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ABSTRACT

Experimental cigarettes (ECs) were made by combining technological applications that individually reduce
the machine measured yields of specific toxicants or groups of toxicants in mainstream smoke (MS). Two
tobacco blends, featuring a tobacco substitute sheet or a tobacco blend treatment, were combined with fil-
ters containing an amine functionalised resin (CR20L) and/or a polymer-derived, high activity carbon
adsorbent to generate three ECs with the potential for generating lower smoke toxicant yields than conven-
tional cigarettes. MS yields of smoke constituents were determined under 4 different smoking machine
conditions. Health Canada Intense (HCI) machine smoking conditions gave the highest MS yields for nico-
tine-free dry particulate matter and for most smoke constituents measured. Toxicant yields from the ECs
were compared with those from two commercial comparator cigarettes, three scientific control cigarettes
measured contemporaneously and with published data on 120 commercial cigarettes. The ECs were found
to generate some of the lowest machine yields of toxicants from cigarettes for which published HCI smoke
chemistry data are available; these comparisons therefore confirm that ECs with reduced MS machine tox-
icantyields compared to commercial cigarettes can be produced. The results encourage further work exam-

ining human exposure to toxicants from these cigarettes, including human biomarker studies.

© 2011 Elsevier Inc. Open access under CC BY-NC-ND license.

1. Introduction

Tobacco smoke is a complex, dynamic, mixture of more than
5000 identified constituents (Rodgman and Perfetti, 2009) of which
approximately 150 have been documented as toxicants (Fowles and
Dybing, 2003; Green et al., 2007). The toxicants are present in the
mainstream smoke (MS) inhaled by a smoker and are also released
between puffs as constituents of sidestream smoke (SS).

In 2001 the Institute of Medicine (IOM) reported that, since
smoking related diseases were dose-related, and because epidemi-
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ologic studies show reduction in the risk of smoking related dis-
eases following cessation, it might be possible to reduce smoking
related risks by developing potential reduced-exposure products
(PREPs). These they defined as (1) products that result in the sub-
stantial reduction in exposure to one or more tobacco toxicants
and (2), if a risk reduction claim is made, products that can reason-
ably be expected to reduce the risk of one or more specific diseases
or other adverse health effects (Stratton et al., 2001). To date, no
combustible cigarette product has been shown to meet the general
requirements outlined by the IOM.

The IOM and other groups (Life Sciences Research Office (LSRO),
2007; World Health Organization (WHO), 2007) describe a number
of stages of activity which are likely to be required for a combusti-
ble tobacco product to be recognised as a PREP; however, the
detailed approach and stages required to provide relevant data
have yet to be agreed amongst the scientific community. For exam-
ple, some groups have proposed MS yield limits for specific smoke
toxicants (Burns et al., 2008) and others have suggested that bio-
monitoring should play a role in this assessment (Hecht et al.,
2010). Recently Hatsukami et al. (2012) described a sequence of
activities designed to assess modified risk tobacco products, start-
ing with pre-human studies involving constituent yield analysis (of
the kind described in this paper) prior to pre-market human stud-
ies and post-market studies. The USA FDA is also currently consid-
ering approaches for the Scientific Evaluation of modified risk
tobacco product (MRTP) applications (FDA, 2011).
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From a cigarette design and manufacturing viewpoint, we pro-
pose the following step-wise approach to exposure assessment
with modified tobacco products.

The first stage in the design of a cigarette-based PREP would in-
volve the development of technologies which reduce the yields of
smoke toxicants. Experimental cigarettes (ECs) would be assem-
bled using these technologies and then assessed for their toxicant
yields using smoking machines; comparison to relevant control
and reference products would indicate the effectiveness of the cig-
arette design in generating reduced yields of toxicants. Those ECs
that are found to reduce smoking machine measured yields of
smoke toxicants, in comparison to reference products, are termed
“reduced machine-yield cigarettes”.

A second stage of testing is necessary to establish the ability of a
reduced machine-yield cigarette to reduce smokers’ exposure to
toxicants, under real-world use conditions. Those that successfully
demonstrate reductions in smokers’ exposure to toxicants are
termed “reduced toxicant prototypes”. A reduced toxicant proto-
type designation is insufficient to satisfy the IOM’s definition of a
PREP and further assessment would be required to demonstrate
that these cigarettes can reasonably be expected to reduce the risk
of one or more specific diseases or other adverse health effects.

Over many years there have been numerous attempts to devel-
op cigarettes with reduced machine yields of toxicants. These have
been reviewed in depth on a number of occasions (e.g. NCI, 1968;
Wnyder and Hoffmann, 1979; Gori and Bock, 1980; Gori, 2000;
Hoffmann et al., 2001; Proctor et al., 2003; Baker, 2006a,b; Rees
and Connolly, 2008; O’Connor and Hurley, 2008).

Technological developments for reduction in yields of smoke
toxicants have included modified agricultural and curing practices
(O’Connor and Hurley, 2008), selective removal of tobacco constit-
uents (Gori and Bock, 1980), the substitution of tobacco with alter-
native, diluent materials (Sittig, 1976), addition of chemical species
to the tobacco blend (Hatsukami et al., 2004) and selective reduc-
tion of cigarette smoke toxicants through use of filter materials
such as cellulose acetate (NCI, 1968), resins (Horsewell, 1975),
and activated carbon (Kensler and Battista, 1963; Tokida et al.,
1985; Norman, 1999; Rouquerol et al., 1999; Laugesen and Fowles,
2006; Rees et al., 2007; Polzin et al., 2008; Hearn et al., 2010; Bran-
ton et al., 2009; Branton and Bradley, 2010).

A number of these technological approaches have been em-
ployed in commercial or test marketed cigarettes such as AD-
VANCE (Breland et al., 2003,2006; Advance, 2001; Counts, 2002),
OMNI (Hatsukami et al., 2004; Counts, 2002), and Marlboro Ultra-
Smooth (Laugesen and Fowles, 2006; Rees et al., 2007).

Alternative approaches to conventional cigarettes have in-
cluded devices that heat but do not burn tobacco, such as PREMIER
(RJ Reynolds, 1988), ECLIPSE (Eclipse Expert Panel, 2000), ACCORD
(Holzman, 1999; Patskin and Reininghaus, 2003) and HEATBAR
(Rees and Connolly, 2008). Further descriptive details of these
products were found at the website Tobaccoproducts.org (Tobac-
coproducts, 2011).

However, despite the range of approaches described above, to
date none of these attempts have led to a commercially successful
PREP.

In recent papers, in an extension to previous published studies,
we have described four different individual technological ap-
proaches to the reduction of toxicants in cigarette smoke, two of
which modified the tobacco blend (McAdam et al., 2011; Liu
et al.,, 2011), and two of which modified the cigarette filter (Bran-
ton et al., 2011a,b). The two tobacco blend technologies, a tobacco-
substitute sheet material (TSS) and a tobacco blend treatment (BT),
acted to reduce the generation of toxicants at source within the
burning cigarette. The two filter technologies, an amine functional-
ised resin material (CR20L) and a high activity, polymer-derived,
carbon adsorbent, acted to remove volatile species from the smoke

stream after formation. The technologies described in those reports
are summarised in Section 2.1 below.

This current paper describes the design of three ECs made using
combinations of these blend and filter technologies. The goal of the
current work was to assess whether the technologies could be
combined into ECs which reduce machine yields of toxicants in
comparison to commercial products, and have the potential to re-
duce exposure of smokers to toxicants as a consequence of human
smoking. Four considerations shaped the approach taken in the
development of these ECs: first, a lack of consensus in the scientific
community over which toxicants in smoke are priorities for reduc-
tion; second, uncertainty over the extent of reductions necessary
for a biologically substantial effect; third, a desire to avoid inadver-
tent and substantial increases in yields of any toxicants when
changing cigarette design to make ECs; and fourth, the need to
maintain consumer acceptability when reducing overall yields of
smoke constituents - a principle recognised by Wnyder and Hoff-
mann (1979).

