
© The Author 2010. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on February 22, 2010 doi:10.1093/comjnl/bxq019

A Java-Based Agent Platform for
Programming Wireless Sensor

Networks†

Francesco Aiello, Giancarlo Fortino
∗
, Raffaele Gravina

and Antonio Guerrieri

Department of Electronics, Informatics and Systems (DEIS), University of Calabria, Via P. Bucci, cubo 41c,
87036 Rende (CS), Italy

∗Corresponding author: g.fortino@unical.it

Wireless sensor networks (WSNs) are emerging as powerful platforms for distributed embedded
computing supporting a variety of high-impact applications. However, programming WSN
applications is a complex task that requires suitable paradigms and technologies capable of
supporting the specific characteristics of such networks which uniquely integrate distributed sensing,
computation and communication. Mobile agents are a distributed computing paradigm based on
code mobility that has already demonstrated high effectiveness and efficiency in IP-based highly
dynamic distributed environments. Due to their intrinsic characteristics, mobile agents may provide
more benefits in the context of WSNs than in conventional distributed environments. In this paper
we present the design, implementation and experimentation of MAPS (Mobile Agent Platform for
Sun SPOT), an innovative Java-based framework for wireless sensor networks based on Sun SPOT
technology which enables agent-oriented programming of WSN applications. The MAPS architecture
is based on components that interact through events. Each component offers a minimal set of services
to mobile agents that are modeled as multi-plane state machines driven by ECA rules. In particular,
the offered services include message transmission, agent creation, agent cloning, agent migration,
timer handling and easy access to the sensor node resources (sensors, actuators, input switches, flash
memory and battery). Agent programming with MAPS is presented through both a simple example
related to mobile agent-based monitoring of a sensor node and a more complex case study for real-
time human activity monitoring based on wireless body sensor networks. Moreover, a performance
evaluation of MAPS carried out by computing micro-benchmarks, related to agent communication,

creation and migration, is illustrated.

Keywords: agent systems; mobile agents; event- and state-based programming; wireless sensor networks;
body sensor networks; human activity monitoring

Received 4 November 2009; revised 4 December 2009
Handling editor: Alex Rogers

1. INTRODUCTION

Due to recent advances in electronics and communication
technologies, wireless sensor networks (WSNs) have been
introduced and are currently emerging as one of the most
disruptive technologies enabling and supporting next generation

†Revised and extended version of the paper: Aiello, F., Fortino, G., Gravina,
R. and Guerrieri, A. (2009) MAPS: A Mobile Agent Platform for Java Sun
SPOTs. Proc. 3rd Int. Workshop on Agent Technology for Sensor Networks
(ATSN-09), jointly held with the 8th Int. Joint Conf. Autonomous Agents and
Multiagent Systems (AAMAS-09), May 12, Budapest, Hungary.

ubiquitous and pervasive computing scenarios. WSNs have a
high potential to support a variety of high-impact applications
such as disaster/crime prevention and military applications,
environmental applications, health-care applications and smart
spaces. However, programming WSNs is a complex task due to
the limited capabilities (processing, memory and transmission
range) and energy resources of each sensor node as well
as the lack of reliability of the radio channel. Moreover,
WSN programming is usually application-specific (or more
generally domain-specific) and requires tradeoffs in terms of

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

440 F. Aiello et al.

task complexity, resource usage and communication patterns.
Therefore the developed software, which usually integrates
routing mechanisms, time synchronization, node localization
and data aggregation, is tightly dependent on the specific
application and scarcely reusable. Thus to support rapid
development and deployment of WSN applications flexible,
WSN-aware programming paradigms are needed, which
directly provide proactive and on-demand code deployment at
runtime as well as ease software programming at the application,
middleware and network layers.

Among the programming paradigms proposed for the
development of WSN applications [1, 2], the mobile agent-
based paradigm [3, 4], which has already demonstrated its
effectiveness in conventional distributed systems as well as
in highly dynamic distributed environments, can effectively
deal with the programming issues that WSNs have posed. In
particular, a mobile agent is a software entity encapsulating
dynamic behavior and able to migrate from one computing node
to another to fulfill distributed tasks. We believe that mobile
agents can provide more benefits in the context of WSNs than
in conventional distributed environments. In particular, mobile
agents can support the programming ofWSNs at the application,
middleware and network levels. At the application level, mobile
agents can be used as design and programming abstractions
through which WSN applications can be effectively designed
and implemented. At the middleware level, mobile agents can
be used for implementing WSN core services such as data
aggregation/fusion/dissemination and query-based information
retrieval, and for dynamically deploying new services through
efficient code dissemination.At the network level, mobile agents
can be used as the mobile capsules in active networks for
smart multi-hop routing and other network services. A few
trials have to date been devoted to the development of mobile
agent systems (MASs) for wireless sensor networks (Agilla [5],
actorNet [6], SensorWare [7]); however, none of them has been
specifically developed for the Sun SPOT sensor platform [8],
which is completely programmable in Java, supported by
the SquawkVM [9] and compatible with J2ME. Indeed, a
noteworthy agent-based framework for J2ME devices, agent
factory micro edition (AFME) [10], has been recently ported
on Sun SPOT; however, not being conceived specifically for
Sun SPOT technology, AFME does not completely exploit its
functionality.

In this paper, we propose MAPS (Mobile Agent Platform
for Sun SPOT), an innovative Java-based framework for
wireless sensor networks based on Sun SPOT technology which
enables agent-oriented programming of WSN applications.
The architecture of MAPS is component-based and offers
a minimal set of services to mobile agents, including
message transmission, agent creation, agent cloning, agent
migration, timer handling and easy access to the sensor node
resources (sensors, actuators, input switches, flash memory and
battery). The dynamic behavior of mobile agents is modeled
as multi-plane ECA-based state machines. MAPS therefore

enables a highly effective application programming through an
integration of three of the most important paradigms for WSN
programming: agent-oriented, event-based and state-based
programming. The effectiveness of MAPS is demonstrated by
the development of simple example applications (e.g. mobile
agent-based remote monitoring of sensors) as well as a more
complex case study. While the former aims at testing MAPS and
describing how to program an application with MAPS, the
latter highlights the effectiveness and suitability of MAPS
for developing a real-time system supporting human activity
monitoring which is of enormous importance in the health-
care domain. However, great effectiveness usually implies
performance penalties; to address such issues a performance
evaluation of the basic mechanisms of MAPS and Sun SPOT
(e.g. communication and migration) has been carefully carried
out to quantify the unavoidable overhead introduced by MAPS.

The contributions that this work offers to the WSN
programming research area are the following:

(i) A novel Java-based agent platform for Sun SPOT that
allows an effective Java-based development of agents
and agent-based applications by integrating agent-
oriented, event-driven and state-based programming
paradigms. Moreover, being based on a component-
based approach, which clearly separates component
interfaces from their implementations, MAPS is easily
portable on other Java sensor platforms (e.g. Sentilla
JCreate sensors [11]).

(ii) The performance evaluation carried out allows evaluat-
ing not only MAPS per se but also the degree of maturity
of the Sun SPOT technology for supporting (mobile)
agent-based applications and systems. An interesting
result is that migration is still an open issue since Sun
SPOT mechanisms supporting migration still need to be
improved (e.g. lack of dynamic class loading) and opti-
mized (hibernation and serialization of Isolates are too
time-consuming operations).

(iii) The development of a real case study concerned with
testing the effectiveness and the suitability of the agent-
based approach featured by MAPS for the development
of a complex application in the health-care domain such
as the real-time monitoring of human activities.

The rest of the paper is organized as follows. Section 2
discusses related work and, in particular, currently available
(mobile) agent systems/platforms for WSNs. Section 3 presents
the requirements, architecture and the agent programming
model of MAPS. Section 4 describes the implementation of
MAPS based on the Java Sun SPOT library. In Section 5,
a simple example is provided for exemplifying the agent-
based application programming with MAPS. Section 6 shows
the performance evaluation of MAPS carried out through
micro-benchmarks, whereas Section 7 proposes a real case
study developed through MAPS for the real-time monitoring
of human activities based on wireless body sensor networks

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Java-Based Agent Platform for A Programming WSNs 441

(WBSNs). Finally, conclusions are drawn and future work
briefly anticipated.

