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A B S T R A C T

Several vibration sources can provoke propagation of mechanical waves into the ground. Such
waves have to be taken into account both in designing of new buildings and in shielding of
strategic structures. The vibration control systems may be either active systems or passive sys-
tems such as vertical barriers. One of the main problems encountered in the numerical simulation
of wave shielding by using vertical barriers is the ground modeling. To such an aim, the method
originally formulated by Riera is here employed to simulate both typical elastic-dynamic pro-
blems and a complex problem consisting in the numerical simulation of a vertical barrier wave
shielding into a damaged ground where wave propagation occurs.

1. Introduction

Several vibration sources as traffic, machine foundations, explosions, and earthquakes can provoke propagation of mechanical
waves in the ground [1,2]. Such waves should be taken into account both in designing of new buildings and in shielding of strategic
structures. The vibration control systems able to improve the structure behavior regarding failure induced by vibrations may be either
active systems, which impose forces on the structure that counterbalance the vibration induced forces by requiring an energy source,
or passive systems, which do not require any additional energy source to operate and are activated by the vibration input.

The wave barriers, named barriers in the following, are passive systems able to absorb a significant portion of the dynamic energy
arising from the ground motion. Such barriers are structural components placed into the ground, and may be of different types:
vertical barriers (including open trenches) and rough surfaces [3,4], horizontal barriers [5,6], and rows of piles [7].

The problem of wave shielding was extensively examined from both a numerical and an experimental point of view in the context
of the train-induced ground vibrations [8–11]. More precisely, Çelebi et al. [12] performed experimental tests by examining the basic
characteristics of the wave propagation, and proposed some suitable countermeasures able to reduce ground soil vibrations. Tsai
et al. [13] analyzed both open trenches and diaphragm-wall barriers by applying the 2D Boundary Element Method. Alzawi et al.
[14] performed full scale experimental tests to analyze vibration scattering by employing both open trenches and GeoFoam barriers.
Xia et al. [15] analytically examined how cylindrical piles could influence elastic waves scattering. Ekanayake et al. [16] numerically
investigated the efficiency level of different barrier materials to mitigate ground vibrations, and Saikia [17] studied vibration
screening effectiveness using in-filled trenches.

One of the main problems encountered in the numerical simulation of wave shielding by using barriers is the ground modeling.
The numerical methods proposed in the literature to simulate a continuous medium can be classified in two main groups: (i) methods
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based on the Continuum Mechanics, and (ii) the so-called Discrete Element Methods.
The group of methods based on the Continuum Mechanics includes the Finite Element Method and the Boundary Element Method,

where both elastic and elastic-plastic behavior can carefully be modelled and damage can also be included into the model by using an
extension of the constitutive equations employed in plasticity [18]. Such methods have been extensively applied to simulate wave
propagation problems as, for example, in the work by Liu et al [19]. However, it is also possible to simulate the material properties as
random fields, as is shown in Ref. [20], but some limitations to describe the damage evolution in quasi-fragile materials are en-
countered. As a matter of fact, in the damage process of quasi-fragile materials (such as rocks and some types of ground) the transition
from continuous to discontinuous material has to be taken into account, but methods based on a hypothesis of continuous medium
have difficulty to follow such a transition. On the other hand, the assumption of the ground as a homogeneous and isotropic medium
could be too simplified.

The group of the so-called Discrete Element Methods includes methods that do not need to assume a continuous medium. As a
matter of fact, both the heterogeneity and the anisotropy of the medium can be implemented by means of scalar fields to be used for
the material properties [21]. Note that the medium heterogeneity may also be implemented by applying a pre-stress condition to the
medium, generating heterogeneity patterns [22]. There are many discrete element methods available in the literature, and a review
of them is given in Ref. [23]. According to such methods, the medium is simulated by discretising it through an array of nodes, where
the masses are concentrated at nodes, masses generally interacting through nonlinear potentials within the realm of the Newtonian
dynamics. The philosophy behind such methods is the same on which the particle methods are founded. In the last two decades, the
Peridinamics approach has been used in the context of the Discrete Element Methods to solve typical engineering problems. This
approach, originally presented by Silling [24], can be employed to evaluate fracture, fragmentation and damage, in both quasi-elastic
and transient problems. Several applications of such an approach are also reported in Refs [25,26]. Even in the field of rock me-
chanics, the above approach is used to simulate the damage evolution in rocks and soils [27,28].