In terms of priorities for reduction, a major unresolved chal-
lenge in understanding the causes of smoking-related diseases is
identification of the key smoke toxicants mechanistically involved.
Without this detailed knowledge, modifications to cigarette design
cannot precisely target the smoke constituents involved in driving
disease processes. However, even if this knowledge were available,
with few exceptions, it is unlikely that specific smoke constituents
or chemical classes could be entirely eliminated from MS, and a
more pragmatic approach is to develop cigarettes with substan-
tially reduced overall smoke toxicant yields.

Testing the ECs under a variety of smoking machine conditions
and analysing the yields of smoke constituents on a per cigarette ba-
sis and as a ratio per milligram of nicotine yield, permits compari-
sons with relevant commercial comparator cigarettes, and also to
a wide range of products reported in the literature. The results pre-
sented in this work demonstrate that the development of combusti-
ble reduced machine-yield cigarettes is feasible. Further studies on
these ECs to assess their ability to reduce exposure to toxicants in
smokers have been conducted and will be reported separately.

2. Materials and methods
2.1. Design of experimental, control and comparator cigarettes

The approach taken was to develop ECs that gave reductions in
a wide range of machine smoked yields of toxicants, without
overall increases in MS emissions. This was considered the most
appropriate strategy for the initial stages in combustible PREP
development, bearing in mind the constraints discussed above.
Consequently, the ECs described here were constructed from com-
binations of blend and filter technologies that were developed to
reduce specific chemical classes of smoke toxicants or their precur-
sors in tobacco (Table 1). For each EC individual tobacco grades
with low tobacco-specific nitrosamine (TSNA) and metal contents
were selected and blended to provide a low toxicant starting point
for the design of experimental cigarettes.

The BT process was described in detail by Liu et al. (2011).
Briefly, the tobacco blend is subjected to an aqueous extraction
step and the extract is subsequently passed through two stages
of filtration to remove polyphenols and proteins. The residual
tobacco solids are treated with protease to remove insoluble pro-
teins. After washing and enzyme deactivation, the tobacco solids
and filtered aqueous extract are re-combined. The BT process re-
sults in reduced smoke yields of phenolics, aromatic amines,
HCN, and a number of other nitrogenous smoke constituents;
however, there are also increases in the yields of formaldehyde
and isoprene (Liu et al., 2011).
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Table 1
Technologies used in the construction of experimental cigarettes.
Technological Cigarette Description Potential toxicant reduction Reference
application component
Tobacco substitute Blend Tobacco-substitute sheet reducing tobacco Whole smoke McAdam et al. (2011)
sheet (TSS) combustibles and giving glycerol dilution of smoke
Tobacco blend Blend Protease treated tobacco, reducing protein nitrogen  Phenolics and nitrogen-based constituents: Liu et al. (2011)

treatment (BT)
Amine-functionalised Filter

Resin Beads (CR20L) stage
High activity carbon Filter

and polyphenols in the blend

filter stage

Amine group functionalised resin included in filter

Polymer-derived, spherical carbon beads included in

aromatic amines, NAB, NAT, NNK, NNN
HCN, HCHO, acetaldehyde and other carbonyls  Branton et al. (2011b)

Vapour phase constituents Branton et al. (2011a)

The TSS used in the current study was made from calcium car-
bonate, bound with sodium alginate, loaded with glycerol (approx-
imately 12.5%) and coloured with caramel E150a, as described in
detail by McAdam et al. (2011). Incorporation of the TSS into a to-
bacco blend reduces the quantity of tobacco in a cigarette, thereby
diminishing the overall potential for the cigarette to generate tox-
icants. The TSS also contains glycerol and, when heated, the TSS re-
leases glycerol into the smoke stream contributing to the total
amount of particulate smoke, measured as nicotine-free dry partic-
ulate matter (NFDPM, also known as “tar”). As most cigarettes are
designed to meet a specific NFDPM vyield value, incorporation of
glycerol into the smoke stream effectively results in a reduced con-
tribution of the tobacco combustion products to the overall NFDPM
value: this process is termed “dilution.” The incorporation of TSS
into cigarettes results in reductions in a wide range of smoke con-
stituents, including both particulate and vapour phase toxicants
(McAdam et al., 2011).

The polymer-derived, high activity carbon granules used in the
dual and triple stage filters was obtained from Blucher GmbH, Ger-
many. It possesses a pore structure different from the carbon com-
monly used in commercial cigarettes, which is typically derived
from coconut shells. As a result it has superior adsorption charac-
teristics for a range of volatile smoke toxicants, as described in de-
tail by Branton et al. (2011a).

CR20L is a specific grade of a commercial ion-exchange resin
(CR20, Diaion, Mitsubishi Chemical Corporation, Tokyo). It is an
amine functionalised resin bead material which can also be incor-
porated into cigarette filters. In comparison to filters containing
conventional carbon, CR20L offers superior reductions for HCN,
formaldehyde and acetaldehyde. However, carbon is more efficient
than CR20L in removing other volatile constituents from a smoke
stream. The characterisation and use of CR20L in ECs was described
in detail by Branton et al. (2011b).

Cigarettes were constructed from these technologies with ISO
NFDPM target yields of 1 and 6 mg.

Three scientific control cigarettes were also manufactured to al-
low an evaluation to be made of the contribution of the filter tech-
nologies to toxicant reductions from ECs. Two commercial
comparator cigarettes, a 1 mg ISO design and a 6 mg ISO design,
were also used in these studies. Comparisons with commercial
brands were conducted because realistic control cigarettes are re-
quired to assess the success with which the different toxicant
reduction technologies can be brought together into a coherent
and consumer acceptable cigarette design. Also, the use of com-
mercial cigarettes allows examination of the extent with which
toxicant reductions can be realised against real-world cigarettes,
rather than scientific controls. Finally, use of commercial reference
products allows relevant comparisons to be made of sensory
acceptability and human exposure under real-world use. The com-
mercial comparator products were of similar ISO machine smoked
toxicant yields to the market leading brands at 1 mg and 6 mg
(ISO) from Germany in 2007-8. BAT group comparator cigarettes
were chosen, rather than the actual market leading brands, in order

that full information was available on blend and cigarette design
characteristics, and to allow product masking to be conducted for
human sensory and exposure evaluations. Samples of both com-
mercial cigarettes were therefore manufactured specially for these
studies, without brand marking or other identification, in order to
support human smoking studies (described elsewhere).

2.2. Specifications for experimental, comparator and control cigarettes

Common features were used in the design of the ECs: all were
constructed to the same basic dimensions, of 84 mm cigarette
length (a 57 mm tobacco rod plus a 27 mm filter), 24.6 mm cir-
cumference and the filters were all based on cellulose acetate
(CA) fibres plasticised with triethyl citrate. Tobacco grades with
low TSNA and metal contents were identified and combined for
the tobacco blends used in these prototypes. Three different exper-
imental cigarettes were prepared, and the design features of the
three ECs are summarised and compared with control cigarettes
and commercial comparators in Table 2 and described below.

The experimental cigarette BT1, combined a Virginia style to-
bacco blend containing BT treated tobacco (75.4% treated Virginia
tobacco, with 4.3% Oriental tobacco and 20.3% untreated Virginia
tobacco) with a filter containing a CR20L stage (to reduce formal-
dehyde, acetaldehyde and HCN yields) and a polymer-derived, high
activity carbon filter containing stage (to reduce yields of isoprene
and other volatile toxicants). The target NFDPM yield from this cig-
arette was 1 mg under ISO machine smoking conditions. The
experimental cigarette TSS1 was also designed to yield 1 mg of
NFDPM under ISO smoking machine conditions and was based
on a US-blended style containing TSS (a blend of Virginia, Burley
and Oriental tobaccos, with the inclusion of approximately 20%
TSS) and the same filter used in experimental cigarette BT1. The
experimental cigarette TSS6 also used 20%TSS in a different US
style blend, and was designed to give an NFDPM yield of 6 mg un-
der ISO machine smoking conditions. A different filter construction
was used with this cigarette: a dual segment filter containing
80 mg of the high activity carbon interspersed amongst CA fibres
adjacent to the tobacco rod with a CA stage at the mouth end.