2. RELATED WORK

Mobile agents are supported by MASs, which basically provide
an agent server, an Application Programming Interface (API)
for mobile agent programming and, sometimes, supporting
programming and administration tools. In particular, the agent
server is able to execute agents by providing them with basic
services such as migration, communication and resource access.
In the last decade, a significant number of MASs for IP-based
distributed computing systems have been developed [3]. The
majority of them are Java-based (e.g. Aglets, Voyager, Ajanta,
JADE etc.) and few others rely on other languages (D’Agents,
ARA etc.).

In the context of WSNs it is challenging to develop MASs
for supporting mobile agent-based programming [12]. Due
to the currently available resource-constrained sensor nodes
and related operating systems, building flexible and efficient
MASs is a very complex task. Very few MASs for WSNs have
to date been proposed and actually implemented. The most
significant ones are: SensorWare [7],Agilla [5] and actorNet [6].
A general mobile-agent-oriented sensor node architecture to
which such MASs adhere is shown in Fig. 1. The MAS relies
on the services offered by the OS and the mobile agents are
executed within the MAS, which supports their inter-node
migrations, sensing capabilities and resource access, and inter-
agent communications.

SensorWare [7] is a general middleware framework based on
agent technology, where the mobile agent concept is exploited.
Mobile control scripts in Tcl model network participants’
functionalities and behaviors, and routing mechanisms to
destination areas. Agents migrate to destination areas
performing data aggregation reliably. The script can be very
complex and diffusion gets slower when it reaches destination
areas. The replication and migration of such scripts in several
sensor nodes allows the dynamic deployment of distributed
algorithms into the network. SensorWare defines, creates,
dynamically deploys and supports such scripts. SensorWare
is designed for iPAQ devices with megabytes of RAM. The

HW

HW abstraction
layer

OS

MAS

MA MA MA

HW

HW abstraction
layer

OS

MAS

MA MA MAAgent Migration

FIGURE 1. A general mobile-agent-oriented sensor node
architecture.

verbose program representation and on-node Tcl interpreter can
be acceptable overheads; however, they are not yet on a sensor
node.

Agilla [5] is an agent-based middleware where each node
supports multiple agents and maintains a tuple space and
neighbor list. The tuple space is local and shared by the agents
residing on the node. Special instructions allow agents to
remotely access another node’s tuple space. The neighbor list
contains the address of all one-hop nodes. Agents can migrate
carrying their code and state, but do not carry their own tuple
spaces. Agilla is currently implemented on MICA2, MICAZ
and TelosB motes.

While both Agilla and SensorWare rely on mobile agents
they employ a different communication model: Agilla’s agent
interaction is based on local tuple spaces, whereas SensorWare’s
agent interaction is based on direct communication based on
network messages. In [13] another mobile agent framework
is proposed. The framework is implemented on Crossbow
MICA2DOT motes. In particular, it provides agent migration
and agent interaction based both on local shared memory and
network messages. In [14] the authors propose an extension
of Agilla to support direct communication based on messages.
In particular, to establish direct communications, agents are
mediated by a middle component (named landmark) that
interacts with agents through zone-based registration and
discovery protocols.

In [6] actorNet, a mobile agent platform for WSNs based on
the Actor model is proposed. In particular, it provides services
such as virtual memory, context switching and multi-tasking
to support a highly expressive yet efficient agent functional
language. Currently, the sensor node actorNet platform is
specifically designed for TinyOS on Mica2 sensors.

The above described MASs for WSNs [5, 6, 13, 14]
are all implemented for TinyOS-based sensor platforms and
use ad hoc languages for agent programming (Agilla uses
a micro-programming language, whereas actorNet employs
a functional-oriented language). Although some supported
operations (e.g. migration) are very efficient, programming
complex tasks is not so straightforward and, moreover,
developers need to learn another very specific language.

Finally, the Java-based AFME [15], a lightweight version
of the agent factory framework purposely designed for
wireless pervasive systems and implemented in J2ME, has
been recently ported onto Sun SPOT and purposely used for
exemplifying agent communication and migration in WSNs
[10]. However, AFME was not specifically designed for WSNs
and, particularly, for Java Sun SPOT. MAPS, the Java-based
agent platform proposed in this paper, is conversely specifically
designed for WSNs and fully uses the release 4.0 (blue)
of the Sun SPOT library to provide advanced functionality
of communication, migration, sensing/actuation, timing and
flash memory storage. Moreover, it allows developers to
program agent-based application in Java according to the
rules of the MAPS framework, and thus no translator and/or

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

442 F. Aiello et al.

interpreter need to be developed and no new language has to
be learnt.

3. MAPS ARCHITECTURE AND PROGRAMMING
MODEL

In this section requirements, architecture (at system and agent
level) and programming model of MAPS are described.

3.1. Requirements

The MAPS framework has been appositely defined for resource-
constrained sensor nodes; in particular its requirements are the
following:

(i) Lightweight agent server architecture. The agent server
architecture must be lightweight, which implies the
avoidance of heavy concurrency models and, therefore,
the exploitation of cooperative concurrency to run
agents.

(ii) Lightweight agent architecture. The agent architecture
must also be lightweight so that agents can be efficiently
executed and migrated.

(iii) Minimal core services. The main core services must
be: agent migration, sensing capability access, agent
naming, agent communication and timing. The agent
migration service allows an agent to be moved from one
sensor node to another by retaining the code, data and
execution state. The sensing capability access service
allows agents to access the sensing capabilities of
the sensor node and, more generally, its resources
(actuators, input signalers, flash memory). The agent
naming service provides a region-based namespace
for agent identifiers and agent locations. The agent
communication service allows local and remote one-
hop/multi-hop message-based communications among
agents. The timing service allows agents to set timers
for timing their actions.

(iv) Plug-in-based architecture extensions. Any other
service must be defined in terms of one or more
dynamically installable components (or plug-ins)
implemented as single mobile agents or cooperating
mobile agents.

(v) Layer-oriented mobile agents. Mobile agents may be
natively characterized on the basis of the layer to which
they belong: application, middleware and network layer.
They should also be able to locally interact to enable
cross-layering.

3.2. Agent server architecture

The designed sensor node architecture is shown in Fig. 2.
The architecture is based on components that interact through
events. The choice to design the architecture according to

MAEE

MA

MAMM

RM TM MACC

VM/OS

MAN

MA - Mobile Agent
MAEE - Mobile Agent Execution Engine
MAMM - Mobile Agent Migration Manager
MACC - Mobile Agent Communication Channel
MAN - Mobile Agent Naming
RM - Resource Manager
TM - Timer Manager

Events

FIGURE 2. The sensor node architecture.

a component- and event-based approach is motivated by the
effectiveness that such a kind of architecture has demonstrated
for sensor node programming. In fact, the TinyOS operating
system [16], the de facto standard for motes, relies on this
kind of architecture. In particular, the main components are the
following:

(1) Mobile agent (MA). The MAs are computing com-
ponents which are differentiated on the basis of the
layer (application, middleware and network) at which
they perform tasks. Application layer MAs incorporate
application-level logic performing sensor monitoring,
actuator control, data filtering/aggregation, high-level
event detection, application-level protocols etc. Middle-
ware layer MAs perform middleware-level tasks such as
distributed data fusion, discovery protocols for agents,
data and sensors, scope management etc. Network layer
MAs mainly implement transport (e.g. data dissemina-
tion) and network (e.g. multi-hop routing) protocols.
Agents at different layers can locally interact to imple-
ment cross-layering.

(2) Mobile agent execution engine (MAEE). The MAEE is
the component that supports the execution of agents by
means of an event-based scheduler enabling cooperative
concurrency. The MAEE handles each event emitted
by or to be delivered at MAs through decoupling
event queues. The MAEE interacts with the other
core components to fulfill service requests (message
transmission, sensor reading, timer setting etc.) issued
by the MAs.

(3) Mobile agent migration manager (MAMM). The
MAMM component supports the migration of agents

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Java-Based Agent Platform for A Programming WSNs 443

from one sensor node to another. In particular, the
MAMM is able to: (i) serialize an MA into a message and
send it to the target sensor node and (ii) receive a message
containing a serialized MA, deserialize and activate it.
The agent serialization format includes the code, data
and execution state.

(4) Mobile agent communication channel (MACC). The
MACC component enables inter-agent communications
based on asynchronous messages. Messages can be
unicast, multicast or broadcast.

