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We study, for some subsets 𝐼 ofN∗, the Banach space𝐸 of bounded real sequences {𝑥
𝑛
}
𝑛∈𝐼

. For any integer 𝑘, we introduce ameasure
over (𝐸,B(𝐸)) that generalizes the 𝑘-dimensional Lebesguemeasure; consequently, also a theory of integration is defined.Themain
result of our paper is a change of variables’ formula for the integration.

1. Introduction

In the mathematical literature, some articles introduced
infinite-dimensionalmeasures analogous to the Lebesgue one
(see, e.g., the paper of Léandre [1], in the context of the
noncommutative geometry, that one of Tsilevich et al. [2],
which studies a family of 𝜎-finite measures on R+, and that
one of Baker [3], which defines a measure on RN∗ that is not
𝜎-finite).

The motivation of this paper follows from the natural
extension to the infinite-dimensional case of the results of
the article [4], where we estimate the rate of convergence of
someMarkov chains in [0, 𝑝)

𝑘 to a uniform randomvector. In
order to consider the analogue random elements in [0, 𝑝)

N∗ ,
it is necessary to overcome some difficulties, for example,
the lack of a change of variables’ formula for the integration
in the subsets of RN∗ . A related problem is studied in the
paper of Accardi et al. [5], where the authors describe the
transformations of generalized measures on locally convex
spaces under smooth transformations of these spaces.

In our paper, we consider some subsets 𝐼 of N∗, and we
suppose that R𝐼 is endowed with the standard infinity-norm
generalized to assume the values in [0, +∞]; then, the vector
space 𝐸 of the elements of R𝐼 with finite norm is a Banach
space with respect to the distance defined by the norm.
Observe that although in general it is possible to construct
a 𝜎-algebra on R𝐼 simply by considering the product indexed

by 𝐼 of the same Borel 𝜎-algebra on R, in this way a product
of 𝜎-finite measures 𝜇 on R can be defined only if 𝐼 is finite
or 𝜇 is a probability measure (by Jessen theorem).

To solve this problem and others, in Section 2 we use
Corollary 4 (that generalizes the Jessen theorem) to define a
measure 𝜆

(𝑘)

𝑁,𝑎
over (𝐸,B(𝐸)), where 𝑘 ∈ N; consequently, we

define also a theory of integration. In the case 𝐼 = {1, . . . , 𝑘},
the measure 𝜆(𝑘)

𝑁,𝑎
coincides with the 𝑘-dimensional Lebesgue

measure on R𝑘.
In Section 3, we introduce the determinant of a class

of infinite-dimensional matrices, called (𝑚, 𝜎)-standard, and
we expose briefly a theory that generalizes the standard
theory of the 𝑚 × 𝑚 matrices. Moreover, we prove that
the determinant of a (𝑚, 𝜎)-standard matrix is equal to
the product of its eigenvalues, as in the finite-dimensional
case. In Section 4, we present the main result of our paper,
that is, a change of variables formula for the integration
of the biunique linear functions associated with the (𝑚, 𝜎)-
standard matrices (Theorem 29). This result agrees with the
analogous finite-dimensional result. In Section 5, we expose
an application in the probabilistic framework, that is, the
definition of the infinite-dimensional probability density
of a random element. Moreover, we prove the formula of
the density of such a random element composed with a
(𝑚, 𝜎)-standard matrix. In Section 6, we expose some ideas
for further study in the mathematical analysis and proba-
bility.
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2. Construction of a Generalized
Lebesgue Measure

Suppose that 𝑘 ∈ N, 𝑁 ∈ R+, and 𝐼 = {𝑛 ∈ N∗

: 𝑛 < 𝑀},
where 𝑘 + 1 ≤ 𝑀 ≤ +∞ and 𝑎 = (𝑎

𝑛
: 𝑛 ∈ 𝐼) ∈ (R+)𝐼 such

that there exists ∏
𝑛∈𝐼

𝑎
𝑛

∈ R+. Moreover, indicate by B, by
B(𝑘), by Leb, and by Leb(𝑘), respectively, the Borel 𝜎-algebra
on R, the Borel 𝜎-algebra on R𝑘, the Lebesgue measure on R,
and the Lebesgue measure on R𝑘. Finally, for any topological
space 𝐸 and for any 𝐷 ⊂ 𝐸, indicate by B(𝐷) the Borel 𝜎-
algebra on𝐷.

Definition 1. Define the function ‖ ⋅ ‖ : R𝐼 → [0, +∞] by

‖𝑥‖ = sup
𝑛∈𝐼

𝑥𝑛
 , ∀𝑥 = (𝑥

𝑛
: 𝑛 ∈ 𝐼) ∈ R𝐼, (1)

and define the following vector space on the field R:

𝐸 = {𝑥 ∈ R𝐼 : ‖𝑥‖ < +∞} . (2)

Remark 2. 𝐸 is a Banach space.

