
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

A flexible and modular data format ROOT-based implementation for
HEP
To cite this article: Domenico D'Urso and Matteo Duranti 2015 J. Phys.: Conf. Ser. 664 072016

View the article online for updates and enhancements.

This content was downloaded from IP address 5.189.205.229 on 12/07/2018 at 19:15

https://doi.org/10.1088/1742-6596/664/7/072016
http://oas.iop.org/5c/iopscience.iop.org/519528089/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?

A flexible and modular data format ROOT-based

implementation for HEP

Domenico D’Urso1,2,4 and Matteo Duranti2,3

1 ASDC, Via del Politecnico, 00133 Roma, Italy
2 INFN Sez. Perugia, Via A. Pascoli, 06123 Perugia, Italy
3 University of Perugia, Piazza Università 1, 06100 Perugia, Italy

E-mail: domenico.durso@pg.infn.it

Abstract. Data access and availability is a crucial issue in high energy physics (HEP)
experiments, given the huge amount of data produced. We present a flexible and modular
data format implementation for HEP applications. It has been designed to modularize data in
order to update the minimum amount of event information in case of bug correction, software
updates or data format extension, to simplify data distribution and upgrades to the regional data
centers, and to reduce the amount of data to be transferred to data members really affected by
reprocessing. The proposed design and implementation has been developed as mini-DST data
format for the Alpha Magnetic Spectrometer (AMS [1]) experiment on the International Space
Station (ISS) and is based on the CERN ROOT [2] toolkit.

1. Introduction
HEP experiments produce a huge amount of data per year, from several hundreds Tera bytes
to a few Peta bytes. The access to these data is a crucial issue that has to be faced to allow
the members of more and more large international collaborations, spread all over the world, to
efficiently process and analyze them.

Big experiments and big collaborations, like LHC experiments, usually, are adopting a multi-
tier hierarchical architecture: the data and the first level of computing (the first reconstruction
of raw data) is performed on a tier 0, then these data are moved to several regional centers,
tier 1, where higher level of reconstruction is performed and multiple copies of data are stored.
A network of local centers, tier 2 and tier 3, allows the final users to analyze and process the
data to produce physics results (see [3], [4],[5],[6] for a discussion about the computing model of
mayor LHC experiments, CMS, LHCb, ATLAS and ALICE).

When a newer or better calibration is available, a bug is found in the previous reconstruction,
or, in general, a new reconstruction is needed, a reprocessing is done by the tier 1 network (or
tier 0, depending on the level of reprocessing needed) and then the data should be transferred
again to all of the lower level tiers.

In most of the cases, only a part of the data (i.e. a single sub-detector) is affected by the
new calibration or by the bug fix, while great part of the existing data does not need to be
reprocessed and, moreover, to be transferred across the levels of the multi-tier structure. This
constitutes a not negligible effort in terms of computing power as well as data transfer.

4 Corresponding author

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072016 doi:10.1088/1742-6596/664/7/072016

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

We present a flexible and modular data format that allows to face the described data issues,
keeping an easy data access suitable for user analysis. The project is based on a widely used HEP
toolkit, the CERN ROOT[2] (written in C++), exploiting potentialities of TTree class, to store
large quantities of data objects, and the concept of friendship among TTree, to split and manage
event information into a multiple file scheme. In particular, we discuss the implementation for
the Alpha Magnetic Spectrometer (AMS [1]) experiment (see [7] for a discussion about AMS
computing model).

2. A modular data format
The desired design for the data format should then have the following features:

• modularity, event information must be split in different files as much as possible (the
minimum scheme is the splitting by sub-detector);

• distinction between low level physical quantities, that need to be recalculated only in
special cases, and high level physical quantities, that for examples might use of non-
standard reconstruction algorithms and/or often might need to be recalculated after a new
optimization of analyses;

• easily upgradable, must be possible to upgrade and “re-build” (if a bug has been found)
even a single module or, generally, a single part of event information;

• extendable, must be possible to build and add new modules to the existing ones;

• simple, it should be suitable for user analysis.

To fulfill all of the requirements, the implementation of the data format has been based on:

• C++ inheritance and polymorphism;

• ROOT TTree friendship.