Another option to link the aforementioned nodes is by means of an array of bars. Methods related to such an approach are named
Lattice Discrete Element Methods [29–33].

In the present paper, the method originally formulated by Riera [34] (Lattice Discrete Element Method, named only LDEM in the
following) is employed to simulate the wave shielding produced by a vertical barrier into a damaged ground where wave propagation

Nomenclature

Ad cross-section of diagonal bars
An cross-section of longitudinal bars
Ai equivalent fracture area for the diagonal ( =i d)

and longitudinal ( =i n) bars
C damping matrix
CVGf coefficient of variation of Gf
deq characteristic length of the material
E elastic modulus of the ground
Eb elastic modulus of the barrier
fmax maximum frequency
fp frequency at peak energy dissipation spectrum
f G( )f probability distribution of Gf
Fb bar axial force

tF( ) vector of external nodal forces
Gf specific fracture energy
H [·] Heaviside function
k wave number (k = 1/ )
L L L, ,cx cy cz correlation length of Gf in x y z, , direction,

respectively
Ld length of diagonal bars
Ln length of longitudinal bars
M mass matrix

tP( ) vector of internal nodal forces
tx( ) velocity vector
tẍ( ) acceleration vector

v v v, ,P S R dilatational, shear, and Rayleigh wave velocity,
respectively.
bar strain

r ultimate tensile strain
p bar strain at the peak load

damping ratio
min minimum wave length

Poisson coefficient of the ground
b Poisson coefficient of the vertical barrier

ground density
b barrier density

(a)

εεp r

Fb

(b)

ε

Fig. 1. LDEM model: (a) cubic arrangement of nodes and massless uniaxial elements, (b) bilinear constitutive relationship for both diagonal and
longitudinal bars.
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occurs. Several papers available in the literature employ such a method to simulate an impact test performed on a Polymethyl
Methacrylate disk [35], an impulsive loading acting on both plain and reinforced concrete structures [36–40], acoustic emission tests
[41–44], and earthquakes [45–48], but no paper on the wave shielding produced by a vertical barrier has been published.

The present paper is organized as follows. Firstly, the basic concepts of the LDEM are presented (Section 2). Then, the capability of
the LDEM to solve typical elastic-dynamic problems is discussed (Section 3). Finally, the LDEM is applied to a complex problem aimed
to show the effectiveness of the LDEM to simulate the wave shielding of a vertical barrier into a damaged ground where wave
propagation occurs (Section 4). Conclusions are summarized in Section 5.

2. The lattice discrete element method (LDEM): Basic concepts

The LDEM allows us to model a continuous medium (named medium in the following) as an 3D-array of nodes linked by massless
uniaxial elements (or bars) able to carry only axial load. These bars are organized in a cubic arrangement (Fig. 1a) that is, cubic cells
with nine nodes [34]. Such an arrangement was firstly proposed by Nayfeh et al. in 1978 [49] to determine the properties of an
orthotropic elastic medium, as is specified in the following.

The discretized masses assumed concentrated at nodes have three degrees of freedom, represented by the displacements in three
orthogonal directions. According to the above arrangement, the length of longitudinal and diagonal bars are Ln and =L L 3 /2d n ,
respectively.

The stiffness of each bar is linked to the properties of the isotropic elastic medium by the following equations [35,49]:

=EA
L

E Ln

n
n (1)

=EA
L

E L4
3

d

d
n (2)

where

= +
+

9 8
18 24 (3)

= 9
(4 8 ) (4)

being E and the elastic modulus and the Poisson coefficient of the material, respectively, and Ad and An the cross-section of each
diagonal and longitudinal bar, respectively.