Proof. It is easy to prove that ‖ ⋅ ‖ is a norm on 𝐸; then, 𝐸 is a
metric space with the distance 𝑑 : 𝐸 × 𝐸 → [0, +∞) defined
by 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = sup

𝑛∈𝐼
|𝑥
𝑛
−𝑦

𝑛
|, ∀𝑥 = (𝑥

𝑛
: 𝑛 ∈ 𝐼) ∈ 𝐸,

and ∀𝑦 = (𝑦
𝑛
: 𝑛 ∈ 𝐼) ∈ 𝐸. Moreover, let {𝑥

𝑖
}
𝑖∈N be a Cauchy

sequence on 𝐸; then, ∀𝜀 > 0, ∃𝑖
0

∈ N such that ∀𝑖, 𝑗 ∈ N
such that 𝑖, 𝑗 ≥ 𝑖

0
, we have ‖𝑥

𝑖
− 𝑥

𝑗
‖ < 𝜀, and so, ∀𝑛 ∈ 𝐼,

|(𝑥
𝑖
)
𝑛
− (𝑥

𝑗
)
𝑛

| < 𝜀. Since R is complete, ∀𝑛 ∈ 𝐼, ∃𝑙
𝑛
∈ R such

that lim
𝑗→+∞

(𝑥
𝑗
)
𝑛

= 𝑙
𝑛
; then, by setting 𝑙 = (𝑙

𝑛
: 𝑛 ∈ 𝐼) ∈ R𝐼,

we have
(𝑥𝑖)𝑛

− 𝑙
𝑛

 = lim
𝑗→+∞


(𝑥
𝑖
)
𝑛
− (𝑥

𝑗
)
𝑛


≤ 𝜀

⇒
𝑥𝑖 − 𝑙

 = sup
𝑛∈𝐼

(𝑥𝑖)𝑛
− 𝑙

𝑛

 ≤ 𝜀.

(3)

This implies that 𝑙 ∈ 𝐸 and lim
𝑖→+∞

𝑥
𝑖

= 𝑙; then, 𝐸 is
complete, and so it is a Banach space.

In order to develop the next arguments, for any set 𝐼 and
for any𝐻 ⊂ 𝐼 define the projection 𝜋

𝐻
on R𝐻 as the function

𝜋
𝐻

: R𝐼 → R𝐻 given by 𝜋
𝐻
(𝑥
𝑛

: 𝑛 ∈ 𝐼) = (𝑥
ℎ

: ℎ ∈ 𝐻).
We will use the following result, whose proof can be found,
for example, in Rao [6, page 346].

Theorem 3 (Jessen theorem). Let 𝐼 be a set and, for any 𝑖 ∈ 𝐼,
let (𝐸

𝑖
,E

𝑖
, 𝜇
𝑖
) be a probability space.Then, over the measurable

space (∏
𝑖∈𝐼

𝐸
𝑖
,⨂

𝑖∈𝐼
E
𝑖
), there is a unique probability measure

𝜇, indicated by ⨂
𝑖∈𝐼

𝜇
𝑖
, such that, for any 𝐻 ⊂ 𝐼 such that

|𝐻| < +∞ and for any 𝐴 = ∏
ℎ∈𝐻

𝐴
ℎ
× ∏

𝑖∈𝐼\𝐻
𝐸
𝑖
∈ ⨂

𝑖∈𝐼
E
𝑖
,

where 𝐴
ℎ

∈ E
ℎ
, ∀ℎ ∈ 𝐻, we have 𝜇(𝐴) = ∏

ℎ∈𝐻
𝜇
ℎ
(𝐴

ℎ
). In

particular, if 𝐼 is countable, then 𝜇(𝐴) = ∏
𝑖∈𝐼

𝜇
𝑖
(𝐴

𝑖
) for any

𝐴 = ∏
𝑖∈𝐼

𝐴
𝑖
∈ ⨂

𝑖∈𝐼
E
𝑖
.

Corollary 4. Let 𝐼 be a set and, for any 𝑖 ∈ 𝐼, let (𝐸
𝑖
,E

𝑖
, 𝜇
𝑖
) be

a measure space such that 𝜇
𝑖
is finite. Moreover, suppose that,

for some countable set 𝐽 ⊂ 𝐼, 𝜇
𝑖
is a probability measure for any

𝑖 ∈ 𝐼\𝐽 and∏
𝑗∈𝐽

𝜇
𝑗
(𝐸
𝑗
) ∈ R+.Then, over themeasurable space

(∏
𝑖∈𝐼

𝐸
𝑖
,⨂

𝑖∈𝐼
E
𝑖
), there is a unique finite measure 𝜇, indicated

by ⨂
𝑖∈𝐼

𝜇
𝑖
, such that, for any 𝐻 ⊂ 𝐼 such that |𝐻| < +∞ and

for any 𝐴 = ∏
ℎ∈𝐻

𝐴
ℎ
× ∏

𝑖∈𝐼\𝐻
𝐸
𝑖
∈ ⨂

𝑖∈𝐼
E
𝑖
, where 𝐴

ℎ
∈

E
ℎ
, ∀ℎ ∈ 𝐻, one has 𝜇(𝐴) = ∏

ℎ∈𝐻
𝜇
ℎ
(𝐴

ℎ
)∏

𝑗∈𝐽\𝐻
𝜇
𝑗
(𝐸
𝑗
). In

particular, if 𝐼 is countable, then 𝜇(𝐴) = ∏
𝑖∈𝐼

𝜇
𝑖
(𝐴

𝑖
) for any

𝐴 = ∏
𝑖∈𝐼

𝐴
𝑖
∈ ⨂

𝑖∈𝐼
E
𝑖
.

