

lack of ringing recoveries from e.g. Indonesia is most likely related to limited awareness about bird 402 

ringing studies in these regions (McClure, 1974). The same spatial bias might be inherent in the eBird 403 

data used for our predictions: most major cities are located along the coasts of East Asia and this is 404 

where most birdwatchers are concentrated. This likely led to the perception, that songbirds mainly 405 

migrate along coastal flyways (see map in Yong et al., 2015). In particular, geolocator tracking 406 

revealed that most of our study species likely migrated over the Asian mainland, with no evidence for 407 

migration along the coastlines or long-distance sea crossings (with the exception of the Chestnut-408 

cheeked Starling). This pattern has rarely been demonstrated for Asian songbirds before. There are 409 

only few studies that provide data on songbird migration over the East Asian mainland, for example 410 

from the Fenghuang mountains in southern China (Han et al. 2007), and from a bird ringing site in 411 

south-east Mongolia (Sukhbaatar 2019). The avoidance of sea crossings and migration over mainland 412 

is likely a typical, but so far poorly evidenced, characteristic of most East Asian land bird migrants. 413 

All birds tracked from mainland East Russia wintered in South-East Asia, but for some of the species, 414 

a much larger wintering range was predicted by our models, extending westwards into India. Birds 415 

wintering in these areas might originate from the western part of their breeding distribution, from 416 

which we lack data. Barn Swallows and Red-rumped Swallows reach India through Central Asia 417 

(Gavrilov et al. 2002), but due to the lack of observations from this area it seems unlikely that other 418 

species such as the Siberian Rubythroat or Yellow-breasted Bunting would use the Central Asian 419 

route across high mountain ranges as well.  420 

4.3 Migratory connectivity 421 

The combination of different data types allowed us to quantify migratory connectivity in selected 422 

East Asian songbirds for the very first time. The two analyzed species, Barn Swallow and Siberian 423 

Rubythroat, seem to use multiple, population-specific routes. This is unexpected, as high migratory 424 

connectivity was found to be uncommon among long-distance migrants from Neotropic and Afro-425 

Palearctic flyways (Finch et al. 2017). Two main migration corridors were used in East Asia: 426 



Individuals belonging to populations breeding in mainland East Russia migrate through mainland 427 

China and spend the winter in South-East Asia (“mainland corridor”), while birds ringed during the 428 

breeding season or on migration in Japan and easternmost Russia (Sakhalin, Kamchatka) were mainly 429 

recovered in winter in Taiwan and the Philippines, and vice versa (“island corridor”).  430 

We found a higher degree of connectivity in the Siberian Rubythroat than in the Barn Swallow. This 431 

could be explained either by the lower sample size for the Siberian Rubythroat or by the availability 432 

of data from a wider range of different populations (no data were available for Barn Swallows from 433 

Kamchatka). Another issue could be the obvious differences in ringing effort, especially during the 434 

non-breeding season, which might have affected the results, and the fact that some records in our 435 

data set refer to individuals which were still on migration (Ambrosini et al. 2009).  436 

Low migratory connectivity could be expected for species in which multiple populations use a 437 

common route (Finch et al. 2017). We found that Yellow-breasted Buntings from mainland East 438 

Russia use the same autumn stopover area in north-east China as an individual ringed in Kamchatka 439 

(Fig. 3). The wintering sites of the geolocator-tagged birds from East Russia are close to the recovery 440 

sites of ringed Yellow-breasted Buntings from the northernmost and westernmost ends of its 441 

breeding distribution. Therefore, it seems likely that all populations of the Yellow-breasted Bunting 442 

use the same migration corridor in East Asia. This could explain why unsustainable harvest in China 443 

has led to a disproportionally wide-ranging decline in this species (Kamp et al. 2015). Another taxon, 444 

which might share this migration pattern, is the Stejneger´s Stonechat - birds from Hokkaido are 445 

known to jump to the East Asian mainland before starting to migrate southwards (Yamaura et al. 446 

2017), most likely along the same route as their conspecifics from the mainland.  447 

The remaining study species likely use only one migration route through East Asia, since they breed 448 

either only on the mainland (mainland corridor: Pallas´s Grasshopper Warbler, Black-naped Oriole, 449 