The discretized equation of motion according to the Newton’s second law is given by:

+ + =t t t tMx Cx F P¨ ( ) ( ) ( ) ( ) 0 (5)

where the vectors tẍ( ) and tx( ) represent the nodal acceleration and velocity, respectively, M and C are the mass and damping
matrices, respectively, and the vectors tF( ) and tP( ) are the internal and external nodal forces, respectively. The damping matrix C is
given by:

= fC M2 p (6)

where is the damping ratio, and fp is the frequency at peak value of the energy spectrum.
Since M and C are diagonal matrices, the scalar equations corresponding to the vector given by Eq. (5) are integrated in the time

domain by using an explicit finite difference scheme. Note that, since nodal coordinates are updated at each time step t , they can
directly be computed from the above equations without any additional computation even in the case of large displacements, since
rotations are not degrees of freedom of the model.

The LDEM is particularly suitable to simulate the presence of cracks, which can be implemented into the model as either pre-
existing flaws or in terms of bar damage.

In the last case above, a non-linear constitutive law for bars has to be defined. The damage consists in breaking of the bars when
they attain a critical condition according to the softening law for quasi-brittle material proposed by Hillerborg [50]. Such a law,
assumed for both longitudinal and diagonal bars, is the bilinear constitutive relationship shown in Fig. 1(b), where Fb is the bar axial
force and is the axial strain.

The bar critical condition is reached when is equal to or greater than r (Fig. 1(b)), equal to:

= d A
A L

2
r p eq

i

i i (7)

where p is the strain at the peak load, deq is a characteristic material length, i identifies the type of bar ( =i d for diagonal bar, and
=i n for longitudinal bar), Li is the bar length, Ai is the bar cross-section, and Ai is the equivalent fracture area of the i-th bar.

The equivalent fracture area An is deduced by equating the dissipated energy Ud
c in a cubic continuum specimen (of sizes

Ln × Ln × Ln) because of a fracture along a plane parallel to one of its faces

=U G L·d
c

f n
2 (8)
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to the dissipated energy in a LDEM cell (of sizes Ln × Ln × Ln) along the same fracture plane:

= + +U G A A A L4· 1
4

· 4· · 2
3d

LDEM
f n n n n

2
2

(9)

being Gf the specific fracture energy. More precisely, the first term into the square brackets accounts for the contribution of the four
external longitudinal bars of the LDEM cell (each of them sheared with other four adjacent cells, as is shown Fig. 1(a)); the second
term accounts for the internal longitudinal bar (the vertical one in Fig. 1(a)); the third term accounts for the four diagonal bars, where
the factor (2/ 3 )2 is included in order to take into account that (i) the diagonal bars are fractured along sections forming an angle
different from zero with respect to the corresponding cross-sections, and (ii) the diagonal bar fracture Modes occur. Details are given
in Ref. [43].

Therefore, by equating Eq. (8) with Eq. (9):

=A L3
22n n

2
(10)

and consequently:

= =A A L2
3

4
22d n n

2
2

(11)

Therefore, the bar is considered as broken when the bar strain is equal to or greater than r . Note that the bar behavior under
compression is assumed to be linear elastic and, although the failure under compression is not allowed, a tensile failure can occur due
to the transversal tension stresses produced by the axial compression.

The strain at the peak load, p, is computed as follows:

=
µ

E dp
G

eq

f

(12)

where µGf is the mean value of the specific fracture energy Gf .
When the length of at least one of the cracks developing in the modeled body exceeds the material critical length deq [43],

unstable crack propagation occurs. Note that the presence of a crack is simulated by adjacent broken bars in the model. More details
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Fig. 2. Distribution of Gf : (a) bi-dimensional and (b) mono-dimensional (for =z 0) distribution by using = =L L L2cx cz n with =L 0.005 mn ; (c) bi-
dimensional and (d) mono-dimensional (for =z 0) distribution by using = =L L L10cx cz n with =L 0.005 mn .
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can also be found in Refs [21,35].
In the LDEM, Gf is assumed to have a Weibull probability distribution given by:

=p G exp G( ) 1 [ ( / ) ]f f (13)

being and the scale and shape parameters, respectively. Such parameters can be computed through the coefficient of variation
CV ,Gf defined as the ratio between the standard deviation sGf and the mean value µGf of the specific fracture energy Gf .