Proof. For any 𝑖 ∈ 𝐼, 𝜇
𝑖
= (𝜇

𝑖
/𝜇
𝑖
(𝐸
𝑖
)) is a probability measure;

then, if 𝜇 = ⨂
𝑖∈𝐼

𝜇
𝑖
is the probability measure defined by

Theorem 3, the finite measure 𝜇 = (∏
𝑗∈𝐽

𝜇
𝑗
(𝐸
𝑗
))𝜇 satisfies the

statement.

Since for any 𝑛 ∈ 𝐼 \ {1, . . . , 𝑘} the measure
(1/2𝑁)Leb(⋅ ∩ [−𝑁𝑎

𝑛
, 𝑁𝑎

𝑛
]) is a finite measure over (R,B),

fromCorollary 4we can define the𝜎-finitemeasure𝜆(𝑘)
𝑁,𝑎

over
(𝐸,B(𝐸)) in the following manner:

𝜆
(𝑘)

𝑁,𝑎
=

1

(2𝑁)
𝑘

Leb(𝑘) ⊗ ⨂

𝑛∈𝐼\{1,...,𝑘}

1

2𝑁
Leb (⋅ ∩ [−𝑁𝑎

𝑛
, 𝑁𝑎

𝑛
]) .

(4)

Remark 5. For any𝑁 ∈ R+, we have

𝜆
(𝑘)

𝑁,𝑎
(𝐸) =

{

{

{

∏

𝑛∈𝐼

𝑎
𝑛

if 𝑘 = 0

+∞ if 𝑘 ∈ N∗

.

(5)

Proof. If 𝑁 ∈ R+ and 𝑘 = 0, from Corollary 4, we have

𝜆
(𝑘)

𝑁,𝑎
(𝐸) = ∏

𝑛∈𝐼

1

2𝑁
Leb ([−𝑁𝑎

𝑛
, 𝑁𝑎

𝑛
]) = ∏

𝑛∈𝐼

𝑎
𝑛
. (6)

Analogously, if𝑁 ∈ R+ and 𝑘 ∈ N∗:

𝜆
(𝑘)

𝑁,𝑎
(𝐸) =

1

(2𝑁)
𝑘

Leb(𝑘) (R𝑘) ∏

𝑛∈𝐼\{1,...,𝑘}

𝑎
𝑛
= +∞. (7)

3. Infinite-Dimensional Matrices

Definition 6. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

be a real matrix 𝐼 ×

𝐼 (eventually infinite, if 𝐼 = N∗); then, define the linear
function 𝐴 = (𝑎

𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → R𝐼, and write 𝑥 → 𝐴𝑥, in
the following manner:

(𝐴𝑥)
𝑖
= ∑

𝑗∈𝐼

𝑎
𝑖𝑗
𝑥
𝑗
, ∀𝑥 ∈ 𝐸, ∀𝑖 ∈ 𝐼, (8)

on condition that, for any 𝑖 ∈ 𝐼, the sum in (8) converges to a
real number.

Proposition 7. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

be a real matrix 𝐼 × 𝐼; then

(1) the linear function𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → R𝐼 given by (8)
is defined if and only if, for any 𝑖 ∈ 𝐼, ∑

𝑗∈𝐼
|𝑎
𝑖𝑗
| < +∞;

(2) 𝐴(𝐸) ⊂ 𝐸 and 𝐴 is continuous if and only if
sup

𝑖∈𝐼
∑
𝑗∈𝐼

|𝑎
𝑖𝑗
| < +∞; moreover, in this case, ‖𝐴‖ =

sup
𝑖∈𝐼

∑
𝑗∈𝐼

|𝑎
𝑖𝑗
|.
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Proof. (1) Suppose that the function 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → R𝐼

is defined; then, ∀𝑖 ∈ 𝐼; let 𝑥 = (𝑥
𝑛
: 𝑛 ∈ 𝐼) ∈ 𝐸 be such that

𝑥
𝑛
= 1 if 𝑎

𝑖𝑛
≥ 0, and 𝑥

𝑛
= −1 if 𝑎

𝑖𝑛
< 0; since 𝐴𝑥 ∈ R𝐼, we

have

∑

𝑗∈𝐼


𝑎
𝑖𝑗


= (𝐴𝑥)

𝑖
∈ R. (9)