The commercial comparator cigarette CC1 contained a US-
blended style of tobacco, including some Maryland tobacco. The
commercial comparator cigarette, CC6, was also a typical US-
blended cigarette but with a different blend to CC1. The design fea-
tures of the three ECs are summarised and compared with control
cigarettes and commercial comparators in Table 2. Both commer-
cial comparator cigarettes used single stage cellulose acetate fil-
ters. The three “scientific control” (SC) cigarettes had identical
construction to the relevant experimental cigarettes BT1, TSS1
and TSS6, with the exception that the filter used in each control
cigarette was a single stage 27 mm CA filter without additional fil-
ter adsorbent media.

Table 2 shows that the cigarette constructions of BT1 and CC1
were very similar, with well matched filter ventilation and paper
permeability. There were differences in tobacco density (BT1,
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Table 2
Cigarette construction details.
Cigarette Code cc1 SC-TSS1  TSS1 SC-BT1 BT1 CCé6 SC-TSS6 TSS6
Tobacco
Blend technology Conventional TSS TSS BT BT Conventional TSS TSS
Blend addition - 20% TSS  20% TSS 75% BT 75% BT - 20% TSS 20% TSS
Density® (mg/ml) 217 216 216 247 247 226 235 235
Blend weight (mg) 570 572 572 654 654 605 622 622
Moisture (%) 13.5 114 114 135 13.5 14.1 114 114
Filter
Format Mono Mono Triple Mono  Triple Mono Mono Dual
Total Length (mm) 27 27 27 27 27 27 27 27
Mouth end stage CA CA CA 7 mm CA CA 7 mm CA CA CA 15 mm
Middle stage - - CA 10 mm +20 mg CR20L - CA 10 mm +20 mg CR20L - - -
Tobacco end stage - - CA 10 mm + 60 mg C - CA 10 mm + 60 mg C - - CA 12 mm +80mg C
Total filter weight (mg) 244 234 310 234 310 197 207 292
Filter PD (mmWG) 86 97 97 91 91 85 109 109
Filter ventilation (%) 78 81 81 79 79 52 46 46
Cigarette
Total weight (mg) 856 842 918 924 1000 844 865 950
Paper permeability (CU)® 50 50 50 50 50 50 50 50
ISO NFDPM target (mg) 1 1 1 1 1 6 6 6

BT, blend treatment; C, high activity, polymer-derived carbon; CA, cellulose acetate; CU, CORESTA units; NFDPM, nicotine-free dry particulate matter (“tar”);

PD, pressure drop; TSS, tobacco-substitute sheet.
@ Density calculated at 13% moisture.

P CU = volume of air (cm?) passing through 1 cm? paper min~! at constant pressure difference of 1.0 kilopascal.

247 mg/ml and CC1, 217 mg/ml) and filter pressure drop (BT1,
91mmWG and CC1 86mmWG), with BT1 higher than CC1 for both
parameters. The cigarette constructions of TSS1 and CC1 were also
very similar. The filter pressure drop was higher from TSS1 than
the commercial comparator (97 and 86 mm WG respectively). For
TSS6 and CC6 less filter ventilation was used than with the 1 mg
(ISO) products. Comparing the two 6 mg (ISO) products gave high-
er tobacco densities (TSS6 235 mg/ml; CC6 226 mg/ml), pressure
drop values (TSS6 109mmWG; CC6 85mmWG) and lower filter
ventilation (TSS6 46%; CC6 52%) from TSS6 than from CC6.

2.3. Tobacco blend analysis

A 100 g sample of each tobacco blend was split into five sepa-
rate aliquots and each aliquot was processed separately. All sam-
ples were ground using a centrifugal mill with 0.25 mm mesh
and titanium accessories. For metals content, samples of 0.25 g
ground tobacco were digested with 6 ml nitric acid (Fluka Analyt-
ical, ‘trace grade’) in a pressurised vessel with microwave heating.
A reference tobacco blend was digested as a separate control with
each sample run. Metal content was determined by inductively
coupled plasma - mass spectrometry, using reagent blanks and ref-
erence calibrations for each metal.

For TSNAs, 0.5 g of ground tobacco was extracted with 20 ml
methanol (HPLC grade, Rathburn Chemicals, Wakerburn, UK) and
sonication for 30 min and then centrifuged for 5 min at 4600g.
An internal standard of deuteriated mixed TSNAs (Kinesis, Cambs.,
UK) was included with each extraction. From the supernatant,
approximately 1 ml was transferred to an autosampler vial for
analysis by liquid chromatography using a C18 column (Phenome-
nex, Macclesfield, UK), a mobile phase of 5 mM ammonium acetate
(ReagentPlus grade, Sigma-Aldrich, St. Louis, USA) with a gradient
of acetonitrile (HPLC grade, Rathburn Chemicals, Wakerburn, UK)
and tandem mass spectrometry detection. A reference tobacco
blend was extracted with each set of samples.

2.4. Smoke chemistry analysis

Prior to smoke chemistry analysis, cigarettes were conditioned
according to the specifications of ISO 3402 (1999). Routine chem-
ical analyses were performed according to the smoking conditions

specified in ISO 4387 (2000) (i.e., a 35 ml puff of 2 s duration taken
every 60 s, abbreviated as 35/2/60) and ISO 3308 (2000) which was
developed for NFDPM and nicotine analysis.

Approximately 150 smoke constituents have been described as
toxicants (Fowles and Dybing, 2003; Green et al., 2007) and some
regulatory authorities have requested yield data on a subset
(approximately 40) of them. Yield restrictions for some of these
toxicants have been proposed (Burns et al., 2008) along with an ap-
proach to their biomonitoring (Hecht et al., 2010). For these rea-
sons and in order to characterise the ECs more precisely, the MS
yields of an extended range (47 analytes) of smoke constituents
were measured. The other, approximately 100, toxicants not exam-
ined in this work were not measured due to the lack of available
validated analytical methods. However, a wider screen of smoke
constituents from cigarettes containing the tobacco substitute
sheet is reported by McAdam et al. (2011). Values for benzo(a)pyr-
ene yields were obtained twice, through a direct measure and also
as part of a suite of polycyclic aromatic hydrocarbons (PAHs).

Slight modification to the ISO smoking parameters was required
for the measurement of some analytes, as described by Gregg et al.
(2004) and the current methods are available from British Ameri-
can Tobacco, on the Internet (British American Tobacco, 2011).
Measuring the yield of smoke constituents from a smoking ma-
chine does not mimic human smoking yields and so all cigarettes
were tested under a range of different smoking machine settings
in order to allow machine yield performance to be assessed over
a wide range of possible smoking conditions. These modified
smoking conditions are described in Table 3.

Sidestream smoke (SS) yields were also measured as described
by Health Canada (1999) but only under ISO smoke generation
parameters and for a wider range of smoke constituents. The SS
testing was conducted by Labstat International ULC.

2.5. Statistical analysis

Statistical comparisons of tobacco blends and smoke yields be-
tween different cigarette types were conducted using a two-tailed,
unpaired, Student’s t-test, performed with Minitab v16. Any P va-
lue >0.05 was considered to be non-significant (NS).