However, a spatial correlation function for Gf needs to be defined. The correlation lengths L L,cx cy and Lcz along the three
directions x y z, , , respectively, are used to such an aim. Details may be found in Refs [21,43].

As an example, let us consider the case study reported in Ref. [21], consisting in a square body with a side of 0.3 m, analyzed in
plane strain condition. Fig. 2 shows the bi-dimensional distribution of Gf employed in the such a work, for two pairs of values of the
correlation lengths Lcx and Lcz.

3. Basic simulations by using the LDEM

In the present Section, the propagation of dilatational, shear, and Rayleigh waves into the ground are analyzed by using the
LDEM, in order to state that the LDEM is able to quite carefully model typical problems related to ground vibration.

3.1. Simulation No.1

3.1.1. Ground model through the LDEM
Now the ground, assumed as an isotropic and homogeneous medium, is modelled as a prism (see Fig. 3) with length of 120 m (in

x-direction), width of 24 m (in z-direction), and depth of 2.5 m (in y-direction).
The mechanical properties of the ground are assumed to be as follows: =E 0.33 GPa, = 0.25 and density = 1750 kg/m3,

corresponding to a ground composed by a dense sand.
Symmetry boundary conditions are applied to the yz plane corresponding to =x 0, and to the xz plane corresponding to

= ±y 1.25 m (see Fig. 3). Note that, in the case of non-homogeneous medium, such boundary conditions allow us to carefully model
the actual ground avoiding to reduce the problem to a plane strain problem, for y1.25 1.25 m. In order to avoid the wave
reflection phenomenon, total absorption boundary condition is applied to both the xy plane (corresponding to =z 0) and the yz plane
(corresponding to =x 120 m).

The frequency range of waves here analyzed is equal to [0,50] Hz.
By using the basic equations of elastodynamics [51], the velocities of dilatational, shear and Raleigh waves are respectively given

by:

=
+

v E v
v v

(1 )
(1 )(1 2 )P

(14)

=
+

v E
v2 (1 )S

(15)

= +
+

v v
v

v0.87 1.12
(1 )R s (16)

For the problem being examined, such velocities are equal to =v 475.70 m/sP , =v 274.64 m/sS , and =v 252.67 m/sR .

120

y
z

x
z

y
x

24

2.5O A

AO

uz*

r
φ

Fig. 3. LDEMmodel used in the basic simulation No.1: sizes are in m. The region of total absorption boundary condition is highlighted in red. Details
of the discretisation employed are also shown.
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Then, the minimum wave length min is computed as follows:

= =v f/ 5.05 mmin R max (17)

being =f 50 Hzmax .
According to Aberg et al. [52], the bar length Ln has to be chosen in a range defined by 1/10 min and 1/8 min. Then, Ln is

assumed to be equal to 0.50 m, and 240 × 48 × 5 cubic cells are employed in x, y and z-direction, respectively, to generate the LDEM
model shown in Fig. 3.

The excitation is assumed to be acting at point O with coordinates equal to (0.25; 0.0; 23.75) m (Fig. 3), and the model response is
captured at point A with coordinates equal to (24.75; 0.0; 23.75) m. The excitation is applied to the model through a displacement in
z-direction, given by [53]:

=u u sin ft sin t t
t

H t t H t t(2 ) ( ) ( ) ( )z
a

d
a b0

(18)

where u0 is the amplitude of the signal, ta and tb represent the time instants when the excitation starts and stops, respectively,
=t t td b a is the corresponding time interval, and H [·] represents the Heaviside function. A graphical representation of such an

excitation is shown in Fig. 4 for =u 2 mm0 , =t 0.02 sa , =t 0.12 sb , and =f 50 Hz. In such a figure, the displacement uz is normalised
with respect to its maximum value ( =u 1.98 mmz max, ).