(5) Mobile agent naming (MAN). The MAN component
provides agent naming based on proxies and regions [17]
to support the MAMM and MACC components in their
operations. The MAN also manages the (dynamic) list
of the neighbor sensor nodes.

(6) Timer manager (TM). The TM component provides the
timer service that allows for the management of timers
to be used for timing MA operations.

(7) Resource manager (RM). The RM component provides
access to the sensor node resources: sensors/actuators,
battery and flash memory.

3.3. Agent programming model

The architecture of an MA is modeled as a multi-plane
state machine communicating through events (see Fig. 3).
This architecture allows exploiting the benefits derived
from three paradigms for WSN programming: event-driven
programming [16], state-based programming [18] and agent-
based programming [5]. Moreover, it enables role-based
programming, an important paradigm for agents, as agents
behave differently according to the role they can assume during
their lifecycle [19].

In particular the architecture consists of:

(i) Global variables (GV). The GV component represents
the data of the MA including the MA identity.

<<GV>>

<<GF>>

S1

S2

S3

ED

ECAA

core primitives

t1

t2

t3

t4

<<LV>>

<<LF>>

ED
MPSM

Planei

FIGURE 3. The mobile agent architecture.

(ii) Global functions (GF). The GF component consists of
a set of supporting functions which can access GV but
can invoke neither core primitives nor other functions.

(iii) Multi-plane state machine (MPSM). The MPSM
component consists of a set of planes. Each plane may
represent the behavior of the MA in a specific role. In
particular a plane is composed of:

(a) Local variables (LV). The LV component represents
the local data of a plane.

(b) Local functions (LF). The LF component consists of
a set of local plane supporting functions which can
access LV but can invoke neither core primitives nor
other functions.

(c) ECA-based automata (ECAA). The ECAA compo-
nent represents the dynamic behavior of the MA in
that plane and is composed of states and mutually
exclusive transitions among states. Transitions are
labeled by ECA rules: E[C]/A, where E is the event
name, [C] is a boolean expression based on the GV
and LV variables, and A is the atomic action. A tran-
sition t is triggered if t originates from the current
state (i.e. the state in which the ECAA component
is), the event with the event name E occurs and [C]
holds. When the transition fires, A is first executed
and, then, the state transition takes place. In partic-
ular, the atomic action can use GV, GF, LV and LF
for performing computations and, particularly, invok-
ing the core primitives (see Fig. 4) to asynchronously
emit one or more events. The delivery of an event is
asynchronous and can occur only when the ECAA is
idle, i.e. the handling of the last delivered event (ED)
is completed.

(iv) Event dispatcher (ED). The ED component dispatches
the event delivered by the MAEE to one or more planes
according to the events that the planes are able to handle.
In particular, if an event must be dispatched to more than
one plane, the event dispatching is appositely serialized.

4. THE MAPS FRAMEWORK

The implementation of MAPS is a real challenge due
to the constrained resources of the current sensor nodes.
Nevertheless, due to recent advances in operating systems
and virtual machines as well as sensor technologies, an
actual implementation could be done in nesC/TinyOS on
TelosB motes or in Java on Sun SPOT nodes [8]. Although
the implementations of the currently available mobile agent
frameworks for WSN (see Section 2) have to date been
carried out in nesC/TinyOS, by also using the Maté virtual
machine [20], we believe that the object-oriented features
offered by the Sun SPOT technology could provide more
flexibility and extendability as well as easiness of development

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

444 F. Aiello et al.

send(SourceMA, TargetMA, EventName, Params, Local)
SourceMA = id of the transmitting MA
TargetMA = id of the MA target |
 id of the Group target |
 ALL for event broadcast to neighbors
EventName = name of the event to be sent
Params = set of event parameters encoded
 as pairs <attribute, value>
Local = local (true) or remote (false) scoped event

create(SourceMA, MAId, MAType, Params, NodeLoc)
MAId = id of the MA to be created
MAType = type of the MA to be created
Params = agent creation parameters
NodeLoc = node location of the created agent

clone(SourceMA, MAId, NodeLoc)
MAId = id of the cloned MA
NodeLoc = node location of the cloned agent

migrate(SourceMA, NodeLoc)
NodeLoc = target location of the MA | ALL neighbors

sense(SourceMA, IdSensor, Params, BackEvent)
IdSensor = id of the sensor
Params = parameters for sensor readings
BackEvent = notifying event containing the readings

actuate(SourceMA, IdActuator, Params)
IdActuator = id of the actuator
Params = parameters for actuator writings

input(SourceMA, BackEvent, Params)
Params = parameters for switch selection
BackEvent = event notifying the input captured from the
selected switch(es)

flash(SourceMA, Params, BackEvent)
Params = flash memory access parameters
BackEvent = event notifying the completion of the flash
memory operation (if it is a read operation, it contains
the read data)

setTimer(SourceMA, Params, BackEvent)
Params = timer parameters
BackEvent = event notifying the timer firing

resetTimer(SourceMA, IdTimer)
IdTimer = id of the timer to reset

FIGURE 4. The prototypal core primitives.

for an efficient implementation of the proposed framework. The
Sun SPOT sensor nodes are based on the Squawk VM [9] which
is fully Java compliant and CLDC 1.1-compatible. In particular,
the offered features are the following:

(i) Java programming language. Sensor node software
is programmed in the Java language by using Java
standard libraries and specific Sun SPOT libraries
such as main Sun SPOT board classes, sensor board
transducer classes and Squawk operating environment
classes.

(ii) NetBeans IDE for software development. The IDE fully
supports code editing, compilation, deployment and
execution for Sun SPOTs. This enables a more rapid
software prototyping.

(iii) Single-hop/multi-hop and reliable/unreliable commu-
nications. The current version of the Sun SPOT SDK
uses the GCF (Generic Connection Framework) to pro-
vide radio communication between SPOTs, routed via
multiple hops if necessary. Two protocols are available:
the radiostream protocol and the radiogram protocol.

The radiostream protocol provides reliable, buffered,
stream-based communication between two devices. The
radiogram protocol provides datagram-based commu-
nication between two devices and broadcast commu-
nications. This protocol provides no guarantees about
delivery or ordering. Datagrams sent over more than
one hop could be silently lost, be delivered more than
once and be delivered out of sequence. Datagrams sent
over a single hop will not be silently lost or delivered
out of sequence, but they could be delivered more than
once. The protocols are implemented on top of the MAC
layer of the 802.15.4 implementation.

(iv) Easy access to the sensor node devices (sensors,
flash memory, timer, battery). The Sun SPOT device
libraries contains drivers to easily access and use the
following: the on-board LED, the PIO, AIC, USART
and Timer-Counter devices in the AT91 package, the
CC2420 radio chip (in the form of an IEEE 802.15.4
Physical interface), an IEEE 802.15.4 MAC layer, an
SPI interface (used for communication with the CC2420
and off-board SPI devices) and an interface to the flash
memory.

(v) Code migration support. An Isolate is a mechanism
by which an application is represented as an object.
In Squawk, one or more applications can run in
the single JVM. Conceptually, each application is
completely isolated from all other applications. The
Squawk implementation has the interesting feature of
Isolate migration, i.e. an Isolate running on one Squawk
VM instance can be paused, serialized to a file or over
a network connection and restarted in another Squawk
VM instance.

MAPS is implemented on the basis of the aforementioned
Java Sun SPOT features which fully provide support to the
implementation of each component introduced in Section 3.2.
In the following subsections the main MAPS classes (see Fig. 5)
and related functionalities are described (more implementation
details as well as the MAPS framework code ver. 1.1 can be
found in [21]).

The sensor node components are threads that can be instan-
tiated through a Factory class based on the Singleton pat-
tern [22]. Such components are actually created at the node
bootstrap when the MobileAgentServer is instantiated by
the main application MIDlet. The MobileAgentServer cre-
ates the MobileAgentExecutionEngine which, in turn, creates
all the other components.As soon as the MobileAgentExecutio-
nEngine starts, it activates an InterIsolateServer to communicate
with mobile agent components and broadcasts a discovery pub-
lish event to announce itself to the neighbor agent-based sen-
sor nodes. After the creation of the MobileAgentServer, mobile
agent components can be added to it by the addAgent method.