Analytical uncertainty for mainstream smoke constituents was
calculated by analysis of seven independent replicates of the
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Table 3
Smoking machine parameters.
Smoking Abbreviation  Puff Puff Puff Filter
Regime volume duration interval vent
(ml) (s) (s) blocking
(%)
ISO 3308/4387 ISO 35 2 60 0
Health Canada HCI 55 2 30 100
Intense
Health Canada HCI-VO 55 2 30 0
Intense-filter
vents open
ISO WG 9 intense ~ WG9l 60 2 30 50
option B

Kentucky Reference Cigarette 2R4F. An expanded uncertainty value
(U) was calculated for the methods in this matrix according to
EURACHEM]/CITAC (2000), with a coverage factor, k = 2, giving an
approximate 95% confidence interval. In this paper, where differ-
ences in constituent yields between products are presented, the
expression of the expanded uncertainty (U) value as a percentage
of the mean value for the reference cigarette facilitates the inter-
pretation of whether differences between product yield mean val-
ues fall within or outside the expanded uncertainty for the method.
For comparisons of individual smoke constituent yields across
published studies, mean values from published data sets (Health
Canada, 2004; Counts et al., 2005; Australian Government, Depart-
ment of Health and Ageing, 2002) were examined for normal dis-
tribution using the Anderson Darling statistic. Percentile
distributions within the toxicant data were calculated using an
empirical cumulative distribution analysis within Minitab v16.

3. Results and discussion

Testing of the ECs was conducted in order to examine the actual
performance of the ECs from a blend and smoke chemistry per-
spective, by quantifying the MS constituents and specific toxicant
yields under a number of machine smoking conditions.

The SS emissions from the ECs were also measured using the
ISO smoking profile. The tests were conducted on a comparative
basis with two commercial cigarettes and with three scientific con-
trol cigarettes. As a final step, the overall performance of the ECs
was assessed both in comparison to previously published MS yield
data on cigarettes from several countries and as ratios of specific
toxicant yields to nicotine yields.

3.1. Mainstream smoke constituent yields

The yields of the major smoke constituents (NFDPM, nicotine
and CO) and glycerol under four smoking machine conditions are
shown in Table 4. Glycerol measurements are included in this table
because it has been incorporated into the tobacco-substitute sheet
used in the ECs TSS1 and TSS6, to dilute other smoke constituents
in the smoke particulate phase.

Table 4 shows that BT1 and CC1 were well matched across the
four smoking regimes for MS NFDPM and nicotine yields, but that
BT1 had lower CO yields than CC1. TSS1 and CC1 were well
matched across the four smoking regimes for NFDPM and nicotine
yields but TSS1 had lower CO yields than CC1. The higher glycerol
yield from TSS1 is consistent with the intended dilution effect due
to the glycerol content of TSS. The MS NFDPM and nicotine yields
from TSS6 and CC6 were well matched across the four smoking re-
gimes, other than higher CO yields from CC6 and the expected
higher glycerol yields from TSS6.

For NFDPM and these smoke constituents the yields measured
followed the same rank order based on smoking machine condi-
tions: ISO < HCI-VO < WGYI < HCI. The yield differences between
the different regimes were substantially greater with the 1 mg
products than with the 6 mg products, as the level of ventilation
was higher and the impact of ventilation blocking for the WG9
and HCI regimes is therefore more profound for the 1 mg products.

The 47 toxicants quantified in this work were also measured
under all of the smoking machine conditions shown in Table 3, ex-
cept that data for the ECs TSS1 and BT1 under ISO machine smok-
ing conditions were not collected because preliminary runs
showed the yields of many constituents to be below the LOQ for
the methods. The yields measured under all smoking machine con-
ditions are available as a Supplementary table to this paper
(Table S1 available online). The machine smoked yields of these
toxicants generally followed the rank order noted for NFDPM, nic-
otine and CO shown in Table 4 and so, for the remainder of this pa-
per, only the yields obtained under HCI conditions are described.

The use of the HCI smoking regime in this work represents the
strictest test of the ECs and the commercial comparator cigarettes.
Although these smoking conditions inactivate a design feature
used in the ECs and commercial cigarettes (filter ventilation), they
address criticism of the machine yield values obtained from venti-
lated cigarettes (US National Cancer Institute, 2001).

3.1.1. Metal and TSNA yields

Two groups of toxicants included on regulatory lists are the
metals and the tobacco specific nitrosamines (TSNAs). Both these
groups of toxicants are primarily affected by the tobacco blend
used in cigarette manufacture and so careful blend selection is a
major contributor to their reduction in smoke (Baker, 1999). The
chemical analysis of blend metals and TSNAs are described in
Table 5 and their MS yields under HCI smoking machine conditions
are shown in Table 6. The yields are discussed for each EC in
Sections 3.1.2.1-3.1.2.3 below.

3.1.2. Other toxicant yields

Measured smoke constituent yield comparisons between ECs
and commercial cigarettes, under HCI smoking machine condi-
tions, are shown in Table 7. The yields are discussed for each EC
in Sections 3.1.2.1-3.1.2.3 below.

3.1.2.1. BT1. Measurement of blend chemistries (Table 5) showed
the blend arsenic and chromium contents of BT1 were statistically
significantly higher than the commercial cigarette CC1 (P <0.01),
lead and nickel contents of the BT1 blend were lower (P <0.01),
and blend mercury contents from all cigarettes were <0.05 pg/g.
The MS yields for metals from BT1 were comparable to or lower than
the yields from CC1, except that the arsenic and mercury yields were
higher (Table 6). The higher arsenic yield may be explained by the
higher blend content of this metal (Table 5). A similar comparatively
high mercury yield was also found with control cigarette SC-BT1
(the same construction as BT1 except for a cellulose acetate filter).
Therefore it can be concluded that the higher mercury yield from
BT1 than CC1 arises from a tobacco combustion source.

Blend nitrosamine content of BT1 was lower than US-blended
commercial comparator CC1, as has been seen previously in com-
parison of Virginia and US-blended cigarettes (Gregg et al., 2004;
Counts et al., 2005). The MS yields of nitrogenous constituents
were expected to be lower from BT1 than from CC1 for two rea-
sons: first, the tobacco treatment reduces precursors of nitroge-
nous smoke constituents; and, second, Virginia style tobaccos
typically generate lower yields of nitrogenous smoke constituents
than US-blended cigarettes (Gregg et al., 2004). Measurement of
the yields of nitrogenous compounds showed the anticipated
differences: yields of the TSNAs were statistically significantly
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Mainstream smoke yields using different smoking machine conditions.
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Yield values given to 1 decimal place;%values rounded to the nearest whole number.

(83-96%) lower from BT1 than from CC1 (Table 6); aromatic amine
yields from BT1 were 26-57% lower than from CC1 (Table 7); and
the yields of other nitrogenous compounds from BT1 were also
substantially lower (HCN by 82%, NO by 79%, ammonia by 75%,
pyridine by 97%, quinoline by 67% and acrylonitrile by 69%) than
the respective yields from CC1 (Table 7). These data confirm that
the blend selection, use of the BT process (and incorporation of
CR20L in the filter in the case of HCN yields) produced the ex-
pected lower yields of toxicants from the ECs.

The BT process also reduces blend polyphenol levels and so
reductions in MS phenols yields would be expected; however,
higher yields of phenolics are generally expected from Virginia
style products than from US-blended products (Gregg et al.,
2004) and this tobacco type difference could mitigate any
reductions from the BT process. Comparison between phenolic
compound yields from CC1 and from BT1 showed higher catechol
and hydroquinone yields from BT1 (Table 7).

The BT process does not influence benzo(a)pyrene yields (Liu
etal,, 2011) and analysis of PAHs in the current study showed com-
parable yields from BT1 and CC1 for fluorene, phenanthrene, pyr-
ene and benzo(a)pyrene.