Note that, for time instants greater than tb, point O is left free to vibrate.

3.1.2. Results
For the numerical model described in Section 3.1.1, the results obtained in terms of displacements are shown in Fig. 5. More

precisely, the model response at point A in terms of both horizontal ux and vertical displacement uz is plotted in Fig. 5(a). The
theoretical time instants at which each wave type reaches point A are highlighted with grey vertical lines in Fig. 5, where the label tP
refers to the dilatational wave, tS to the shear wave, and tR to the Rayleigh wave.

It can be observed in Fig. 5(a) that the dilatational wave arrives at point A at time instant equal to =t 0.051 sP , in accordance with
the theoretical value. The sudden increase in uz displacement, due to the Rayleigh wave arrival, is attained at time instant =t s0.097R
in accordance with the theoretical evaluation, whereas it is not possible to identify the time instant of the shear wave arrival by using
such a model. Therefore, only to solve last problem, an additional restriction is added to the numerical model described in Section
3.1.1, that is, the displacement in x-direction is fixed for all nodes. In such a way, only the shear wave propagates and, as is shown in
Fig. 5(b), the time instant of its arrival at point A agrees with the theoretical value ( =t 0.089 sS ).

Now the model response in terms of displacement at the nodes located at an average radial distance equal to 24 m from point O is
analyzed. A polar frame r( , ) is used to identify such nodes (see Fig. 3). The mean value of the magnitude of the dilatational wave
velocity along the path characterized by r 24 m and ° °0 45 is computed: =µ 519.72 m/svP . Then the numerical magnitudes vP
related those nodes along the above path are divided by µvP and, by plotting such a ratio against the angular coordinate , it can be
observed in Fig. 6 that the influence of the mesh orientation (by varying the angle value) on the wave velocity is negligible, being
the vP value lower than or greater than µvP by no more than about 2%.

In Fig. 7, the Fast Fourier Transform (FFT) of the vertical displacement uz is plotted in the dispersion curve domain represented by
the frequency f against the wave number k = 1/ . In order to draw such a graph, the vertical displacement is registered during a
time interval from 0 to 0.5 s (time step equal to 7(10)−5 s) in 200 points lying on a horizontal segment delimited by points having
coordinates equal to (10.75; 0.0; 23.75)m and to (110.75; 0.0; 23.75)m. More precisely, firstly such data are used to build a matrix in
time-space domain, each row containing the vertical displacement related to the above 200 points at a given time instant (matrix size
equal to 7142 × 200). Then, by applying the FFT to such a matrix, a new matrix is obtained in frequency-space domain. Finally, by
applying again the FFT to the last matrix, a matrix in the frequency-wave number domain is determined. Details about the procedure
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Fig. 4. Plot of the function given in Eq.(15), for =u 2 mm0 , =t 0.02 sa , =t 0.12 sb , and =f Hz50 .
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adopted my be found in Ref. [54].
Further, the theoretical dispersion curves related to the dilatational, shear and Rayleigh waves are plotted (see three red lines in

Fig. 7). It can be observed that the maximum value of uz is attained at frequency of 50 Hz and at wave length of about 5 m (k = 0.2/
m) for the Rayleigh wave, and at wave length of 10 m (k = 0.1/m) for the dilation wave.

3.2. Simulation No. 2

3.2.1. Ground model through the LDEM
The ground is modelled as is described in Section 3.1.1. With respect to Simulation No.1, a vertical barrier is included into the
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wave.
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ground. The vertical barrier has depth of 5 m and width of 0.5 m. The barrier is assumed to be filled by concrete: =E 11.30 GPab ,
=v 0.25b and = 2397.5 kg/m .b

3

The excitation is applied to a surface with length of 1.25 m in x-direction and of 2.5 m in y-direction (see Fig. 8). Such an
excitation is applied to the model through a pressure p in z-direction, given by:

=p p sin ft sin t t
t

H t t H t t(2 ) ( ) ( ) ( )a

d
a b0 (19)

for =p 1 kN/m0
2, =t 0.0 sa , =t 0.5 sb , and =f 50 Hz.