The MobileAgentExecutionEngine is the core component
which exposes the interface for supporting all the primitives

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Java-Based Agent Platform for A Programming WSNs 445

AppMIDLet IMobile AgentServe r
<<uses>>

Mobi leAgentServerIMobileAgen tExecutionEngine <<us es>>

MobileAgentExecutionEngine

<<i nte rfa c e >>

<<i nte rfa c e >>

Agent
*

1

1

Plane

EventQueue

1..*

1

Isola teIDispatcher

Dispatcher

<<i nte rf a c e >>

1

RequestSender

<<from Sun Spot lib>>

InterIsolateServe r

IMACCSender

MACCSender

<<inte rfa c e >>
I MACCReceiver

MA CCReceiver

<< inte rfa c e >>

1

1

1
IM ANaming

MAN aming

<<inte rfa c e >>

IMAMigrationM an

MA MigrationMan

< <i nt e rfa c e >>

ITimerManager

Ti merManager

<<inte rfa c e >>

ISensorBoardMan

SensorManager

<<i nte rfa c e >>

IOManager

1

Event

*

*

1

Timer
*

1

11

ISensorBoardComponent

1..*

A cc e le r atorSensor

T empe r atur eSenso r

LightSe nsor

FlashManager

SwitchInput

LedOut

1

AcceleratorListener

TemperatureListener

Li ghtListener

*

*

*

ISensorBoardComponentListener

Sw itc hListe n e r*

1

1

1

1

B atte r y

FIGURE 5. A simplified class diagram of the MAPS framework.

defined in Section 3.3 (see Fig. 4). The communication among
agents, between agents and system components and, sometimes,
among components are based on Event objects.An Event object
is composed of:

(i) sourceID, which is the agent/component identifier of
the event source;

(ii) targetID, which is the agent/component identifier of the
event target;

(iii) typeName, which represents the name of the event
types that are grouped according to their specific
function/component (see Table 1 for the most important
ones);

(iv) params, which include the event data organized as a
chain of pairs <key, value>;

(v) durationType, which specifies the event duration. It can
assume the following three values:

(a) NOW, for instantaneous events;
(b) FIRST_OCCURRENCE, for events that wait for the

first occurrence of a specific value;
(c) PERMANENT. In this case, the event is sent every

time values set in the event parameters are met.

A mobile agent runs in a thread supported Isolate that is
instantiated at agent creation time. It is composed of an event
queue which contains the Event objects delivered to the agent by
the Dispatcher but not yet processed, and the multi-plane state
machine containing the dynamic agent behavior. Interaction
between mobile agents and the MobileAgentExecutionEngine
is made possible by the InterIsolate server and enabled by its
RequestSender component (based on the Sun SPOT library).

Remote inter-agent communication is enabled by MACC-
Sender and MACCReceiver component which, respectively,
allows transmitting and receiving network messages according
to the radiogram protocol.

The MANaming component allows managing the list of
neighbor sensor nodes and agents by means of a lightweight
beaconing-based announcement protocol based on broadcast
messages supported by the radiogram protocol. Moreover, agent
proxy components [14] are used to route network messages to
migrated mobile agents.

The MAMigrationMan component manages the migration
process of a mobile agent from one sensor node to another. To
this purpose, it uses the methods provided by the SquawkVM
to hibernate/dehibernate and serialize/deserialize an isolate.
However, as dynamic class loading is not yet supported by
the current version (v4.0 blue) of the Sun SPOT libraries,
the agent code should reside at the destination node. In
particular, the migration process, which is single-hop and
reliable, is implemented as follows: (i) the agent destination
node is contacted through a specific message which causes
the opening of a socket waiting for an incoming request
based on the radiostream protocol; (ii) the agent destination
node sends an ACK back to the agent source node; (iii) the
source node therefore establishes a radiostream connection with
the destination node; (iv) the mobile agent is paused, hibernated,
serialized into a byte array and sent over the connection to the
destination; and (v) at the destination node, the mobile agent is
received, deserialized, dehibernated and reactivated.

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

446 F. Aiello et al.

TABLE 1. Event types for functions and components.

Function/Component Types Usage description
Agent management AGN_CREATION Request an agent creation

AGN_ID Signal the ID of the created agent
AGN_START Start an agent
AGN_TERMINATED Terminate an agent

Migration MGR_EXECUTED Reactivate a migrated agent
MGR_REQUEST Request Migration an agent migration
MGR_ACK Signal an accomplished migration

SPOT discovery DSC_PUBLISH Publish a node discovery message
DSC_ANSWER Signal a discovered node
DSC_REFRESH Refresh the neighbor nodes

Message send/receive MSG Request a msg transmission
MSG_TO_BASESTATION Request a msg transmission to the BS

Timer TMR_EXPIRED Signal a timer expiration
Execution Engine EXE_GET_LOCAL_AGENTS Request the IDs of the local agents

EXE_GET_NEIGHBORS Request the IDs of the neighbor agents
Led LED_ON Request a led to be turned on

LED_OFF Request a led to be turned off
LED_BLINK Request a led to blink

Switch SWT_PRESSED_RELEASED Prepare a reading from a switch
Temperature sensor TMP_CURRENT Request the current temp value
Light sensor LGH_CURRENT Request the current light value
Accelerometer sensor ACC_CURRENT Request the current acceleration value

ACC_TILT Request the current tilt value
Flash FLS_ADD Request to write byte to the flash

FLS_GET Request to read byte from the flash
Battery BTR_CURRENT_LEVEL Request the current battery level

The TimerManager component handles Timer objects which
can be requested by mobile agents to time their operations.
Timers can be one-shot or periodic.

Finally the SensorManager component manages available
sensors (accelerometer, light and temperature) and actuators
(e.g. LEDs), whereas the IOManager component manages input
from switches and the flash memory.

4.1. A programming example: mobile agent-based
remote sensor monitoring

The example agent-based application for monitoring remote
sensors is structured in three agents:

(i) DataCollectorAgent, which collects data sensed from
the temperature, light and accelerometer sensors, and
the battery of the Sun SPOT node;

(ii) DataMessengerAgent, which carries collected sensed
data from the sensing node to the base station;

(iii) DataViewerAgent, which displays the received col-
lected data.

After application deployment and execution, the
DataViewerAgent sends a message to the DataCollectorAgent

to start its activity as soon as the user presses a switch on the
Sun SPOT on which the DataViewerAgent is running. The
DataCollectorAgent therefore begins its collecting activity
and as soon as the user pushes a switch on the Sun SPOT
on which the DataCollectorAgent is running, it creates the
DataMessengerAgent with the collected data that migrates to
the DataViewerAgent node for data visualization. Finally, the
monitoring activity terminates when the user presses again a
switch of the Sun SPOT on which the DataViewerAgent is
running. The sequence of interactions among the three defined
agents is shown in Fig. 6 through an M-UML sequence dia-
gram [23]. This simple yet effective application, deployed on
just two sensor nodes, allows for testing the most important
mechanisms provided by MAPS.

For the sake of illustrating MAPS-based programming, the
state machine of the DataCollectorAgent plane along with the
action code, which uses the MAPS library, is shown in Fig. 7 and
briefly explained in the following. The AGN_Start event causes
the transition from the creation state to the StartTimer state
and the execution of an example operation on the flash memory
(action A0), i.e. adding some data to the flash space of the agent.
In the StartTimer state, when the network message (MSG) sent
by the DataViewerAgent arrives and the guard [go = = true]

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Java-Based Agent Platform for A Programming WSNs 447

User

d va: DataViewerAgent

dma:
DataMessengerAgent

dca:
DataCollectorAgent

Switch_Pressing

MSG(Go=True)

Switch_Pressing

Start
Sensing

<<create>>

MSG

MSG.Co llectedData M

M

M

Visualizing
Data

MSG(Go=False)

Stop
Sensing

<<localized>>

FIGURE 6. The M-UML sequence diagram of the interactions among
the agents.

holds, a timer timing the sensing operations is set up to fire
after 3 s, some actuation on the LEDs is requested and some
input from the switches is ready to be read (action A1). When
the timer fires (see TMR_Expired event), the sensing operations
are requested (action A2). When such operations are completed
(see actionsA5–A8), the guard [dataColl = = numData] holds so
that data are collected and, as a visual signal, an LED is actuated
to blink blue (see action A9). When the switch is pressed by
the user, a DataMessengerAgent is created (action A3) and the
collected data are passed to it (action A10) when the AGN_Id
event, containing the agent ID of the created agent, is received.
When the event MSG is received and the guard [go = = false]
holds, the agent is terminated (action A4).