Conversely, suppose that ∑
𝑗∈𝐼

|𝑎
𝑖𝑗
| < +∞, ∀𝑖 ∈ 𝐼; then, ∀𝑥 ∈

𝐸 and ∀𝑖 ∈ 𝐼, ∑
𝑗∈𝐼

(𝑎
𝑖𝑗
𝑥
𝑗
)
+

≤ ∑
𝑗∈𝐼

|𝑎
𝑖𝑗
||𝑥

𝑗
| ≤ ∑

𝑗∈𝐼
|𝑎
𝑖𝑗
|‖𝑥‖ <

+∞; analogously, ∑
𝑗∈𝐼

(𝑎
𝑖𝑗
𝑥
𝑗
)
−

< +∞, from which (𝐴𝑥)
𝑖
=

∑
𝑗∈𝐼

(𝑎
𝑖𝑗
𝑥
𝑗
)
+

− ∑
𝑗∈𝐼

(𝑎
𝑖𝑗
𝑥
𝑗
)
−

∈ R, and so 𝐴𝑥 ∈ R𝐼.

(2) If 𝐴(𝐸) ⊂ 𝐸 and 𝐴 is continuous, from the previous
arguments, we have that, ∀𝑖 ∈ 𝐼, there exists 𝑥 ∈ 𝐸 such that
‖𝑥‖ = 1 and such that

∑

𝑗∈𝐼


𝑎
𝑖𝑗


= (𝐴𝑥)

𝑖
≤ ‖𝐴𝑥‖ ≤ ‖𝐴‖ < +∞

⇒ sup
𝑖∈𝐼

∑

𝑗∈𝐼


𝑎
𝑖𝑗


≤ ‖𝐴‖ < +∞.

(10)

Conversely, if sup
𝑖∈𝐼

∑
𝑗∈𝐼

|𝑎
𝑖𝑗
| < +∞, ∀𝑥 ∈ 𝐸, such that ‖𝑥‖ =

1, we have

‖𝐴𝑥‖ = sup
𝑖∈𝐼

(𝐴𝑥)
𝑖

 = sup
𝑖∈𝐼



∑

𝑗∈𝐼

𝑎
𝑖𝑗
𝑥
𝑗



≤ sup
𝑖∈𝐼

∑

𝑗∈𝐼


𝑎
𝑖𝑗


< +∞

⇒ ‖𝐴‖ = sup
𝑥∈𝐸:‖𝑥‖=1

‖𝐴𝑥‖ ≤ sup
𝑖∈𝐼

∑

𝑗∈𝐼


𝑎
𝑖𝑗


< +∞.

(11)

Finally, if sup
𝑖∈𝐼

∑
𝑗∈𝐼

|𝑎
𝑖𝑗
| < +∞, from (10) and (11) we have

‖𝐴‖ = sup
𝑖∈𝐼

∑

𝑗∈𝐼


𝑎
𝑖𝑗


. (12)

Definition 8. A linear function 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸

is called (𝑚, 𝜎)-standard, where 𝑚 ∈ 𝐼 ∪ {0} and 𝜎 : 𝐼 \

{1, . . . , 𝑚} → 𝐼 \ {1, . . . , 𝑚} is an increasing function, if

(1) 𝑎
𝑖𝑗

= 0, ∀(𝑖, 𝑗) ∉ ({1, . . . , 𝑚} × 𝐼) ∪

⋃
𝑛∈𝐼\{1,...,𝑚}

{(𝑛, 𝜎(𝑛))};
(2) there exists ∏

𝑛∈𝐼\{1,...,𝑚}:𝜆
𝑛
̸= 0
𝜆
𝑛

∈ R∗, where 𝜆
𝑛

=

𝑎
𝑛,𝜎(𝑛)

, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}.

Moreover, indicate by 𝐴
𝑚

the matrix (𝑎
𝑖𝑗
)
𝑖,𝑗∈{1,...,𝑚}

∈

𝑀
𝑚
(R). Finally, indicate by M

(𝑚,𝜎)
(𝐸) the set of the linear

(𝑚, 𝜎)-standard functions from 𝐸 to 𝐸.

Remark 9. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a linear
(𝑚, 𝜎)-standard function. Then, 𝐴 is continuous; moreover,
𝜎 is biunique if and only if 𝜎(𝑛) = 𝑛, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}.

Proof. From the point 1 of Definition 8,

sup
𝑖∈𝐼

∑

𝑗∈𝐼


𝑎
𝑖𝑗


= sup

{

{

{

sup
𝑖∈{1,...,𝑚}

∑

𝑗∈𝐼


𝑎
𝑖𝑗


, sup
𝑛∈𝐼\{1,...,𝑚}:𝜆

𝑛
̸= 0

𝜆𝑛


}

}

}

.