2.1. C++ inheritance
The C++ inheritance allows to define a set of base classes and successively implement several
extension of each of them.

A set of base classes corresponding to all of the sub-detectors of the experiment under
consideration can be defined. Let’s assume that one of the sub-detectors is a Tracker and
define myTrTrack as the class to store and access the information about recorded tracks. One
can imagine to store, in this class, just a few variables, as the impact point at the center of the
sub-detector, the azimuthal and the zenith angle of the track, the number of hits belonging to
the track and, in case of a magnetic spectrometer (like AMS), also a raw estimation of the track
curvature (i.e. of the Rigidity, that is the ratio of the particle momentum over its charge). This
class can be useful for simple checks, general studies and for raw analyses. On the other hand,
its overall size is quite small and contained quantities are quite stable.

A second class, myTrTrackPlus, can be then defined to store a larger amount of Tracker related
event information. This class can contain variables like the refined value of the curvature (for
example depending on the detector alignment, and so subject to change), the chi-square of the
fit, the average dE/dx along the track, etc... The instances of this second class, as explained
below, can be streamed on a different file, w.r.t. the file where the myTrTrack objects are
written. Different algorithms or version of the reconstruction, for the same detector, can be
stored in different “Plus” classes, so defining a myTrTrackAPlus, myTrTrackBPlus and so on.

During data processing, the user can access to the whole set of information contained in the
class myTrTrack and the group of “Plus” classes in a transparent way, regardless of which piece
of event information is contained in which class, by building on-the-fly a myTrTrackFull instance,
inheriting from all of the considered classes and simply containing default copy constructors (see
section 3.4).

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072016 doi:10.1088/1742-6596/664/7/072016

2

2.2. Polymorphism
The C++ polymorphism allows to assign different meaning or usage to the same variable, function
or object. In the present case, it allows to have a very general scheme of data access. Let’s
consider the class containing the root of the hierarchical data structure, let’s call it myEvent.
It must have a “link” to all of the sub-classes (i.e. to all the sub-detectors), like myTrTrack, to
permit users to access all of the stored information. Linking the sub-classes by means of pointers
(for example storing the objects using vectors, or whatever ROOT collections, of pointers), one
has the flexibility to route the “link” to different objects, thanks to the C++ polymorphism. The
pointer can be to a generic myTrTrackBase, or even to a ROOT TObject, and then actually
point to myTrTrack, myTrTrackPlus or myTrTrackFull.

2.3. TTree friendship
The concept of TTree friendship has been adopted and exploited to allow the splitting of the
same event structure across different files but keeping the root of the hierarchy, the “main” (a
TTree containing the myEvent class), self-consistent and able to be linked to whatever set of the
“advanced” classes.

The idea is to store the TTree with the myEvent class in one file and include in the same file
three leafs: run, event number and time stamp. Then one can store on different files the TTree’s
with the instances of the classes holding the information related to the various sub-detectors.
Using the TTree friendship, one can re-build the correct “network” of objects thanks to the
indexing: objects with information per event will be “matched” by run and event number, while
objects holding time-dependent information (like slow-control variables, cfr. 3.1) by the event
time stamp.

3. Implementation
The proposed data format has been tested for the realization of a “mini-DST” version of the
AMS experiment reconstructed data. In this case, data format is a different, lighter and simpler
organization of the already reconstructed and ROOT based AMS data. The goals, anyhow, are
exactly the same: modularity and splitting (for a faster re-distribution in case of reproduction),
easy upgradability and extendability (they are used as “working ntuples” but, after 4 years of
mission and ∼ 500 TB of full reconstructed data, their production and distribution is anyhow a
big effort), and simplicity.

Merging together the ideas discussed in the previous section, the implementation has been
quite straightforward. A “Main” ROOT TFile contains the TTree of the myEvent objects. In
addition, as said before, the same file contains three leaves: run, event number and time stamp
for indexing.