5. PERFORMANCE EVALUATION

The used testbed for testing and evaluation consists of a Sun
SPOT kit (two sensor nodes and one base station) with the
SDK 4.0 version (blue). The MAPS framework has a memory
occupation (without any running agent) of about 70 kB in central
memory, keeping free a space of 378 kB. Such space can be
exploited for agent execution. The agent developed for the agent
migration benchmarking (see below) needs 22 kB of central
memory. The space occupied by the jar of MAPS on the flash
memory is 92 kB out of the 4 MB available [8]. To evaluate
the performance of MAPS three micro-kernel benchmarks have
been defined according to [24] for the following mechanisms:

(1) Agent communication. The agent communication time
is computed for two agents running onto different
nodes and communicating in a client/server fashion
(request/reply). Two different request/reply schemes are
used: (i) Data B&F, in which both request and reply
contain the same amount of data and (ii) Data B, in
which only the reply contains data. Results are shown in
Fig. 8. By increasing the amount of data, communication

times linearly increase. The noticed overhead of MAPS
communication with respect to the cases without MAPS
is mainly due to the message format of MAPS which
contains event parameters (see Section 4).

(2) Agent creation. The agent creation time is computed for
agents having different number of planes ranging from
1 to 51. Figure 9 reports the results which show that
the creation time is linear with respect to the number of
planes.

(3) Agent migration. The agent migration time is calculated
for an agent ping-pong among two single-hop-distant
sensor nodes. It has been computed in the following
two cases: (i) with MAPS, which uses the complete
functionality of MAPS and (ii) without MAPS, which
does not use the MAPS engine and migration manager
but just the Java SunSPOT library. This allows
highlighting the overhead introduced by the framework
for having complete migration reliability. Migration
times are computed by varying the data cargo of
the ping-pong agent. Although migration performances
without MAPS are better, complete reliability of agent
migration is not guaranteed. The obtained migration
times (see Fig. 10) are high due to the slowness of
the SquawkVM operations supporting the migration
process. In particular, serialization is a very costly
operation: serialization of the ping-pong agent on an
average takes 4.5 s. Moreover, radiostream connections
are very slow to guarantee reliability.

6. A CASE STUDY: REAL-TIME HUMAN ACTIVITY
MONITORING

The effectiveness of MAPS to supportWBSNs applications [25]
is demonstrated by the development of a real-time activity
recognition system prototype. Nowadays WBSNs have great
potential to enable a broad variety of assisted living applications
such as human biophysical/biochemical control for health
care, human activity monitoring for health care, e-fitness
and emergency detection, and emotional recognition for
social networking, security and highly interactive games. It
is therefore important to provide design methodologies and
programming frameworks that enable rapid prototyping of
WBSN applications. Several effective application development
frameworks have been already proposed for WBSNs based
on TinyOS-based sensor platforms, for example CodeBlue,
signal processing in node environment (SPINE) and Titan.
In particular, SPINE [26] is a domain-specific framework for
collaborative WBSNs which provides effective APIs (libraries
of protocols, utilities and data processing functions) and
tools (remote configuration of sensors, data gathering and
visualization) for signal processing-based applications for the
analysis and the classification of sensor data. This provides
application developers with an abstraction that improves

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

448 F. Aiello et al.

A GN_Start/A0
DATA

SEN SING
START
TIMER

SEND
COLLECTED

DATA

MSG[go= =true]/A1

DATA
COLLECTED

TMR _Expired/A2

MSG[go==false]/A 4

SW T_Pre ssedReleased/A3

AGN_Id/A 10

TMP_C urrent/A5

ACC_Tilt/A6

LGH_Cu rrent/A7

SW T_PressedRelease d/A3

[dataC oll==num Data]/A9

Actions
A0: byte [] fls = new byte[]{12,13,14,15,16};
 Event l = new Event(agent.getId(), agent.getId(), Event.FLS_ADD, Event.NOW);

agent.flash(l, fls);
A1: Event timer =new Event(agent.getId(), agent.getId(), Event.TMR_EXPIRED, Event.NOW);

timerID = agent.setTimer(true, 3000, timer);
 Event blink = new Event(agent.getId(), agent.getId(), Event.LED_BLINK, Event.NOW);

blink.setParam(ParamsLabel.LED_INDEX, "0");
blink.setParam(ParamsLabel.LED_COLOR, "blue");
agent.actuate(blink);

 Event swtPressed = new Event(agent.getId(),agent.getId(),Event.SWT_PRESSED_RELEASED,Event.PERMANENT);
swtPressed.setParam(ParamsLabel.SWT_PRESSED, "false");
swtPressed.setParam(ParamsLabel.SWT_RELEASED, "true");
swtPressed.setParam(ParamsLabel.SWT_INDEX, "2");
agent.input(swtPressed);

A2: Event temp = new Event(agent.getId(), agent.getId(), Event.TMP_CURRENT, Event.NOW);
temp.setParam(ParamsLabel.TMP_CELSIUS, "true");
agent.sense(temp);

 Event accel = new Event(agent.getId(), agent.getId(), Event.ACC_TILT, Event.NOW);
agent.sense(accel);

 Event light = new Event(agent.getId(), agent.getId(), Event.LGH_CURRENT, Event.NOW);
agent.sense(light);

 Event battery = new Event(agent.getId(), agent.getId(), Event.BTR_CURRENT_LEVEL, Event.NOW);
agent.sense(battery);

A3: agent.create("test.Messenger", null, agent.getMyIEEEAddress().asDottedHex());
A4: this.terminateAgent();
A5: data+=event.getParam(ParamsLabel.TMP_TEMPERATURE_VALUE) + "-";

dataColl++;
A6: data+=event.getParam(ParamsLabel.ACC_TILT_X_VALUE) + "-";

dataColl++;
A7: data+=event.getParam(ParamsLabel.LGH_LIGHT_VALUE) + "-";

dataColl++;
A8: data+=event.getParam(ParamsLabel.BTR_BATTERY_VALUE) + "-";

dataColl++;
A9: data+="|";
 Event blink = new Event(agent.getId(), agent.getId(), Event.LED_BLINK, Event.NOW);

blink.setParam(ParamsLabel.LED_INDEX, "0");
blink.setParam(ParamsLabel.LED_COLOR, "blue");
agent.actuate(blink);
dataColl = 0;

A10:Event msg = new Event(agent.getId(), messengerAgentID, Event.MSG, Event.NOW);
msg.setParam("collectedData", data);
agent.send(agent.getId(), messengerAgentID, msg, true);

 data = "";

LV
String data;
int dataColl;

BTR_Cu rrent_Level/A8

FIGURE 7. The DataCollectorAgent behavior composed of one plane.

Message data (byte)

Co
m

m
un

ic
a�

on
 �

m
e

(m
s)

FIGURE 8. Agent communication: request/reply time.

interoperability and allows reducing application development
time. SPINE is currently developed in the TinyOS and Z-Stack
environments (node side) [27] and in Java (coordinator side).

In this paper, the developed MAPS-based prototype, which
relies on SPINE at the base station side, aims at recognizing
human postures (e.g. lying down, sitting or standing still) and
movements (e.g. walking). The architecture of the system,
shown in Fig. 11, is a typical star-based Body Sensor Network
(BSN) composed of a base station and two sensor nodes.

On the base station the Java-based SPINE coordinator [26],
developed in the context of the SPINE project [28], is
resident. The SPINE Manager is used by end-user applications

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Java-Based Agent Platform for A Programming WSNs 449

Number of agent planes

Cr
ea

�
on

 �
m

e
(m

s)

FIGURE 9. Agent creation time.

Agent cargo (byte)

M
ig

ra
�

on
 �

m
e

(m
s)

FIGURE 10. Agent migration: ping-pong time.

SENSOR NODE ON WAIST

Activity Monitoring Application

SPINEManager

SPINE COORDINATOR

MAPS/SunSpot Comm Module

SPINEListener TinyOSComm Module

Z-StackComm Module

MAPS

WaistSensorAgent

Java Sun SPOTs
Execution Environment

SENSOR NODE ON THIGH

MAPS

Java Sun SPOTs
Execution Environment

BASE STATION

Synch Logic

ThighSensorAgent

FIGURE 11. Architecture of the agent-based real-time activity
recognition system.