(13)

We have sup
𝑖∈{1,...,𝑚}

∑
𝑗∈𝐼

|𝑎
𝑖𝑗
| < +∞ from Proposition 7;

moreover, if 𝜆
𝑛

= 0 for 𝑛 sufficiently large, obviously
sup

𝑛∈𝐼\{1,...,𝑚}:𝜆
𝑛
̸= 0
|𝜆
𝑛
| < +∞; otherwise, consider the subse-

quence {𝜆
𝑛
𝑘

}
𝑘∈N = {𝜆

𝑛
̸= 0 : 𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}}; from the

point 2 of Definition 8, we obtain lim
𝑘→+∞

𝜆
𝑛
𝑘

= 1, and so
sup

𝑛∈𝐼\{1,...,𝑚}:𝜆
𝑛
̸= 0
|𝜆
𝑛
| < +∞ again. Then, sup

𝑖∈𝐼
∑
𝑗∈𝐼

|𝑎
𝑖𝑗
| <

+∞, from which 𝐴 is continuous from Proposition 7. More-
over, 𝜎 is biunique if and only if 𝜎(𝑛) = 𝑛, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚},
because 𝜎 is increasing.

Proposition 10. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a linear
(𝑚, 𝜎)-standard function; then, 𝐴 is biunique if and only if the
matrix 𝐴

𝑚
is invertible, 𝑎

𝑛,𝜎(𝑛)
̸= 0, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}, and 𝜎

is biunique.

Proof. If 𝐴
𝑚
is invertible and 𝑎

𝑛,𝜎(𝑛)
̸= 0, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚},

let 𝑥, 𝑦 ∈ 𝐸 be such that 𝐴𝑥 = 𝐴𝑦; from the point 1 of
Definition 8, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}, we have 𝑎

𝑛,𝜎(𝑛)
𝑥
𝜎(𝑛)

=

𝑎
𝑛,𝜎(𝑛)

𝑦
𝜎(𝑛)

, from which 𝑥
𝜎(𝑛)

= 𝑦
𝜎(𝑛)

; then, if 𝜎 is biunique,
we have 𝜎(𝑛) = 𝑛, and so (𝑥

𝑛
: 𝑛 > 𝑚) = (𝑦

𝑛
: 𝑛 > 𝑚).

This implies that 𝐴
𝑚

𝑡

( 𝑥
1
, . . . , 𝑥

𝑚
) = 𝐴

𝑚

𝑡

( 𝑦
1
, . . . , 𝑦

𝑚
), and

so (𝑥
1
, . . . , 𝑥

𝑚
) = (𝑦

1
, . . . , 𝑦

𝑚
); then, 𝑥 = 𝑦; that is, 𝐴 is

injective. Moreover, ∀𝑦 ∈ 𝐸, define 𝑥 ∈ 𝐸 in the following
manner:

𝑥
𝑛
=

𝑦
𝑛

𝑎
𝑛𝑛

, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚} ,

𝑡

(𝑥
1
, . . . , 𝑥

𝑚
) = 𝐴

−1

𝑚
(
𝑡

(𝑧
1
, . . . , 𝑧

𝑚
)) ,

(14)

where

𝑧
𝑖
= 𝑦

𝑖
− ∑

𝑛>𝑚

𝑎
𝑖𝑛
𝑥
𝑛
, ∀𝑖 ∈ {1, . . . , 𝑚} . (15)

It is easy to prove that 𝐴𝑥 = 𝑦; that is, 𝐴 is surjective.
Conversely, if 𝐴 is biunique, let x, y ∈ R𝑚 be such that

𝐴
𝑚
x = 𝐴

𝑚
y, and let 𝑥, 𝑦 ∈ 𝐸 be such that 𝑥

𝑛
= 𝑥

𝑛
, 𝑦

𝑛
= 𝑦

𝑛
,

∀𝑛 ∈ {1, . . . , 𝑚}, and 𝑥
𝑛

= 𝑦
𝑛

= 0, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}. We
have 𝐴

𝑚
x = 𝜋

{1,...,𝑚}
(𝐴𝑥), 𝐴

𝑚
y = 𝜋

{1,...,𝑚}
(𝐴𝑦), and (𝐴𝑥)

𝑛
=

(𝐴𝑦)
𝑛
= 0, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}, from which 𝐴𝑥 = 𝐴𝑦; then,

since 𝐴 is biunique, we have 𝑥 = 𝑦, and so x = y. Then, the
linear function x → 𝐴

𝑚
x is injective; that is,𝐴

𝑚
is invertible.

Moreover, we have 𝑎
𝑛,𝜎(𝑛)

̸= 0, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}; in fact, by
supposing by contradiction that 𝑎

𝑛,𝜎(𝑛)
= 0, for some 𝑛 > 𝑚,

then𝐴(𝐸) ⊂ {𝑥 ∈ 𝐸 : 𝑥
𝑛
= 0} ⫋ 𝐸, and this should contradict

the fact that 𝐴 is surjective. Moreover, 𝜎must be injective; in
fact, by supposing that 𝜎(𝑛

1
) = 𝜎(𝑛

2
), for some 𝑚 < 𝑛

1
<

𝑛
2
, then 𝐴(𝐸) ⊂ {𝑥 ∈ 𝐸 : 𝑥

𝑛
1

𝑎
𝑛
2
,𝜎(𝑛
2
)

= 𝑥
𝑛
2

𝑎
𝑛
1
,𝜎(𝑛
1
)
} ⫋

𝐸 (a contradiction). Finally, 𝜎 must be surjective, because
otherwise, ∀𝑦 ∈ 𝐸 and ∀ 𝑛 ∈ (𝐼\{1, . . . , 𝑚})\𝜎(𝐼\{1, . . . , 𝑚}),
we could choose arbitrarily 𝑥

𝑛
∈ R in order to determine

𝑥 = (𝑥
𝑛

: 𝑛 ∈ 𝐼) ∈ 𝐸 such that 𝐴𝑥 = 𝑦. Then, 𝐴 should
not be injective (again a contradiction).