Lower carbonyl yields (26-74% lower) were obtained from
cigarette BT1, apart from formaldehyde, which showed a 41%
higher yield from BT1. The volatile hydrocarbon yields from
BT1 were lower, with a range from 66 to 94% for benzene, tolu-
ene, styrene and naphthalene, when compared to the respective
constituent yields from CC1; however, the 1,3-butadiene yield
was 35% higher from BT1 compared to CC1. Most of the ob-
served differences in volatile constituent yields are consistent
with the use of a high activity adsorbent in the filter of BT1.
Formaldehyde yields are driven in part by sugar levels (Baker
et al.,, 2006), which are normally higher in Virginia blends than
in US blends (Baker, 2006a,b). Formaldehyde yields are also in-
creased by the blend treatment process (Liu et al., 2011). Hence
the higher formaldehyde yields from BT1 are understandable on
the basis of knowledge of formaldehyde generation in cigarettes.
The higher yield of 1,3-butadiene from BT1 was unexpected
from the anticipated effect of the high efficiency filter and lack
of reported sensitivity of 1,3-butadiene yields to the tobacco
treatment process (Liu et al., 2011). However, the increased
1,3-butadiene mainstream yields from BT1 were confirmed by
subsequent repeated analysis, and as described in Section 3.5
sidestream 1,3-butadiene yields were also found to be higher
(24%) from BT1 than from CC1.

3.1.2.2. TSS1. The overall blend metal content was higher in TSS1
than in CC1 for some metals: arsenic (P<0.01), chromium
(P<0.01) and nickel (P<0.05); lower for cadmium content
(P<0.01) and not different for other metals (Table 5). The TSS
contains a high proportion of calcium carbonate from non-
synthetic sources, which would contribute to the blend metal
content. Analysis of the TSS alone showed a higher level of chro-
mium and comparable or lower levels of the other measured
metals than the TSS1 blend (data not shown). Hence, the higher
chromium content of TSS1 than of CC1 reflects the inclusion of
TSS material in the blend; whereas, the higher arsenic and nickel
levels were due to the different tobacco types used across these
blends. It should be noted that the transfer of metals from the
TSS would not necessarily occur with the same efficiency as
from tobacco, due to possible differences in the chemical form
(and therefore volatility) of trace metals in calcium carbonate
and in tobacco. Overall, the metal yields in MS under HCI smok-
ing machine conditions were either lower or not statistically sig-
nificantly different when TSS1 was compared to CC1 (Table 6).
The blend nitrosamine content of TSS1 was lower (23-72%) than
that of CC1 (Table 5) and the MS yields of the TSNAs under HCI



144 K.G. McAdam et al./Regulatory Toxicology and Pharmacology 62 (2012) 138-150

Table 5
Blend metal and tobacco-specific nitrosamine contents.
Units CoV (%)? cc1 TSS1 BT1 Cccé6 TSS6
Mean SD Mean SD Mean SD Mean SD Mean SD

Metals (dwb)
Arsenic ne/g 8.1 0.2 0.0 0.3 0.0 0.3 0.0 0.2 0.0 0.2 0.0
Cadmium uglg 6.1 13 0.1 0.9 0.0 12 0.1 0.7 0.0 12 0.0
Chromium ug/g 5.9 0.5 0.0 1.7 0.1 0.9 0.2 0.9 0.1 1.8 0.2
Lead ne/g 9.3 0.8 0.1 0.8 0.0 0.5 0.0 0.6 0.0 0.6 0.0
Mercury ug/g -b <0.05%4 - <0.05¢ - <0.05¢ - <0.05¢ - <0.05¢ -
Nickel ug/g 243 13 0.1 14 0.1 1.1 0.1 1.6 0.1 1.6 0.2
Selenium ne/g 153 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0
Nitrosamines (dwb)
NAB ue/g 78.0 0.1 0.0 0.03 0.0 0.01 0.0 0.04¢ 0.0 <0.01¢ 0.0
NAT ng/g 29.7 1.4 0.0 0.6 0.0 0.1 0.0 0.8¢ 0.0 0.5 0.0
NNK uglg 42.8 03 0.0 0.2 0.0 0.1 0.0 0.4° 0.1 0.2 0.0
NNN ue/g 238 3.2 0.1 0.9 0.0 0.1 0.0 1.3¢ 0.1 0.6 0.0

Mean and standard deviations of five replicates for each blend are shown, except as noted. All values rounded to 1 DP except NAB and mercury values.

dwb, dry weight basis.

2 The CoV for the reference blend from Kentucky reference cigarettes 3R4F measured contemporaneously with the blend samples is shown.

b

Retested due to inconsistent data - value from retest is shown.

c
d
€ Six replicates.

The reference cigarette blend always ran below the limit of quantification for the assay and so no CoV was calculated.
For values with a “<” symbol, the limit of quantification for the assay is shown.

Table 6
Mainstream smoke yields of metals and nitrosamines measured under Health Canada Intense smoking machine conditions.
Units Uncertainty (%) cc1 TSS1 BT1 Ccce TSS6
Yield Yield A (%) Yield A (%) Yield Yield A (%)

Metals
Arsenic ng/cig 29 2.9 13 -55 4.4 52 3.7 4.3 16
Cadmium ng/cig 42 38.7 6.2 -84 113 -71 36.5 11.7 —68
Chromium ng/cig 67 <1.22 <1.2 - <1.2 - <1.2 <1.2 -
Lead ng/cig 67 14.8 16.5 11 <12.0 -19 20.1 18.8 -6
Mercury ng/cig 120 0.3 0.3" 2.2 633 1.0 0.9 -10
Nickel ng/cig 175 <20 <20 - <2.0 - 24 <20 -17
Selenium ng/cig 61 <4.1 <41 - <4.1 - 20.1 18.8 -6
Nitrosamines
NAB ng/cig 27 13.6 6.6 -51 14 -90 121 7.6 -37
NAT ng/cig 22 124.5 70.3 -44 19.1 -85 117.6 69.5 -41
NNK ng/cig 21 57.9 48.2 -17 10.1 -83 80.0 44.5 -44
NNN ng/cig 16 245.2 76.0 -69 10.2 -96 146.9 72.8 -50

The mean of five replicate measurements for each cigarette type are shown. Yield values are given to 1 decimal place and % changes rounded to the nearest whole number.
Changes shown in bold type were statistically significant (P < 0.05) and were greater than the analytical uncertainty.

@ For values with a “<” symbol, the limit of quantification for the assay is shown.

b Four replicate measurements.

machine smoking conditions were correspondingly lower (up to
69%) for TSS1 than CC1 (Table 6).

Statistically significantly lower yields were found from TSS1
than from CC1 for phenol and some cresols (50-57%), carbonyls
(44-86%), some PAHs (36-71%) and miscellaneous volatile and or-
ganic constituents (27-94%); although for the dihydroxybenzenes,
quinoline, pyrene and benzo(a)pyrene, these differences did not
achieve statistical significance (Table 7). These data demonstrate
lower toxicant yields from TSS1 across all of the analyte classes
examined and, therefore, support the expectation that the TSS
and the three stage filter should function to give overall MS toxi-
cant yield reductions in an EC.

3.1.2.3. TSS6. The blend metal contents of TSS6 and CC6 were sim-
ilar, other than statistically significantly higher chromium and cad-
mium blend levels in TSS6 (P <0.01). As noted above, the higher
chromium level was due to the TSS; whereas, the higher cadmium
content reflects a difference in the tobacco types used between the
two blends. The MS yields of metals determined under HCI smoking
machine conditions, were not elevated in TSS6 compared to CC6
(Table 6). However, MS cadmium yields were significantly reduced.

The blend nitrosamine contents were lower (38-54%) from TSS6
than those measured for the CC6 blend (Table 5). Again, this lower
blend nitrosamine content translated to 37-50% lower MS yields
for these TSNAs under HCI smoking machine conditions (Table 6).