(e.g. activity monitoring application) for issuing commands
to the BSN. Moreover, the SPINE Manager is responsible
of capturing low-level messages and node events through
the SPINE Listener to notify registered applications with
higher-level events and messages content. A SPINE Comm
Module (currently implemented for TinyOS and Z-Stack)
is internally composed of a send/receive interface and

some components that implement such interface according
to the specific sensor platform and formalize the high-
level SPINE messages in sensor platform-specific messages.
In this work, The SPINE coordinator has been enhanced
with a new MAPS/SunSpot communication module (named
SunSPOTWSNConnection) to configure and communicate with
MAPS-based sensor nodes. Such module translates high-level
SPINE messages formatted according to the SPINE OTA
(over-the-air) protocol [28] into lower-level MAPS/SunSPOT
messages (named SunSPOTMessage) through its transmitter
component and vice versa through its receiver component
(named SunSPOTReceiver). The SunSPOTReceiver also
integrates an application-specific logic for the synchronization
of the two sensors (see below). The activity monitoring
application as well as the SPINE Manager was thus completely
reused; only the SPINE Listener was modified by such an
enhancement.

The sensor nodes based on the Java Sun SPOTs are,
respectively, located on the waist and on the thigh of the
monitored person. In particular, MAPS is deployed on the sensor
nodes and supports the execution of the WaistSensorAgent
and the ThighSensorAgent. The WaistSensorAgent and the
ThighSensorAgent have similar behavior: (i) sensing the
three axial accelerometer sensors according to a given
sampling time (ST = 1/sampling_rate); (ii) computation of
specific features (Mean, Max and Min functions) on the
acquired raw data according to the window (W) and shift
parameters (S), i.e. W is the sample size on which features are
computed, whereas S is the percentage of sliding on W ; and (iii)
features aggregation and transmission to the coordinator. While
the values of the W and S parameters are equally set for both
agents, the agents differ in the specific computed features: the
WaistSensorAgent computes the mean values for data sensed on
the XYZ axes, the min and max values for data sensed on
the X-axis, whereas the ThighSensorAgent calculates the min
value for data sensed on the X-axis. The behavior of the sensor
agents is specified through two planes: the sensing plane and
the feature calculation and transmission plane. In Fig. 12 the
behavior of the WaistSensorAgent is reported (the behavior of
the ThighSensorAgent complies with the same structure but the
computed features are different as discussed above).

With reference to Fig. 12a, after an initialization action (A0)
driven by the occurrence of the AGN_START event, the sensing
plane goes into the Wait4Sensing state. The MSG.START
event allows starting the sensing process by the execution of
action A1: (i) sensing parameters (W , S, ST), data acquisition
buffers for XYZ channels of the accelerometer sensor
(windowX, windowY, windowZ) and data buffers for feature
calculation (windowFE4X, window FE4Y, window FE4Z)
are initialized (see initSensingParamsAndBuffers function);
(ii) the timer is set for timing the data acquisition according
to the ST parameter (see timerSetForSensing function; in
particular the highly precise Sun SPOT timer is used instead of
the timer provided by MAPS as in the example of Section 4.1);

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

450 F. Aiello et al.

AGN_Start/A0

ACCE L
SENSIN G

WAIT4
SENSIN G

MSG.START /A1
MSG .STOP/A4

Actions
A0: initVars();
A1: initSensingParamsAndBuffers(event);

timerSetForSensing();
doSensing();

A2: bufferFilling(event);
sampleCounter++;
nextSampleIndex=(nextSampleIndex+1)%W;

 if (sampleCounter==S){
sampleCounter==0;
copySensingBuffersIntoBuffersForComputingFeatures();
Event msgToItself = new Event (agent.getId(), agent.getId(), Event.COMPFEATURES, Event.NOW);
agent.send(agent.getId(), agent.getId(), msgToItself, true);

 }
timerReset();
doSensing();

A3: timerDisabling();
initVars();
A1;

A4: timerDisabling();

LF
initVars():
sampleCounter=0;
nextSampleIndex=0;
agent.timestamp=0;

initSensingParamsAndBuffers(Event event):
 (WaistSensorAgent)agent.bodyPosition=Byte.parseByte(event.getParam("BODY_POSITION"));
 (WaistSensorAgent)agent.basestationAddress=event.getParam("BASESTATION_ADDRESS");
W=Integer.parseInt(event.getParam("WINDOW_SIZE"));

 S=Integer.parseInt(event.getParam("SHIFT_SIZE"));
 ST=Integer.parseInt(event.getParam("SAMPLE_RATE_MS"));
windowX = new double[W]; windowY = new double[W]; windowZ = new double[W];

 (WaistSensorAgent)agent.windowX4FE = new double[W]; (WaistSensorAgent)agent.windowY4FE = new double[W];
 (WaistSensorAgent)agent.windowZ4FE = new double[W];
timerSetForSensing():
 timer = Spot.getInstance().getAT91_TC(0);
int cnt = (int)(ST * 1000 / 2.1368);
timer.configure(TimerCounterBits.TC_CAPT | TimerCounterBits.TC_CPCTRG | TimerCounterBits.TC_CLKS_MCK128);
timer.setRegC(cnt);
timer.enableAndReset();
timerReset();

doSensing():
 Event accel = new Event(agent.getId(), agent.getId(), Event.ACC_CURRENT_ALL_AXES, Event.NOW);
agent.sense(accel);

bufferFilling(Event event):
windowX[nextSampleIndex] = Double.parseDouble(event.getParam(ParamsLabel.ACC_ACCEL_X_VALUE));
windowY[nextSampleIndex] = Double.parseDouble(event.getParam(ParamsLabel.ACC_ACCEL_Y_VALUE));
windowZ[nextSampleIndex] = Double.parseDouble(event.getParam(ParamsLabel.ACC_ACCEL_Z_VALUE));

timerReset():
timer.enableIrq(TimerCounterBits.TC_CPCS);
timer.waitForIrq();
timer.status();

timerDisabling():
timer.disable();
timer.shutDown();

MSG.RESYN CH/A0

M SG.RESTART/A3

A CC_CURRENT_A LL_AXES/A2
GV
byte timestamp;
double [] windowX4FE,
double [] windowY4FE,
double [] windowZ4FE;
byte bodyPosition;
String basestationAddress;
LV
int W;
int S;
int ST;
double [] windowX,
double [] windowY,
double [] windowZ;
byte sampleCounter;
int nextSampleIndex;
IAT91_TC timer;

(a)

AGN_ Start

W AIT4DATA MSG.COMPFEATU RES/A1

MSG.STOP

Actions
A1: Event msgToServer = new Event (this.agent.getId(), Constants.MSG_TO_BASESTATION,

Event.MSG_TO_BASESTATION, Event.NOW);
msgToServer.setParam(ParamsLabel.AGT_BASESTATION_ADDRESS, (WaistSensorAgent)agent.basestationAddress);
resultsX = meanMaxMin((WaistSensorAgent)agent.windowX4FE);
resultsY = meanMaxMin((WaistSensorAgent)agent.windowY4FE);
resultsZ = meanMaxMin((WaistSensorAgent)agent.windowZ4FE);
msgToServer.setParam("BodyPosition", "Waist");
msgToServer.setParam("MeanX","" + resultsX[0]);
msgToServer.setParam("MeanY","" + resultsY[0]);
msgToServer.setParam("MeanZ","" + resultsZ[0]);
msgToServer.setParam("MaxY", "" + resultsY[1]);
msgToServer.setParam("MinY", "" + resultsX[2]);

 (WaistSensorAgent)agent.timestamp=((WaistSensorAgent)agent.timestamp+1)%128;
msgToServer.setParam("Timestamp", "" + (WaistSensorAgent)agent.timestamp);
agent.send(agent.getId(), Constants.MSG_TO_BASESTATION, msgToServer, false);

LF
double [] meanMaxMin(double []): //omissis

GV
byte timestamp;
double [] windowX4FE,
double [] windowY4FE,
double [] windowZ4FE;
String basestationAddress;
LV
double [] resultsX;
double [] resultsY;
double [] resultsZ;

(b)

FIGURE 12. Two-plane behavior of the WaistSensorAgent: (a) sensing plane and (b) feature calculation and transmission plane.