In order to study the inverse of 𝐴, we must define the
following concept, that generalizes the determinant of a𝑚×𝑚

matrix (see, e.g., the theory in Lang’s book [7]).
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Definition 11. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a linear
(𝑚, 𝜎)-standard function; define the determinant of 𝐴, and
call it det

(𝑚,𝜎)
𝐴, or det𝐴, the real number:

det
(𝑚,𝜎)

𝐴 =

{

{

{

det𝐴
𝑚

∏

𝑛∈𝐼\{1,...,𝑚}

𝜆
𝑛

if 𝜎 is biunique

0 if 𝜎 is not biunique.
(16)

Remark 12. If 𝐴 ∈ M
(𝑚
1
,𝜎
1
)
(𝐸) ∩ M

(𝑚
2
,𝜎
2
)
(𝐸), then

det
(𝑚
1
,𝜎
1
)
𝐴 = det

(𝑚
2
,𝜎
2
)
𝐴.

Proof. Suppose that𝑚
1
≤ 𝑚

2
; then, we have 𝜎

1
|
𝐼\{1,...,𝑚

2
}
= 𝜎

2
.

If 𝜎
1
is biunique, 𝜎

2
is biunique too, and 𝜎

1
(𝑛) = 𝑛, ∀𝑛 ∈

{𝑚
1
+ 1, . . . , 𝑚

2
}; then

det
(𝑚
1
,𝜎
1
)
𝐴 = det𝐴

𝑚
1

∏

𝑛∈𝐼\{1,...,𝑚
1
}

𝜆
𝑛

= det𝐴
𝑚
1

∏

𝑝∈{𝑚
1
+1,...,𝑚

2
}

𝜆
𝑝

∏

𝑛∈𝐼\{1,...,𝑚
2
}

𝜆
𝑛

= det𝐴
𝑚
2

∏

𝑛∈𝐼\{1,...,𝑚
2
}

𝜆
𝑛
= det

(𝑚
2
,𝜎
2
)
𝐴.

(17)

Instead, if 𝜎
1
is not biunique, then either 𝜎

2
is not

biunique, or 𝜎
2
is biunique, but not 𝜎

1
|
{𝑚
1
+1,...,𝑚

2
}
. In the first

case, we have

det
(𝑚
1
,𝜎
1
)
𝐴 = 0 = det

(𝑚
2
,𝜎
2
)
𝐴. (18)

In the second case, we have det𝐴
𝑚
2

= 0, and so

det
(𝑚
1
,𝜎
1
)
𝐴 = 0 = det𝐴

𝑚
2

∏

𝑛∈𝐼\{1,...,𝑚
2
}

𝜆
𝑛
= det

(𝑚
2
,𝜎
2
)
𝐴. (19)

Proposition 13. Let𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a linear (𝑚, 𝜎)-
standard function, with 𝜎 being biunique, let 𝑠, 𝑡 ∈ 𝐼, 𝑠 < 𝑡, let
𝑝 = max{𝑡, 𝑚}, and let the function 𝜏 = 𝜎|

𝐼\{1,...,𝑝}
; then

(1) if there exist 𝑢 = (𝑢
𝑛
: 𝑛 ∈ 𝐼) ∈ 𝐸, V = (V

𝑛
: 𝑛 ∈ 𝐼) ∈ 𝐸,

and 𝑐
1
, 𝑐
2
∈ R such that ∑

𝑛∈𝐼
|𝑢
𝑛
| < +∞, ∑

𝑛∈𝐼
|V
𝑛
| <

+∞, 𝑎
𝑡𝑗

= 𝑐
1
𝑢
𝑗
+ 𝑐

2
V
𝑗
, ∀𝑗 ∈ 𝐼, by indicating by 𝑈 and

𝑉 the linear functions obtained by substituting the 𝑡th
row of 𝐴 for 𝑢 and V, respectively, then 𝑈 and 𝑉 are
(𝑝, 𝜏)-standard and det𝐴 = 𝑐

1
det𝑈 + 𝑐

2
det𝑉;

(2) if 𝐵 = (𝑏
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 is the linear function obtained
by exchanging the 𝑠th row of𝐴 for the 𝑡th row of𝐴, then
𝐵 is (𝑝, 𝜏)-standard and det𝐵 = − det𝐴;

(3) if 𝐶 = (𝑐
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 is the linear function obtained
by substituting the 𝑡th row of𝐴 for the 𝑠th row of𝐴, then
𝐶 is (𝑝, 𝜏)-standard and det𝐶 = 0.