Red-rumped Swallow) or only on the Japanese archipelago and adjacent Russian islands (island 450 

corridor: Chestnut-cheeked Starling).  451 



4.4 Conclusions 452 

The combination of SDMs, ringing and tracking data provided a valuable set of tools to understand 453 

the spatio-temporal distribution of birds in a data-poor region. We found that species occurrence 454 

during stationary periods in winter can be rather accurately predicted with unstructured citizen-455 

science observation data, while predictions of occurrence during the migration periods were less 456 

precise. Ringing and tracking data on the other hand can provide valuable insights into migration 457 

routes and migratory connectivity, but sample sizes are often small, and the spatial resolution varies. 458 

We argue that all available data sources should be included when assessing seasonal distribution of 459 

migratory species. 460 

Our results highlight several regions as potential hotspots for migratory land birds, but further 461 

studies using geolocators or transmitter tracking will be necessary to pin-point important stopover 462 

areas to inform the conservation of Eastern Palearctic Passerines.  463 
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Tables 480 

Table 1: Sample sizes for eBird observations, geolocation data and ringing recoveries for the selected 481 

target species (excluding data from the breeding season). The number of recoveries of ringed birds is 482 

based on data of the ringing schemes of Russia and Japan until 2017. 483 

Species eBird observations 

(autumn/winter/spring) 

Geolocation  

(individuals/ 

positions) 

Ringing  

(long-distance 

recoveries) 

Yellow-breasted Bunting 101/113/93 3/9 3 

Siberian Rubythroat 334/467/430 10/21 136 

Pallas´s Grasshopper 

Warbler 

129/173/183 1/3 0 

Barn Swallow 2619/3328/3475 1/1 200 

Red-rumped Swallow 1095/1555/1442 1/1 1 

Black-naped Oriole 506/562/621 1/7 0 

Stejneger´s Stonechat 168/223/219 12/55 1 

Chestnut-cheeked Starling 87/41/127 16/145 8 
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 489 

 490 

Table 2: Predictive performance of the MaxEnt species distribution models. Given is the number of 491 

eBird presence points used for each of the seasonal models (n) and the respective AUC and kappa 492 

statistics. 493 

Species Autumn Winter Spring 

n AUC kappa n AUC kappa n AUC kappa 

Yellow-breasted 

Bunting 101 0.82 0.29 113 0.93 0.31 93 0.91 0.30 

Siberian Rubythroat 334 0.89 0.39 467 0.95 0.55 430 0.86 0.40 

Pallas´s Grasshopper 

Warbler 129 0.90 0.22 173 0.97 0.56 183 0.89 0.35 

Barn Swallow 2619 0.87 0.56 3328 0.91 0.69 3475 0.82 0.51 

Red-rumped Swallow 1095 0.88 0.50 1555 0.93 0.68 1442 0.85 0.46 

Black-naped Oriole 506 0.91 0.48 562 0.96 0.66 621 0.91 0.51 

Stejneger´s Stonechat 168 0.91 0.35 223 0.95 0.50 219 0.90 0.40 

Chestnut-cheeked 

Starling 87 0.96 0.53 41 0.95 0.30 127 0.96 0.50 
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 499 

 500 

Table 3: Overlap of the seasonal predictions with the coordinates of mean geolocation positions 501 

(“geolocation points”), polygons based on the standard deviation around mean geolocation positions 502 

(“geolocation points + SD”) and the position of ringing recoveries. The first column for each species 503 

and season indicates how many of the available points were within the predicted range, the second 504 