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Java-Based Agent Platform for A Programming WSNs 451

and (iii) a data acquisition is requested by submitting the
ACC_CURRENT_ALL_AXES event by the sense primitive
(see doSensing function). Once the data sample is acquired,
the ACC_CURRENT_ALL_AXES event is sent back with the
acquired data and the action A2 is executed: (i) the buffers
are circularly filled with the proper values (see bufferFilling
function); (ii) the sampleCounter is incremented and the
nextSampleIndex is incremented module W for the next data
acquisition; (iii) if S samples have been acquired, features
are to be calculated; thus sampleCounter is reset, samples in
the buffers are copied into the buffers for computing features
and the COMPFEATURES event is sent to itself for being
processed by the other plane; (iv) the timer is reset; and (v)
data acquisition is finally requested. In the AccelSensing state
the MSG.RESYNCH might be received for resynchronization
purposes (see below); it brings the sensing plane into the
Wait4Sensing state. The MSG.RESTART brings the sensing
plane back into the AccelSensing state for (reconfiguring and)
continuing the sensing process. The MSG.STOP eventually
terminates the sensing process.

The feature calculation and transmission plane (see
Fig. 12b) is much simpler than the sensing plane. After
it is started, in the Wait4Data it waits for the reception
of the MSG.COMPFEATURES state which will be sent by
the sensing plane once S samples have been acquired (see
above). Such an event triggers the calculation of the features
through the meanMaxMin function and their transmission to the
base station by sending the MSG_TO_BASESTATION event
appropriately constructed.

An important issue is the synchronization between the
operations of the two agents which is to be maintained within
a maximum skew for not affecting the real-time monitoring:
if such a skew is overtaken, the two agents are to be
resynchronized. As the sensor agents compute a different
number of features, when the sampling rate is high, the agent
computing more features (i.e. the WaistSensorAgent) takes
more time to complete its operations for each S sample
acquisitions than the ThighSensorAgent. Resynchronization
is driven by the Synch Module (see Fig. 11), included in
the developed MAPS/SunSpot comm module, which sends
a resynchronization message (see Fig. 12a) as soon as it
detects that the synchronization skew is greater than a given
threshold. Detection is based on the skew time between the
receptions of two messages sent by the agents that contain
features referring to the same interval of S sample acquisitions:
if skew ≥ P ∗ S ∗ ST, where P is a percentage and
S = W/2.

Figure 13 shows the results of some experiments aimed
at evaluating the synchronization of the sensor agents and
their monitoring continuity. In particular, the experiments
are carried out by fixing ST (ms) = [25, 50, 100], W =
[40, 20] and P = [5%, 10%, 25%]. The defined measurements
are: (i) the packet pair average time (PPAT), which is
the average reception time between two consecutive pairs

of synchronized packets (same logical timestamp; see the
timestamp variable in Fig. 12) containing the computed
features (see MSG_TO_BASESTATION event in Fig. 12b) sent
by the sensor agents and (ii) the synch packet percentage (SPP),
which is the percentage of resynchronization packets (see
RESYNCH event in Fig. 12a) that are sent by the coordinator
for resynchronizing the sensor agents, calculated with respect
to the total number of received feature packets. The PPAT should
be ideally equal to ST ∗ S, that is, the packet pair arrives during
each monitoring period and so there is no desynchronization in
the average, whereas the SPP should be as much as possible
close to 0, that is, a few or no resynchronizations are carried
out and thus the monitoring can be continuous as a resynch
operation usually takes 600 ms.

As can be seen from Fig. 13, the system cannot support an
ST = 25 ms because the PPAT is always greater than the ideal
value and the SPP is too high. This leads to non-continuous
monitoring due to the very frequent resynchronization (SPP ≥
25%). An ST = 50 ms can be supported for P = 25% as the
SPP is almost 8%, thus slightly impacting upon the monitoring
continuity. The best results are obtained with ST = 100 ms
and P = 25% or 15%; they guarantee monitoring continuity
due to an SPP ≈ 0% and regularity as the PPAT ≈ 1000 for
S = 10 and the PPAT ≈ 2000 for S = 20. If P = 5%,
also an ST = 100 ms is not a good value because a skew
of 5% ∗ S ∗ ST frequently occurs. It is worth noting that
even though a lower ST allows more accurate monitoring,
the considered human activities can be well captured by an
ST = 100 ms, as demonstrated by the experimental results
obtained from the real-time human activity monitoring carried
out (see below).

According to such considerations the parameters used by
the activity monitoring application during the training and the
real-time operating phases were fixed as follows: ST = 100 ms,
W = 20 (S = 10), P = 25%. In particular, the activity
monitoring application relies on a classifier that recognizes
postures and movements defined in a training phase. The
application integrates two different classifiers: one based on
the K-Nearest Neighbor algorithm [29] and the other based
on J48 Decision Tree [30]. They were set up through a
training phase and tested considering the parameter setting
for data acquisition reported above. According to this setting,
the features (Min, Max and Mean) are computed on 20
sampled data every new 10 samples acquired by the sensors. In
Table 2 the obtained classification accuracy results are reported.
The obtained results are good and encouraging if compared
with other works in the literature, which use more than two
sensors on the human body [31]. Finally, the interested reader
can refer to [26] for viewing the snapshots related to the
panels (Live Monitor panel visualizing the recognized human
activity, Statistics panel reporting statistics about the human
activity, Advanced panel for configuring the sensors and
the sensing process) of the reference activity monitoring
application.

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

452 F. Aiello et al.

(a)

(b)

(c)

FIGURE 13. Analysis of the synchronization of the sensor agents: PPAT and SPP for (a) P = 25%, (b) P = 15% and (c) P = 5%.

TABLE 2. Classification accuracy for classifiers based on K-Nearest
Neighbor and J48 Decision Tree.

Standing Lying
Walking Sitting still down

K-NN (%) 94 96 92 98
J48 D Tree (%) 92 98 94 94

7. CONCLUSIONS

Programming WSN applications is a complex task that requires
suitable programming paradigms and frameworks to cope with
the WSN-specific characteristics. Several kinds of micro- and
macro-programming techniques have to date been proposed.

Among them mobile agent-based programming, which has
been formerly introduced for conventional distributed systems,
can be more effectively exploited in the context of WSNs.
In this paper we have therefore proposed mobile agents as
an effective paradigm to program WSN applications and,
in particular, presented MAPS, a Java-based framework for
the development of agent-based applications for Sun SPOT
sensor platforms. By using MAPS, a WSN application can be
structured as a set of stationary and mobile agents distributed
on sensor nodes supported by a component-based agent
execution engine that provides basic services such as message
transmission, agent creation, agent cloning, agent migration,
timer handling and easy access to the sensor node resources.
MAPS programming has been exemplified through a simple

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Java-Based Agent Platform for A Programming WSNs 453

yet effective example that shows how to program the dynamic
behavior of agents in terms of state machines on the basis of
the MAPS library. Moreover, a complete case study concerning
the development and testing of a real-time human activity
monitoring system based on WBSNs has been described. It
is emblematic of the effectiveness and suitability of MAPS to
deal with the programming of complex applications. Finally,
we have presented an evaluation of MAPS according to
micro-kernel benchmarks (agent communication, migration and
creation) usually employed for MASs. Evaluation shows some
performance penalties mainly due to very time-consuming
operations (Isolate hibernation/serialization and radiostream-
based communications) provided by the Sun SPOT libraries
and SquawkVM on which MAPS relies.

Ongoing research efforts are being devoted to: (i) further
optimizing the communication and migration mechanisms of
MAPS; (ii) introducing the fall detection, which allows raising
an alarm on detecting that the monitored person has fallen,
in the developed real-time human activity monitoring agent-
based application; (iii) porting MAPS onto the Sentilla JCreate
pervasive computers which are compliant to Java ME CLDC
1.1; (iv) developing an agent-based version of SPINE (named
ASpine) through MAPS (a preliminary design of ASpine if
reported here [32]).

FUNDING

This work has been partially carried out in the framework
of CONET, the Cooperating Objects Network of Excellence,
funded by the European Commission under FP7 with contract
number FP7-2007-2-224053.

ACKNOWLEDGEMENTS

The authors wish to thank the members of the SPINE project
for their useful comments and feedback about the (re)design
and implementation of the SPINE-based activity monitoring
application through MAPS, and Alessio Carbone for his
helpful support in carrying out the performance evaluation of
MAPS.