Proof. (1) Since 𝜎 is biunique, we have 𝜎(𝑛) = 𝑛, ∀𝑛 ∈

𝐼 \ {1, . . . , 𝑚}, and so we can prove easily that 𝑈 and 𝑉 are

(𝑝, 𝜏)-standard; moreover, det𝐴 = det𝐴
𝑝
∏
𝑛∈𝐼\{1,...,𝑝}

𝜆
𝑛
and

det𝐴
𝑝
= 𝑐

1
det𝑈

𝑝
+ 𝑐

2
det𝑉

𝑝
; then

det𝐴 = (𝑐
1
det𝑈

𝑝
+ 𝑐

2
det𝑉

𝑝
) ∏

𝑛∈𝐼\{1,...,𝑝}

𝜆
𝑛

= 𝑐
1
det𝑈

𝑝
∏

𝑛∈𝐼\{1,...,𝑝}

𝜆
𝑛
+ 𝑐

2
det𝑉

𝑝
∏

𝑛∈𝐼\{1,...,𝑝}

𝜆
𝑛

= 𝑐
1
det𝑈 + 𝑐

2
det𝑉.

(20)

(2) As we observed in the proof of the point 1, 𝐵 is (𝑝, 𝜏)-
standard; moreover, det𝐵 = det𝐵

𝑝
∏
𝑛∈𝐼\{1,...,𝑝}

𝜆
𝑛
, where 𝐵

𝑝

is the matrix obtained by exchanging the 𝑠th row of 𝐴
𝑝
for

the 𝑡th row of 𝐴
𝑝
; then, det𝐵

𝑝
= − det𝐴

𝑝
, from which

det𝐵 = − det𝐴
𝑝

∏

𝑛∈𝐼\{1,...,𝑝}

𝜆
𝑛
= − det𝐴. (21)

(3) Since the 𝑠th row of 𝐶 and the 𝑡th row of 𝐶 are equal, by
exchanging these rows among themselves we obtain again the
matrix 𝐶; then, from the point 2, we have det𝐶 = − det𝐶,
from which det𝐶 = 0.

Remark 14. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a linear
(𝑚, 𝜎)-standard function; then, 𝐴 is biunique if and only if
det𝐴 ̸= 0.

Proof. If 𝐴 is biunique, from Proposition 10 𝜎 is biunique,
and so det𝐴 = det𝐴

𝑚
∏
𝑛∈𝐼\{1,...,𝑚}

𝜆
𝑛
; moreover, we have

det𝐴
𝑚

̸= 0 and 𝜆
𝑛

̸= 0, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}, from which
∏
𝑛∈𝐼\{1,...,𝑚}

𝜆
𝑛
= ∏

𝑛∈𝐼\{1,...,𝑚}:𝜆
𝑛
̸= 0
𝜆
𝑛

̸= 0; then, det𝐴 ̸= 0.
Conversely, if det𝐴 ̸= 0, then𝜎 is biunique by definition of

det𝐴, and so 0 ̸= det𝐴 = det𝐴
𝑚
∏
𝑛∈𝐼\{1,...,𝑚}

𝜆
𝑛
; this implies

that det𝐴
𝑚

̸= 0 and 𝜆
𝑛

̸= 0, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}; then, from
Proposition 10, 𝐴 is biunique.

Definition 15. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a linear (𝑚, 𝜎)-
standard function; define the 𝐼 × 𝐼 matrix cof𝐴 = (𝐴

𝑖𝑗
)
𝑖,𝑗∈𝐼

by

𝐴
𝑖𝑗
= (−1)

𝑖+𝑗 det (𝐴 (1 ⋅ ⋅ ⋅ �̂� ⋅ ⋅ ⋅ | 1 ⋅ ⋅ ⋅ 𝑗 ⋅ ⋅ ⋅ )) , (22)

where 𝐴(1 ⋅ ⋅ ⋅ �̂� ⋅ ⋅ ⋅ | 1 ⋅ ⋅ ⋅ 𝑗 ⋅ ⋅ ⋅ ) is the (𝐼 \ {𝑖}) × (𝐼 \ {𝑗})matrix
obtained by deleting the 𝑖th row and the 𝑗th column of 𝐴.

Proposition 16. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a linear
(𝑚, 𝜎)-standard function; then, for any 𝑖 ∈ 𝐼, one has

det𝐴 = ∑

𝑗∈𝐼

𝑎
𝑖𝑗
𝐴
𝑖𝑗
. (23)

Proof. Suppose that 𝜎 is biunique; then, ∀𝑖 ∈ {1, . . . , 𝑚}, we
have

det𝐴 = det𝐴
𝑚

∏

𝑛∈𝐼\{1,...,𝑚}

𝜆
𝑛
=

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝐴

𝑚
)
𝑖𝑗
( ∏

𝑛∈𝐼\{1,...,𝑚}

𝜆
𝑛
)

=

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
𝐴
𝑖𝑗
.