column the percentage (in %).  505 

Species Autumn Winter Spring 

Geolocation points n % n % n % 

Yellow-breasted Bunting 0/5 0.0 1/4 25.0 0/0 NA 

Siberian Rubythroat 0/7 0.0 5/8 62.5 4/6 66.7 

Pallas´s Grasshopper Warbler 0/1 0.0 1/1 100.0 0/1 0.0 

Barn Swallow 0/1 0.0 0/0 NA 0/0 NA 

Red-rumped Swallow 0/0 NA 1/1 100.0 0/0 NA 

Black-naped Oriole 0/4 0.0 1/1 100.0 0/2 0.0 

Stejneger´s Stonechat 6/43 14.0 6/12 50.0 0/0 NA 

Chestnut-cheeked Starling 34/110 30.9 0/16 0.0 1/19 5.3 

Total 40/171 23.4 15/43 34.9 5/28 17.9 

Geolocation points + SD n % n % n % 

Yellow-breasted Bunting 3/5 60.0 4/4 100.0 0/0 NA 

Siberian Rubythroat 5/7 71.4 8/8 100.0 6/6 100.0 

Pallas´s Grasshopper Warbler 0/1 0.0 1/1 100.0 1/1 100.0 

Barn Swallow 0/1 0.0 0/0 NA 0/0 NA 

Red-rumped Swallow 0/0 NA 1/1 100.0 0/0 NA 

Black-naped Oriole 0/4 0.0 1/1 100.0 0/2 0.0 

Stejneger´s Stonechat 23/43 53.5 9/12 75.0 NA NA 

Chestnut-cheeked Starling NA NA 5/16 31.3 NA NA 

Total 31/61 50.8 29/43 67.4 7/9 77.8 

Ringing recoveries n % n % n % 

Yellow-breasted Bunting 1/1 100.0 2/2 100.0 0/0 NA 

Siberian Rubythroat 77/236 32.6 4/25 16.0 0/9 0.0 

Pallas´s Grasshopper Warbler 0/0 NA 0/0 NA 0/0 NA 

Barn Swallow 40/77 51.9 39/114 34.2 32/80 40.0 

Red-rumped Swallow 0/0 NA 1/1 100.0 0/0 NA 



Black-naped Oriole 0/0 NA 0/0 NA 0/0 NA 

Stejneger´s Stonechat 1/1 100.0 0/1 0.0 0/2 0.0 

Chestnut-cheeked Starling 0/4 0.0 0/0 NA 1/6 16.7 

Total 119/319 37.3 46/143 32.2 33/97 34.0 

 506 

Table 4: Validation of the seasonal predictions (“SDM”) with existing extent-of-occurrence maps 507 

(“EOO”, BirdLife International, 2019). Note that we had to combine the predictions for spring and 508 

autumn (“Migration”) to analyse overlap with the BirdLife EOO maps. The spatial overlap is given in 509 

%. 510 

Species Migration Winter 

SDM covered 

by EOO map 

EOO covered by 

SDM 

SDM covered 

by EOO map 

EOO covered by 

SDM 

Yellow-breasted Bunting NA NA 55.7 33.5 

Siberian Rubythroat 29.2 9.2 70.9 76.2 

Pallas´s Grasshopper W. 24.7 11.6 29.6 16.0 

Barn Swallow NA NA 90.2 58.1 

Red-rumped Swallow NA NA 85.3 80.0 

Black-naped Oriole NA NA 73.7 34.3 

Stejneger´s Stonechat NA NA 75.1 19.3 

Chestnut-cheeked Starling NA NA 6.9 5.0 

Total (mean) 26.9 10.4 60.9 40.3 

 511 

 512 

Table 5: Effects of data type, season and range size on the probability of our validation locations to 513 

fall within the predicted ranges using GLMMs. Significant effects are highlighted in bold. 514 

Model Data type Season Range size R² 

1 (point data) Chi² = 0.456 

p = 0.500 

Chi² = 7.700 

p = 0.021 

Chi² = 10.497 

p = 0.001 

Rcond = 0.03 

Rmarg = 0.03 

2 (polygons) Chi² = 26.767 

p < 0.001 

Chi² = 4.093 

p = 0.129 

Chi² = 4.700 

p = 0.030 

Rcond= 0.05 

Rmarg = 0.05 
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 518 

Figures 519 

 520 

Figure 1: Overview on the data sources used for fitting our seasonal species distribution models, for 521 

the validation of these models and for analyzing migratory connectivity. 522 



 523 

Figure 2: Light-level geolocators mounted with leg-loop harnesses on the back of A) Siberian 524 

Rubythroat, B) Red-rumped Swallow, C) Yellow-breasted Bunting and D) Pallas´s Grasshopper 525 

Warbler. Note that the devices are well visible from above (A-B) but are hardly visible in more natural 526 

postures (C-D). Color-ring combinations were used to identify individual birds in the field (C-D). 527 

Photographs by R. J. Heim, L. Fuhse, A. Heim and W. Heim (from A to D). 528 

 529 

 530 



 531 



Figure 3: Predicted ranges in autumn, winter and spring, geolocator positions and ring recoveries for 532 

A) Yellow-breasted Bunting, B) Siberian Rubythroat, C) Pallas´s Grasshopper Warbler, D) Barn 533 

Swallow, E) Red-rumped Swallow, F) Black-naped Oriole, G) Stejneger´s Stonechat and H) Chestnut-534 

cheeked Starling. The species´ breeding ranges (following BirdLife 2019) are shaded grey. Note that 535 

only winter positions are depicted for Chestnut-cheeked Starling. Bird pictograms reproduced with 536 

permission of Lynx Edicions. 537 
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