REFERENCES

[1] UCAM-CL-TR-646 (2005) A survey of Wireless Sensor Network
technologies: research trends and middleware’s role. University
of Cambridge, UK.

[2] Chen, M., Gonzalez, S. and Leung, V.C.M. (2007) Applications
and design issues for mobile agents in wireless sensor networks.
IEEE Wirel. Commun., 14, 20–26.

[3] Silva, A.R., Romao, A., Deugo, A. and Mira da Silva, M. (2001)
Towards a reference model for surveying mobile agent systems.
Auton. Agent Multi-Agent Syst., 4, 187–231.

[4] Luck, M., McBurney, P. and Preist, C. (2004) A manifesto for
agent technology: towards next generation computing. Auton.
Agents Multi-Agent Syst., 9, 203–252.

[5] Fok, C.-L., Roman, G.-C. and Lu, C. (2005) Rapid Development
and Flexible Deployment of Adaptive Wireless Sensor Network
Applications. Proc. 24th Int. Conf. Distributed Computing
Systems (ICDCS’05), Columbus, OH, USA, June 6–10, pp. 653–
662. IEEE Computer Society, Washington, DC, USA.

[6] Kwon, Y., Sundresh, S., Mechitov, K. and Agha, G. (2006)
ActorNet:AnActor Platform forWireless Sensor Networks. Proc.
5th Int. Joint Conf. Autonomous Agents and Multiagent Systems
(AAMAS), Hakodate, Japan, May 8–12, pp. 1297–1300. ACM,
New York, NY, USA.

[7] Boulis, A., Han, C.-C. and Srivastava, M.B. (2003) Design and
Implementation of a Framework for Efficient and Programmable
Sensor Networks. Proc. 1st Int. Conf. Mobile Systems,
Applications and Services (MobiSys), San Francisco, CA, USA,
May 5–8, pp. 187–200. ACM, New York, NY, USA.

[8] Sun™ Small programmable object technology (Sun SPOT).
(2010) http://www.sunspotworld.com/.

[9] Simon, D. and Cifuentes, C. (2005) The Squawk Java Virtual
Machine: Java on the Bare Metal. Proc. 20th Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA
2005), San Diego, CA, USA, October 16–20, pp. 150–151.ACM,
New York, NY, USA.

[10] Muldoon, C., O’Hare, G.M.P., O’Grady, M.J. and Tynan,
R. (2008) Agent Migration and Communication in WSNs.
Proc. 1st Int. Workshop on Sensor Networks and Ambient
Intelligence, held in conjunction with the 9th Int. Conf. Parallel
and Distributed Computing, Applications and Technologies,
Dunedin, New Zealand, December 1–4, pp. 425–430. IEEE
Computer Society Press, Washington, DC, USA.

[11] The Sentilla labs. (2010) http://labs.sentilla.com/.
[12] Aiello, F., Fortino, G. and Guerrieri, A. (2008) Using

Mobile Agents as an Effective Technology for Wireless
Sensor Networks. Proc. 2nd IEEE/IARIA Int. Conf. Sensor
Technologies and Applications (SENSORCOMM 2008), Cap
Esterel, France, August 25–31, pp. 549–554. IEEE Computer
Society, Washington, DC, USA.

[13] Szumel, L., LeBrun, J. and Owens, J.D. (2005) Towards a
Mobile Agent Framework for Sensor Networks. Proc. 2nd
IEEE Workshop on Embedded Networked Sensors (EmNetS-
TT), Sydney, Australia, May 30–31, pp. 79–87. IEEE Computer
Society, Washington, DC, USA.

[14] Suenaga, S. and Honiden, S. (2007) Enabling Direct Commu-
nication Between Mobile Agents in Wireless Sensor Networks.
Proc. 1st Int. Workshop on Agent Technology for Sensor Networks
(ATSN-07), jointly held with the 6th Int. Joint Conf. Autonomous
Agents and Multiagent Systems (AAMAS-07), Honolulu, HI,
May 14.

[15] Agent Factory Micro Edition (AFME). (2010) http://sourceforge.
net/projects/agentfactory/files/.

[16] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E. and
Culler, D. (2003) The nesC Language: A Holistic Approach
to Networked Embedded Systems. Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI
2003), San Diego, CA, USA, June 9–11, pp. 1–11. ACM,
New York, NY, USA.

[17] Welsh, M. and Mainland, G. (2004) Programming Sensor Net-
works Using Abstract Regions. Proc. 1st USENIX/ACM Symp.
Networked Systems Design and Implementation (NSDI’04),

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

454 F. Aiello et al.

San Francisco, CA, USA, March 29–31, pp. 3–16. USENIXAsso-
ciation Berkeley, CA, USA.

[18] Kasten, O. and Römer, K. (2005) Beyond Event Handlers:
Programming Wireless Sensors with Attributed State Machines.
Proc. 4th Int. Symp. Information Processing in Sensor Networks,
Los Angeles, CA, USA, April 24–27. IEEE Press, Piscataway,
NJ, USA.

[19] Zhu H. andAlkins, R. (2006) Towards Role-Based Programming.
Proc. CSCW’06, Banff, AB, Canada, November 4–8.

[20] Levis, P. and Culler, D. (2002) Maté: A Tiny Virtual Machine for
Sensor Networks. Proc. 10th Int. Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS X),
San Jose, CA, USA, October 5–9, pp. 85–95. ACM, New York,
NY, USA.

[21] Mobile Agent Platform for Sun SPOT (MAPS). (2010)
http://maps.deis.unical.it.

[22] Gamma, E., Helm, R., Johnson, R. andVlissides, J. (1995) Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA.

[23] Saleh, K., El-Morr, C. and M-UML (2004) An extension to UML
for the modeling of mobile agent-based software systems. Inform.
Softw. Technol., 46, 219–227.

[24] Dikaiakos, M., Kyriakou, M. and Samaras, G. (2001)
Performance Evaluation of Mobile-Agent Middleware: A
Hierarchical Approach. Proc. 5th IEEE Int. Conf. Mobile Agents,
Atlanta, GA, USA, December 2–4, pp. 244–259. Lecture Notes
in Computer Science 2240. Springer, Berlin.

[25] Yang, G.-Z. (2006) Body Sensor Networks. Springer.
[26] Gravina, R., Guerrieri, A., Fortino, A., Bellifemine, F.,

Giannantonio, R. and Sgroi, M. (2008) Development of Body
Sensor Network Applications using SPINE. Proc. IEEE Int.
Conf. Systems, Man, and Cybernetics (SMC 2008), Singapore,
October 12–15.

[27] Bellifemine, F., Fortino, G., Giannantonio, R. and Guerrieri,
A. (2009) Platform-Independent Development of Collaborative
WBSN Applications: SPINE2. Proc. IEEE Int. Conf. Systems,
Man, and Cybernetics (SMC 2009), San Antonio, TX, USA,
October 11–14.

[28] Signal Processing In Node Environment (SPINE). (2010)
http://spine.tilab.com.

[29] Cover, T. and Hart, P. (1967) Nearest neighbor pattern
classification. IEEE Trans. Inform. Theory, 13, 21–27.

[30] Quinlan, R. (1993) C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers, San Francisco, CA,
USA.

[31] Maurer, U., Smailagic, A., Siewiorek, D.P. and Deisher, M.
(2006) Activity Recognition and Monitoring Using Multiple
Sensors on Different Body Positions. Proc. 3rd Int. Workshop
onWearable and Implantable Body Sensor Networks (BSN 2006),
MIT, Boston, MA, USA,April 3–5, pp. 113–116. IEEE Computer
Society, Washington, DC, USA.

[32] Bellifemine, F. and Fortino, G. (2009) ASPINE: An Agent-
Oriented Design of SPINE. Proc. Workshop on Objects and
Agents (WOA’09), Parma, Italy, July 9–10.

The Computer Journal, Vol. 54 No. 3, 2011

 at M
aastricht U

niversity on June 30, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

	1 INTRODUCTION
	2 RELATED WORK
	3 MAPS ARCHITECTURE AND PROGRAMMING MODEL
	3.1 Requirements
	3.2 Agent server architecture
	3.3 Agent programming model

	4 THE MAPS FRAMEWORK
	4.1 A programming example: mobile agent-based remote sensor monitoring

	5 PERFORMANCE EVALUATION
	6 A CASE STUDY: REAL-TIME HUMAN ACTIVITY MONITORING
	7 CONCLUSIONS