The damping ratio is taken to be equal to 1% for the ground and 6% for the barrier, whereas =f 50 Hzp . By exploiting Eq.(6) and
the above input data, the damping matrix C is computed.

3.2.2. Results
In Fig. 9(a), the vertical displacement reduction ratio ruz is plotted against the normalized coordinate x / min, being such a ratio

defined as follows:

=r
u x
u x

( )
( )u

z
b

z
z (20)

where uz
b is the maximum value of uz when the barrier is included into the ground, uz is the maximum value of vertical displacement

when the barrier is absent, and x’ is the local abscissa shown in Fig. 8, with its origin at point with coordinates equal to
(25.0;0.0;23.75) m. The dashed line corresponds to the case without damping (both in the ground and in the barrier), whereas the
continuous line corresponds to the case with damping. The minimum wave length min computed by using Eq. (17) is equal to 5.05 m.
Fig. 9 shows that the model is quite sensitive to damping.

Note that the results reported in Refs. [55–57] are also plotted in Fig. 9(a). In such cases, the problem being examined is solved in
frequency domain. A quite good agreement between the present results with damping and those taken from the literature can be
noticed, especially for x1 / 3min .

The normalized vertical displacement, defined as the ratio between the maximum value of vertical displacement u x( )z
b and the

maximum vertical displacement uz max
b
, in the range x5 5 m, when the barrier is included into the ground, is plotted in

Fig. 9(b) against the normalized coordinate x / min (only the results for x0 5 m are plotted). The case without barriers is also
examined. Both curves are obtained without damping.

Since the barrier is located at =x / 0min , it can be noted that the barrier is effective up to =x / 0.7min : as a matter of fact, over
such a value, the vertical displacements can be amplified due to the barrier, as has also been remarked in a recent work by Carpinteri
et al. [58].

In Fig. 10, both the elastic and the kinetic energy against time are plotted, with barrier (Fig. 10(a)) and without barrier
(Fig. 10(b)). It can be noticed that the presence of the barrier produces a local increment of the oscillation in both elastic and kinetic
energy.

4. Complex simulations by using the LDEM

The present Section is aimed to show the capability of LDEM to solve geotechnical problems which can hardly be solved with
other numerical methods.

4.1. Simulation

4.1.1. Ground model through the LDEM
Ground and barrier properties are those used in Section 3.2.1. Furthermore, damage of the bars due to cracks nucleation and

propagation of the ground is implemented in the model.
The excitation is applied (in two steps) to a surface with length of 1.25 m in x-direction and 2.5 m in y-direction (see Fig. 11).
Firstly, a vertical transient pulsed pressure characterized by a parabolic shape is applied. Its maximum value =p 10 MPamax is

attained at time instant 0.25 s, whereas the value =p 7.5 MPa is reached at time instants equal to both =t 0.0125 s and =t 0.0375 s.
The total duration of such an excitation is 0.5 s. The effect of this excitation is to produce a smeared damage in the ground. Then, a
second excitation is applied to the model by a pressure p acting in z-direction, described by the function given in Eq. (19), for

Fig. 8. LDEM model used in the basic simulation No. 2. The region of total absorption boundary condition is highlighted in red.

S. Vantadori, et al. Engineering Failure Analysis 110 (2020) 104360

8



=p 0.1 MPa0 , =t 0.0 sa , =t 0.5 sb , and =f 50 Hz.
In order to model the damage condition of the ground, the parameters discussed in Section 2 have to be fixed. The mean value of

the specific fracture energy µGf is equal to 50 N/m, and the strain at the peak load is equal = 1.5 (10)p
4. By employing Eq.(12), the

value of the material characteristic length is computed: =d m6.92 .eq The strain r is equal to 0.003, being =A A/ 0.341n n ,
=A A/ 0.349d d , and =L 0.50 mn .