The myEvent class structure is quite simple, as shown in Fig.1:

• it is a TObject, to exploit all the features the ROOT developer team put
in it. Anyhow no additional space is wasted for fBits and fUniqueID since
MyClass::Class()->IgnoreTObjectStreamer() is called in the constructor;

• the class is instanced as a singleton, so the current event is available in each part of the code
(for manageability, it is not mandatory and can be easily removed to allow multi-thread
processing);

• a set of vectors of sub-event “basic” object pointers, corresponding to the myTrTrack class
typology;

• a set of vectors of sub-event “advanced” object pointers, corresponding to the
myTrTrackPlus class typology, stored in dedicated files;

• a pointer to object containing slow control data, stored in a dedicated file (see section 3.1);

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072016 doi:10.1088/1742-6596/664/7/072016

3

• a pointer to a generic structure that can be used to access a customized user data object,
stored in a dedicated file (see section 3.2).

Vectors to “advanced” object pointers and pointers to slow control data and user class have
the instruction //! to set ROOT to not stream the pointed objects when streaming the myEvent
class. Those objects are streamed on a different file “by hand”.

“Advanced” objects contain a larger set of sub-detector variables and variables dependent on
multiple detectors. They are not written on the disk when myEvent is saved and each vector
is stored in a dedicated file. Vectors contain pointers to generic objects, corresponding to the
myTrTrackBase typology, to exploit the C++ polymorphism (see section 2.2).

Figure 1. The structure of the myEvent class.

class myEvent : public TObject {

protected :
stat ic myEvent∗ ptr ; // !

public :
stat ic myEvent∗ gethead () ;
stat ic void p r i n t p t r () ;
virtual void i n i t () ;

s td : : vector<myPart ic le∗> vmp;
std : : vector<myTrTrack∗> vmt ;
std : : vector<myEcalShower∗> vme ;
std : : vector<myTrdTrack∗> vmu;
std : : vector<myBeta∗> vmb;
std : : vector<myRichRing∗> vmr ;

std : : vector<myTrTrackPlus∗> vmtp ; // !
std : : vector<myTrdTrackPlus∗> vmup ; // !
std : : vector<myEcalShowerPlus∗> vmep ; // !
std : : vector<myBetaPlus∗> vmbp ; // !
std : : vector<myRichRingPlus∗> vmrp ; // !

std : : vector<myTrTrackBPlus∗> vmtbp ; // !

mySlowControl∗ sc ; // !

myUser1∗ us1 ; // !

public :
ClassDef (myEvent , 3 0) ;

} ;

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072016 doi:10.1088/1742-6596/664/7/072016

4

3.1. Slow control
An object containing data taking conditions has been included in the event data structure. Since
each TTree has the three leaves for indexing (run, event number and time stamp), it can be
indexes on the event time stamp, so there is no need to store slow control information on event
base. In the AMS case, it specifies the International Space Station and the AMS position and
orientation and other quantities related to the detector status. Information are evaluated and
stored second by second. Indexing on the event time stamp, one can access to the slow control
data information corresponding to the data taking conditions of the event under study.

3.2. myUser
A specific pointer to a generic myUser object has been included within the myEvent data
structure. The user can implement his own object and store it on a separated file, that will
be accessed though the TTree friendship. It contains the three leaves to be used for indexing
(run, event number and time stamp), so the user can produce his own data stream with a
dedicated selection and store only “interesting” events. It can also be used to substitute the
user custom ntuples.

3.3. Data access
A “main” data file is produced storing the myEvent data object with all of the sub-event
“basic” objects attached to. Event information from accessory files are then retrieved using
the TTree friendship. Access to secondary files, containing “advanced” objects, are managed by
a customized TChain, myChain, that loads on demand the needed objects. Once the path of
a “main” data tree is passed to an instance of myChain, it searches for all the secondary files
available at a pre-defined path, that can be set by the user, and it assigns each of retrieved
objects to the corresponding sub-event “advanced” object pointer, contained in the myEvent
object. The user can also set to retrieve only a subgroup or a specific accessory file. Through the
myChain, the user can access to all of event information. Furthermore, exploiting the properties
of its ROOT parent class, the TChain, the user can do a simple draw of desired variables. If
the desired “advanced” object is not retrieved, the corresponding pointer will be kept at NULL.
Dedicated members of myChain could give at any time the list of available “advanced” objects.