MS yields from TSS6, across all of the other chemical classes
measured were statistically significantly lower than the yields
from CC6 (some aromatic amines (14-20%) and phenolics (17-
32%), all measured carbonyls (35-85%), most PAHs (18-81%) and
miscellaneous volatile toxicants (41-96%)); exceptions included
1- and 2-aminonaphthalene, 4-aminobiphenyl, cresols, quinoline
and ammonia, for which the values were not significantly different
(Table 7). These data again demonstrate reductions in all classes of
measured toxicants, and therefore it is apparent that the TSS is
functioning as expected in the EC, to give overall MS toxicant yield
reductions.

3.2. Filter comparisons

From the MS yield data shown in Table 7 all the ECs gave lower
yields of carbonyls and other volatile smoke constituents than the
respective commercial comparator cigarettes, with the exception
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Table 7
Mainstream smoke yields measured under Health Canada Intense smoking machine conditions.
Units Uncertainty (%) CcC1 TSS1 BT1 Ccc6 TSS6
Yield Yield A (%) Yield A (%) Yield Yield A (%)
Aromatic amines
1-Aminonaphthalene ng/cig 31 20.3 17.8 -12 11.8 —42 224 224 0
2-Aminonaphthalene ng/cig 43 131 11.5 -12 74 —44 14.6 14.8 1
3-Aminobiphenyl ng/cig 14 3.5 3.0 -14 1.8 -49 4.1 33 -20
4-Aminobiphenyl ng/cig 21 2.8 2.5 -11 1.2 -57 3.1 2.7 -13
o-Toluidine ng/cig ND 68.1 60.1 -12 50.6 —26 88.1 76.2 -14
Phenols and cresols
Phenol ng/cig 23 7.6 33 -57 6.5 -14 10.1 9.3 -8
Catechol ug/cig 16 56.0 51.7 -8 113.8 103 80.5 67.0 -17
Resorcinol ng/cig 30 1.7 1.2 -29 13 -24 2.2 1.5 -32
Hydroquinone ng/cig 18 55.1 52.6 -5 78.9 43 86.4 67.2 -22
o-Cresol ug/cig 31 1.8 0.8 -56 1.8 0 2.5 2.0 -20
m-Cresol ng/cig 43 1.7 1.0 -41 21 24 2.4 2.2 -8
p-Cresol pg/cig 23 5.4 2.7 -50 4.6 -15 6.6 6.1 -8
Carbonyls
Formaldehyde ng/cig 29 33.2 17.6 -47 46.8 1 60.0 31.8 —47
Acetaldehyde pg/cig 16 1096.3 617.4 —44 811.3 -26 1152.2 751.4 -35
Acetone ug/cig 17 563.3 224.6 -60 311.9 -45 570.0 213.5 -63
Acrolein ng/cig 24 130.5 525 —-60 75.0 -43 1394 62.3 -55
Propionaldehyde ug/cig 19 94.6 439 -54 62.3 -34 98.4 449 -54
Crotonaldehyde ug/cig 37 41.6 6.0 -86 10.9 -74 45.2 7.0 -85
Methyl ethyl ketone ng/cig 19 133.0 30.5 -77 48.8 -63 140.7 333 -76
Butyraldehyde ng/cig 23 76.2 224 -71 24.1 —68 80.2 248 —69

Miscellaneous volatile constituents

Hydrogen cyanide pg/cig 18 3334 125.5 —62 59.2 —82 307.4 179.3 —42
Ammonia ug/cig 23 16.2 11.9 -27 4.1 -75 149 16.9 13
1,3-Butadiene ng/cig 32 39.6 27.2 -31 53.4 35 63.6 36.8 —42
Acrylonitrile pg/cig 32 21.2 6.0 -72 6.6 —69 241 7.2 -70
Isoprene ng/cig 31 419.8 126.1 -70 331.9 -21 412.2 156.3 —62
Benzene ug/cig 27 70.4 11.9 -83 22.8 -68 77.9 13.6 -83
Toluene ng/cig 43 136.5 <31.4% -77 <46.9 —66 122.9 <38.1 -74
NO pg/cig ND 324.7 191.5 -41 69.1 -79 2725 160.7 -41
Miscellaneous organic constituents

Pyridine pg/cig 30 31.6 2.0 —94 1.1 —97 31.1 1.8 —94
Quinoline ug/cig 56 0.3 0.2 -33 0.1 -67 0.4 0.2 -50
Styrene pg/cig 31 252 2.1 -92 14 -94 26.6 1.1 —96
PAHs

Naphthalene ng/cig ND 21825 643.8 -71 484.9 -78 29523 565.6 -81
Fluorene ng/cig ND 230.5 148.3 -36 247.3 7 315.7 240.9 -24
Phenanthrene ng/cig ND 524.4 1914 —64 541.5 3 739.8 589.7 -20
Pyrene ng/cig ND 70.4 64.6 -8 75.3 7 108.1 80.3 -26
Benzo(a)pyrene ng/cig ND 119 11.1 -7 11.5 -3 16.8 13.7 -18
Benzo(a)pyrene® ng/cig 37 11.3 9.6 -15 10.6 -6 17.8 12.2 -31
NFDPM mg/cig 10 18.9 173 -8 17.8 -6 244 20.7 -15
Nicotine mg/cig 10 1.3 1.2 -8 1.5 16 1.6 14 -9
Carbon monoxide mg/cig 25 23.8 18.2 —24 18.1 —24 24.6 18.5 -25

The mean of five replicate measurements for each cigarette type are shown. Yield values are given to 1 decimal place and % changes rounded to the nearest whole number.
Changes shown in bold type were statistically significant (P < 0.05), and were greater than the calculated analytical uncertainty where available.

@ For values with a “<” symbol, the limit of quantification for the assay is shown.

b Benzo(a)pyrene was measured with two analytical approaches: a stand alone and as part of a suite of PAHs.

of formaldehyde and 1,3-butadiene yields for BT1. To understand
better the contribution of the blend and the selective filters used
in the ECs to the overall reductions in these smoke constituents, di-
rect comparisons were made between the ECs and control ciga-
rettes (SC-BT1, SC-TSS1 and SC-TSS6), which were identical in all
aspects to the appropriate EC, except for the use of a mono-stage
CA filter without adsorbents which was manufactured with triace-
tin. The comparisons of the yields from EC and control cigarettes
for the carbonyls and other volatile smoke constituents are shown
in Table 8.

From these data it is clear that the yields of the carbonyls and
the other volatile smoke constituents were reduced by the pres-
ence of the triple stage filter containing CR20L and polymer-
derived high activity carbon used in ECs BT1 and TSS1 (Table 8).
The mean of the percentage change in MS yield across all volatile
constituents measured from BT1 was a reduction of 50% compared

to the control cigarette SC-BT1, with a range of 23% reduction for
acetaldehyde to 79% reduction for crotonaldehyde. Very similar
reductions were obtained with TSS1, which also gave a mean per-
centage reduction of 50%, with a similar range from 20% reduction
in acetaldehyde yield to 79% reduction for crotonaldehyde yield in
comparison to SC-TSS1.

From Table 8 it is also apparent that the dual filter containing
additional polymer derived carbon but without the CR20L resin
(as used in TSS6), also reduced the mean percentage yields of the
volatile smoke constituents by a mean of 48%, with a range from
35% reduction in ammonia yield to 79% reduction in crotonalde-
hyde yield.