In order to describe the statistical distribution of the specific fracture energy Gf (see Eq.(13)), the coefficient of variation CV ,Gf is
taken equal to 0.8, whereas the correlation lengths Lcx , Lcy and L ,cz used to define the spatial correlation function of Gf , are equal to
0.50 m.
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Fig. 12. Damage in the model region, highlighted by a dashed rectangle (with sizes 10 × 10 m) in Fig. 11, in terms of: (a) broken bar, (b) damage
index for the broken bars oriented in z-direction, and (c) damage index for the broken bars oriented in x-direction.
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Fig. 13. Displacement magnitude (expressed in m) in the model region, highlighted by a dashed rectangle (with sizes 10 × 10 m) in Fig. 11: (a) only
the second loading step is applied, (b) both loading steps are applied.
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4.1.2. Results
Let us consider the bars related to the model region highlighted by a dashed rectangle in Fig. 11. In Fig. 12(a), the bars broken

after the application of the first loading step are highlighted in red. The damage index, defined as the ratio between the elastic
modulus of a broken bar over the elastic modulus of the ground, is plotted in Fig. 12(b), related to broken bars oriented in z-direction,
whereas the damage index related to broken bars oriented in x-direction is plotted in Fig. 12(c). Such a damage condition is also that
after the application of the second loading step, due to the low amplitude of such a step.

Fig. 13 shows the contour map of the displacement magnitude at time instant 2.25 s related to the above model region. More
precisely, Fig. 13(a) refers to displacements when only the second loading step is applied to the model, whereas Fig. 13(b) refers to
displacements when both loading steps are applied.

It can be observed in Fig. 13(b) that the ground damage region behaves as a filter of wave propagation due to the lack of both
isotropy and homogeneity in such a region, whereas the wave pattern shape is concentric in Fig. 13(a).

The results in terms of energy balance are shown in Fig. 14. More precisely, the normalized energy (elastic, kinetic and dis-
sipated), defined as the ratio between the energy value at a given time instant and the maximum value of such an energy registered
during the simulation, is plotted against the time. Such normalized energies are those produced by the first loading step.

Let us consider a damping ratio equal to 5% for the barrier. The results in terms of energy balance are shown in Fig. 15. More
precisely, the normalized energy (elastic, kinetic and dissipated) is plotted against the time, with and without the barrier. Such
normalized energies are those produced by the second loading step.

In this case, the normalized energy is defined as the ratio between the energy value at a given time instant and the maximum
value of such an energy registered during the simulation without barrier. It can be noticed that the barrier produces a considerable
increase of both elastic and kinetic energy. The influence of the damping in terms of energy balance can be examined by comparing
Fig. 15(b) with Fig. 15(c). As a matter of fact, it can be observed that the amplitude of the oscillation decreases in Fig. 15(c).

5. Conclusions

As is well-known, one of the main problems encountered in the numerical simulation of wave shielding by using vertical barriers
is the ground modeling. To solve this problem, the LDEM has been herein employed to simulate both typical elastic-dynamic pro-
blems and a complex problem consisting in the simulation of the wave shielding produced by a vertical barrier into a damaged
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Fig. 15. Energy balance: (a) normalized energy (elastic and kinetic) against time without the barrier, (b) with barrier inside the ground, without
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ground where wave propagation occurs. More precisely, in the first part of the paper, the LDEM has been applied to two typical
elastic-dynamic problems. Then, a more complex problem has been examined by considering damage of the ground. It has been
shown that LDEM can be employed to accurately simulate problems of wave propagation in semi-infinite space. Further, the cap-
ability to include damage into ground has been shown, that makes the method an interesting tool for analysis of the actual problems.

Note that the input data used in the present simulations have been chosen in an arbitrary way. In the case of the simulation of
experimental tests, a calibration of the numerical model in terms of the material properties is needed; further, the definition of the
statistical properties of the whole random fields is needed and, consequently, more than one simulation has to be performed.
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