3.4. myFullObject
To simplify data access, a single common interface, myFullObject, obtained by means of a
multiple inheritance, has been implemented to address the full set of information contained in
one of the “basic” object and all of its “advanced” objects. Considering the case of myTrTrack
and myTrTrackPlus, seen in section 3, at reading time, an instance of myTrTrackFull is built
on-the-fly, deriving from both, myTrTrack and myTrTrackPlus. The user has not to care about,
while developing its analysis code, if the data member is looking for is contained in the “basic”
class or in one of its “advanced” object. It is enough to guarantee the presence of all the needed
files (i.e. accessory files with the “advanced” objects) and then he can access to all of the data
members of both, the “basic” and “advanced” objects, by means of a completely transparent
unique interface.

The “full” object contains the list of “advanced” objects linked to the “main” file at the
reading time, corresponding to the “basic” object under consideration. Taking the example of
myTrTrackFull, it contains the list of the different myTrTrackPlus retrieved (myTrTrackAPlus,
myTrTrackBPlus and so on). Hence, directly from the “full” object, myTrTrackFull, the user can
realize which objects of myTrTrackPlus typology are available. Since the myFullObject inherits
by both, the “base” and the “advanced” classes, one doesn’t need to write and maintain the
code needed to fill up the “full” object, it is automatically done by the copy constructor. In

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072016 doi:10.1088/1742-6596/664/7/072016

5

that way, the proposed data format and the “full” mechanism are completely transparent to the
final user and to the data format maintainer.

3.5. myInfo
In order to garanteee a full reproducibility of data production, a dedicated objet, myInfo, has
been implemtented to keep track of all information regarding the DST production. In the AMS
implementation, we store:

• date of DST production;

• name of “original” AMS reconstructed files processed to obtain the DST;

• version of the AMS general software used to acces AMS reconstructed files;

• version of the DST software;

• list of secondary files produced;

• additional notes to the production.

A reference to the myInfo object is attached to the TList containing user objects associated to
the “main” tree. The user can get the access to the TList attached to the tree by the method
GetUserInfo(). From the myInfo object, the user can derive which secondary files have been
produced and if there special notes related to the production. Hence, just from the “main” tree,
the user can have a detailed description of all the production. Each time a new piece of data is
reprocessed, a new myInfo object is attached to the TList of the “main” tree.

4. Conclusions
A data format based on ROOT has been designed to be modular, upgradable and extendable,
and to face all of the HEP data issues. In this contribution, the implementation of a “mini-DST”
version of the AMS experiment reconstructed data has been presented. Event information are
split over several files, that may contain different parts of event (i.e. different sub-detectors) or
different level of abstraction (i.e. from raw information to the highest level quantities). Due to
its modularity, it is suitable for a mini-DST format as well as a complete data format. Data
set is easily upgradable, without a full reprocessing of data. File splitting allows a very efficient
distribution and upgrade of data to the regional Centers, as well as the possibility to download
and process a small fraction of event information, even on the user laptop.

Acknowledgments
We would like to thank Dr. Paolo Zuccon (MIT) for the precious discussions about the design
and the possible implementation of the proposed data format. We would like also to thank Dr.
Zhicheng Tang (IHEP) and Dr. Konstantin Kanishchev (University of Trento) for the help given
in the implementation of some functionalities and for the large amount of test and debug work.

References
[1] Aguilar M et al. 2013, Physical Review Letters 110, 141102.
[2] Antcheva I et al. 2009 Computer Physics Communications 180 12, 2499 - 2512,

https://root.cern.ch/guides/reference-guide.
[3] C. Grandi et al. 2014, Proc. of 20th CHEP, Journal of Physics: Conf. Ser. 513, 032039.
[4] M. Cattaneo et al. 2014, Proc. of 20th CHEP, Journal of Physics: Conf. Ser. 513, 032017.
[5] R. W. L Jones and D. Barberis, 2010, Proc. of 17th CHEP, Journal of Physics: Conf. Ser. 219, 072037.
[6] T. Chujo et al., Proc. of 21st CHEP, these proceedings.
[7] Shan B. et al., Proc. of 21st CHEP, these proceedings.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072016 doi:10.1088/1742-6596/664/7/072016

6