Together, these data confirm that the selective filters used in
the ECs removed substantial quantities of volatile smoke constitu-
ents from cigarette MS, confirming previous studies with the filter
adsorbents (Branton et al., 2011a,b). For all of the ECs, the MS
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yields of both formaldehyde and 1,3-butadiene were lower than
measured with the scientific control cigarettes. Thus, it is clear that
the greater formaldehyde yield seen when comparing BT1 with the
commercial cigarette CC1 (previously shown in Table 7) must be
due to differences in blend between these cigarettes. A similar
comparison also confirms that the higher 1,3-butadiene yield from
BT1 compared to CC1 is not due to the novel filter technologies
used in the manufacture of the EC.

3.3. Comparison of EC toxicant yields with those from published
cigarette brand data

This paper has focused on a direct measurement comparison of
EC toxicant yields with the yields from two commercial compara-
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tor cigarettes. However, to fully establish whether the ECs offer re-
duced machine yields in comparison to conventional commercial
cigarettes, it is necessary to compare their yields with those from
a wider range of cigarettes. The absolute yield values of the ECs de-
scribed here can be compared with other published data obtained
under HCI smoking conditions (Health Canada, 2004; Counts et al.,
2005; Australian Government, Department of Health and Ageing,
2002); although such comparisons must be treated with caution
due to the known difficulties based on limited standardisation be-
tween laboratories for the analysis of smoke constituents other
than NFDPM, nicotine and CO (Gregg et al., 2004; Counts et al.,
2005; Intorp et al., 2009).

The three data sources above were compiled into one dataset to
provide a reference set of global cigarette yield data with which to

Table 8

Comparison of mainstream smoke yields of carbonyl and miscellaneous volatile constituents across filter types measured under Health Canada Intense smoking machine

conditions.

Units Uncertainty (%) SC-BT1 BT1 SC-TSS1 TSS1 SC-TSS6 TSS6
Yield Yield A (%) Yield Yield A (%) Yield Yield A (%)

Carbonyls
Formaldehyde ng/cig 29 99.8 46.8 -53 19.5 17.6 -10 39.1 31.8 -19
Acetaldehyde ng/cig 16 1048.9 811.3 -23 771.7 617.4 -20 847.5 751.4 -11
Acetone ng/cig 17 562.7 3119 —-45 374.6 224.6 -40 399.9 2135 -47
Acrolein pgfcig 24 151.9 75.0 -51 101.6 52.5 -48 116.3 62.3 -46
Propionaldehyde ng/cig 19 103.0 62.3 -40 70.6 439 -38 74.3 44.9 -40
Crotonaldehyde ng/cig 37 52.5 109 -79 29.0 6.0 -79 33.2 7.0 -79
Methyl ethyl ketone ng/cig 19 150.1 48.8 -67 89.8 30.5 -66 103.6 333 —68
Butyraldehyde ng/cig 23 67.7 241 -64 51.8 224 -57 58.1 24.8 -57
Miscellaneous volatile constituents
Hydrogen cyanide ng/cig 18 96.3 59.2 -39 166.5 125.5 -25 203.7 179.3 -12
Ammonia ng/cig 23 7.4 4.1 -45 18.3 119 -35 26.1 16.9 -35
1,3-Butadiene ngfcig 32 76.0 53.4 -30 50.7 27.2 -46 57.7 36.8 -36
Acrylonitrile ng/cig 32 13.7 6.6 -52 171 6.0 -65 184 7.2 -61
Isoprene ng/cig 31 605.8 331.9 -45 410.1 126.1 -69 514.8 156.3 -70
Benzene ngfcig 27 71.4 22.8 —-68 56.5 11.9 -79 61.8 13.6 -78
Toluene ng/cig 43 105.2 <46.9 -55 106.4 <314 -70 107.4 <38.1 —65
Mean% change -50 -50 —48
NFDPM mg/cig 10 17.9 17.8 -1 16.2 17.3 7 19.3 20.7 7

The means of 5 replicate measurements for each cigarette type are shown. Change values shown in bold type were statistically significant (P < 0.05) and were greater than the

analytical uncertainty.
For values with a “ <” symbol, the limit of quantification for the assay is shown.
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Fig. 1. Comparison of HCI machine toxicant yields from ECs (1 mg ISO) with those from published data sources. (Lines are used to connect data for a single product and do not

show trends or relationships.)
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Fig. 3. Comparison of total normalised toxicant yields between ECs and published HCI yield data.

compare the toxicant yields from the ECs described in this study.
The full dataset was truncated as follows: first, arsenic, methyl
ethyl ketone, nickel and selenium yields were removed from the
dataset because yields were not provided by all three sources—
leaving 39 toxicants for the comparison, second, a number of
brands were removed from the dataset due to incomplete, dupli-
cated or erroneous data (two brands in the HC dataset appear to
have erroneously exchanged toluene and styrene yields; tar, nico-
tine and CO yields were not provided in the HC dataset for one
brand and multiple instances of the same yield data were observed
in the HC dataset). Finally, reference products were removed from
the dataset to ensure that only commercial brands were included.
This resulted in a dataset of 120 cigarette brands covering 16 coun-
tries or regions. While extensive, it is unlikely that this dataset is
fully representative of the range of cigarette products on-sale glob-

ally, either with respect to the range of design features, or as a rep-
resentative sample of global brands. However, while it is limited in
these respects, it does constitute a valid comparator set for the tox-
icant yields from these ECs.

The data was examined to see if it was normally distributed;
while a number of toxicants in the dataset were normally distrib-
uted the majority (and in particular nitrogenous toxicants such as
TSNAs and aromatic amines) were not. Consequently the reference
dataset was subject to an empirical cumulative distribution analy-
sis, producing a percentile distribution within the toxicant yields.
Yields from the ECs were then compared to the empirical cumula-
tive distribution to identify the position of these yields in compar-
ison to the commercial brands (Figs. 1 and 2). In these
comparisons, the yields of the ECs described here fall at the low
end of the range for numerous toxicants and often give lower
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Table 9
Sidestream smoke yields under ISO smoking machine conditions.
Uncertainty (%) Units cc1 BT1 TSS1
Yield Yield A%) Yield A(%)

Ammonia 17 ng/cig 6971 4005 -43 5669 -19
1-Aminonaphthalene 33 ng/cig 165 130 =21 144 -13
2-Aminonaphthalene 34 ng/cig 152 119 -22 121 -20
3-Aminobiphenyl 30 ng/cig 39 253 -35 384 -2
4-Aminobiphenyl 29 ng/cig 27.7 16.7 -40 27.1 -2
Benzo(a)pyrene 22 ng/cig 144 184 28 119 -17
Formaldehyde 16 ng/cig 453 552 22 537 19
Acetaldehyde 21 ng/cig 1393 1629 17 1401 1
Acetone 8 ng/cig 801 1038 30 754 -6
Acrolein 10 ug/cig 325 386 19 328 1
Propionaldehyde 9 ng/cig 132 170 29 125 -5
Crotonaldehyde 16 ng/cig 59 92.7 57 53 -10
Methyl ethyl ketone 14 ug/cig 162 264 63 144 -11
Butyraldehyde 19 ng/cig 100 104 4 93 -7
HCN 16 ng/cig 127 67.6 -47 91 -28
NNN 31 ng/cig 220 40.6 -82 106 -52
NAT 38 ng/cig 83 193 -77 43 —48
NAB 41 ng/cig 16.5 3.63 -78 11.8 —28
NNK 30 ng/cig 204 141 -31 186 -9
Hydroquinone 24 ug/cig 96 122 28 82 -15
Catechol 22 ng/cig 75 132 77 53 -29
Phenol 16 ng/cig 209 273 31 188 -10
m + p-Cresols 17 ug/cig 61.9 85.3 38 56.6 -9
o-Cresol 19 ng/cig 24 423 76 23 -4
Pyridine 15 ng/cig 333 239 -28 267 -20
Quinoline 19 ng/cig 17.8 14.5 -19 14 -21
Styrene 37 ng/cig 119 122 3 124 4
1,3-Butadiene 24 ug/cig 446 551 24 391 ~12
Isoprene 23 ng/cig 3130 3779 21 3284 5
Acrylonitrile 26 ng/cig 143 100 -30 139 -3
Benzene 26 ng/cig 344 413 20 297 -14
Toluene 29 ng/cig 697 712 2 637 -9
Mercury 22 ng/cig 11.2 12.8 14 10.6 -5
Cadmium 13 ng/cig 351 460 31 239 -32
NO 11 ng/cig 2139 1389 -35 2018 -6
NO, 11 pg/cig 2321 1510 -35 2182 -6
NFDPM 12 mg/cig 228 27.7 21 21.8 -4
Nicotine 10 mg/cig 426 5.76 35 4.42 4
co 15 mg/cig 404 50.6 25 329 -19
CO, 27 mg/cig 367 395 8 330 -10

Mean of three replicates for each cigarette are shown. The expanded uncertainty was calculated from these data and presented as a % of the overall mean value. All values for
resorcinol, arsenic, chromium, lead, nickel and selenium were either below limits of quantification or were not measured and are not shown.
Values shown in bold are statistically significant (P < 0.05) and greater than the analytical uncertainty.

values for specific toxicants than any of the products in the com-
mercial brand dataset. Exceptions to this are catechol yields from
BT1, NO and TSNA yields from TSS1 and from TSS6, where the
yields are approximately equivalent to the median values for the
commercial product dataset. In contrast, the yields of the commer-
cial comparator cigarettes CC1 and CC6 are generally distributed
over the range of yields observed with the commercial dataset.

A further comparison was conducted, examining the total toxi-
cant levels from the ECs and each of the commercial products in
the dataset. This was conducted in three ways. The first method
was to sum the yields of the 39 toxicants for each cigarette to give
a total toxicant yield for each brand. This approach is of limited
utility because the total toxicant yield value for each brand is dom-
inated by NFDPM, CO and nicotine, and many other toxicants do
not contribute significantly to the total value. A second approach
was to sum the yields of all toxicants (but excluding NFDPM, nic-
otine and CO yields) for each cigarette to give a total for the toxi-
cant subset of yields (data not shown). A third, normalisation
method gave greater insight into the contribution of all toxicants,
wherein a median value was calculated for each toxicant in the
commercial dataset. The median value was normalised to 100 for
each toxicant, and the yields of toxicants scaled against this value
of 100. Totalling the scaled values for all toxicants gave a total nor-

malised toxicant value for each brand. The total normalised toxi-
cant values for the ECs are compared to and ranked against the
values for all of the brands in the commercial dataset in Fig. 3.
The comparison shows that the ECs were at the low end of the
ranking order. The 1 mg ECs were found to have the lowest total
normalised toxicant yields under each of the three approaches,
and the 6 mg EC was also lower than any of the commercial brands
for the toxicant subset yields and the total normalised toxicant
value.

These analyses show that the ECs offer some of the lowest ma-
chine toxicant yields of cigarettes for which published HCI smoke
chemistry is available, confirming that the ECs generate reduced
machine toxicant yields in comparison to published yields from
commercial cigarettes.

3.4. Comparisons of EC yields as a ratio to nicotine yields

The analysis described above is restricted to assessment of ma-
chine yields of toxicants. Assessment of smokers’ exposure to tox-
icants from these cigarettes is discussed in another paper
(Shepperd et al., submitted for publication). However, it has been
proposed that the ratio of smoke toxicants to the MS nicotine yield
of cigarettes gives a better predictor of smokers’ exposure to the
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toxicant than the MS yield value alone (Laugesen and Fowles,
2006). Therefore, the ratio of MS constituents yields measured in
this study to the MS nicotine yields, all measured under HCI smok-
ing machine conditions, has been calculated and is given as a Sup-
plemental Table S2 (available online). Under Health Canada Intense
machine smoking conditions, the NFDPM yields from BT1, TSS1
and CC1 were comparable, but the nicotine yield from BT1 was
slightly higher than from CC1, and the nicotine yields from TSS1
and TSS6 slightly lower than from CC1 and CC6 respectively
(Tables 4 and 7). When the yield values for the EC were calculated
as a ratio to the nicotine yield, and compared to those from CC1
and CC6, they followed the same trends as found when comparing
the yields per cigarette, but with slightly greater reductions from
BT1 (compared to CC1), slightly lower reductions from TSS1
(compared to CC1), and also slightly lower reductions from TSS6
(compared to CC6).

3.5. Sidestream smoke yields

To complete the chemical analysis of smoke emissions from the
EC, SS yields for the expanded list of smoke constituents were mea-
sured, under ISO smoking parameters for BT1, TSS1 and CC1; TSS6
and CC6 were not measured. The ISO smoking parameters were
chosen because they generate higher SS yields than any of the
other smoking regimes. In general, under any smoking regime,
the quantity of sidestream smoke can be expected to be dependent
on the amount of tobacco consumed in the static burn or smoulder
phase of cigarette smoking. The SS yield results are presented in
Table 9.

Statistically significantly higher yields of sidestream NFDPM,
nicotine and CO (21-35%) and several constituents such as ben-
zo(a)pyrene (28%), phenolics (28-77%), most carbonyls (19-63%)
and cadmium (31%) constituents were measured from BT1 than
from CC1 (all P<0.05). In contrast lower yields of nitrogenous SS
smoke constituents such as TSNAs (31-82%), HCN (47%), some aro-
matic amines (35-40%) nitrogen oxides, pyridine and quinoline
(19-35%) were measured from BT1 than from CC1. Most of these
changes were described previously (Liu et al.,, 2011); however,
the higher SS phenolic yields and lower than anticipated TSNA
yields from BT1 suggest that chemical differences between Virginia
and US-blended tobaccos also influence the SS yields of individual
constituents. Finally, the 15% higher tobacco weight from BT1 than
from CC1 will also contribute across all measured endpoints to the
observed increases.

A number of SS smoke constituent yields were lower from the
EC cigarette TSS1 than from CC1. The greatest numerical differ-
ences in SS yields were observed for NNN and NAT which were
around 50% lower from TSS1 than CC1; these observations are con-
sistent with the observed trends in MS yields of these species. Sig-
nificant reductions were also found in the sidestream yields of CO,
cadmium, catechol, HCN, pyridine and quinoline (19-32%). One
constituent with a statistically significantly higher sidestream
yield from TSS1 than from CC1 was formaldehyde (19% higher,
P <0.05). Higher SS formaldehyde yields were also observed with
higher levels of TSS inclusion in the blend (McAdam et al., 2011),
suggesting that formaldehyde might be a combustion by-product
of the organic materials used in TSS manufacture.

4. Conclusions

Three ECs were made using a combination of technological ap-
proaches, and chemical testing under four different machine smok-
ing parameters has confirmed overall reductions of MS toxicants
yields from the ECs. When compared with published values of
MS toxicant yields from conventional cigarettes, despite a small

number of elevated yields with BT1, the performance of these
ECs appears to be superior, even if they are ranked on a nicotine ra-
tio basis. The data presented in this study support a designation of
these ECs as reduced machine-yield prototypes, and previous data
with EC made using the TSS approach suggest that lower biomark-
ers of exposure to MS toxicants should be achieved if these ECs
were to be smoked by human volunteers (McAdam et al., 2011).

Despite the low overall machine yields of toxicants obtained
from the current ECs and their performance against commercial
comparators and other published toxicant yield data, substantial
amounts of scientific data would need to be acquired, including
biomarkers of exposure and biomarkers of biological effect, to
determine whether such products might be associated with lower
health risks, and therefore there is no certainty that these ECs will
meet the IOM definitions of a PREP.

Nonetheless, we believe that the results from this study are suf-
ficient to encourage further work, including human biomarker
studies in volunteers smoking these ECs and further application
and refinement of the technologies used in their manufacture.
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