(24)
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Moreover, ∀𝑖 ∈ {1, . . . , 𝑚} and ∀𝑗 > 𝑚, the matrix
𝐴(1 ⋅ ⋅ ⋅ �̂� ⋅ ⋅ ⋅ | 1 ⋅ ⋅ ⋅ 𝑗 ⋅ ⋅ ⋅ ) is (𝑚 − 1, 𝜎)-standard, where

𝜎 : 𝐼 \ {1, . . . , 𝑚 − 1} → 𝐼 \ {1, . . . , 𝑚 − 1} (25)

is not surjective because 𝑚 ∉ 𝜎(𝐼 \ {1, . . . , 𝑚 − 1}), and so
𝐴
𝑖𝑗

= 0; then, det𝐴 = ∑
𝑗∈𝐼

𝑎
𝑖𝑗
𝐴
𝑖𝑗
. Finally, ∀𝑖 > 𝑚, we have

𝑎
𝑖𝑗
= 0, ∀𝑗 ̸= 𝑖; then

∑

𝑗∈𝐼

𝑎
𝑖𝑗
𝐴
𝑖𝑗
= 𝑎

𝑖𝑖
𝐴
𝑖𝑖

= 𝑎
𝑖𝑖
(−1)

2𝑖 det𝐴
𝑚

∏

𝑛∈𝐼\{1,...,𝑚,𝑖}

𝜆
𝑛

= det𝐴
𝑚

∏

𝑛∈𝐼\{1,...,𝑚}

𝜆
𝑛
= det𝐴.

(26)

Instead, if 𝜎 is not biunique, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑚}, the matrix
𝐴(1 ⋅ ⋅ ⋅ �̂� ⋅ ⋅ ⋅ | 1 ⋅ ⋅ ⋅ 𝑗 ⋅ ⋅ ⋅ ) is (𝑚 − 1, �̂�)-standard, where �̂�(𝑛) =

𝜎(𝑛 + 1), ∀𝑛 > 𝑚 − 1; then, �̂� is not biunique, from which
𝐴
𝑖𝑗
= 0. Moreover, ∀𝑖 ∈ {1, . . . , 𝑚} and ∀𝑗 > 𝑚, as in the case

𝜎 being biunique, we have 𝐴
𝑖𝑗

= 0. Finally, ∀𝑖 > 𝑚, we have
𝑎
𝑖𝑗
= 0, ∀𝑗 ̸= 𝜎(𝑖); then

∑

𝑗∈𝐼

𝑎
𝑖𝑗
𝐴
𝑖𝑗
= 𝑎

𝑖,𝜎(𝑖)
𝐴
𝑖,𝜎(𝑖)

. (27)

Moreover, the matrix 𝐴(1 . . . �̂� . . . | 1 . . . 𝜎(𝑖) . . .) is (𝑚, �̃�)-
standard, where the function �̃� : 𝐼 \ {1, . . . , 𝑚, 𝑖} → 𝐼 \

{1, . . . , 𝑚, 𝜎(𝑖)} is not biunique; in fact, in this case necessarily
𝜎(𝑖) = 𝑖, and so 𝜎 should be biunique (a contradiction); then,
we have 𝐴

𝑖,𝜎(𝑖)
= 0, from which

det𝐴 = 0 = ∑

𝑗∈𝐼

𝑎
𝑖𝑗
𝐴
𝑖𝑗
. (28)

Corollary 17. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a biunique and
linear (𝑚, 𝜎)-standard function; then,𝐴−1 : 𝐸 → 𝐸 is a linear
(𝑚, 𝜎)-standard function 𝐴

−1

= (𝑏
𝑖𝑗
)
𝑖,𝑗∈𝐼

; moreover

𝐴
−1

=
1

det𝐴
𝑡

(cof 𝐴) . (29)

Proof. From Proposition 16, we have

∑

𝑛∈𝐼

𝑎
𝑖𝑛
𝐴
𝑖𝑛

= det𝐴. (30)

Moreover, we have

∑

𝑛∈𝐼

𝑎
𝑖𝑛
𝐴
𝑗𝑛

= 0, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ̸= 𝑗; (31)

in fact, from Proposition 16, the left side of (31) is equal
to det𝐶, where 𝐶 is the (𝑝, 𝜏)-standard matrix obtained by
substituting the 𝑖th row of 𝐴 for the 𝑗th row of 𝐴; then, from
Proposition 13, we have det𝐶 = 0. This implies that

∑

𝑛∈𝐼

𝑎
𝑖𝑛
𝐴
𝑗𝑛

= (det𝐴) 𝛿
𝑖𝑗
, ∀𝑖, 𝑗 ∈ 𝐼, (32)

where 𝛿
𝑖𝑗
is the Kronecker symbol, and so

(𝐴
𝑡

(cof𝐴))
𝑖𝑗

= (det𝐴) 𝛿
𝑖𝑗
, ∀𝑖, 𝑗 ∈ 𝐼, (33)

from which the formula (29) follows. Moreover, as we
observed in the proof of Proposition 16, ∀𝑖 ∈ {1, . . . , 𝑚} and
∀𝑗 > 𝑚, we have 𝐴

𝑖𝑗
= 0; finally, ∀𝑖, 𝑗 > 𝑚 such that 𝑖 ̸= 𝑗,

the matrix 𝐴(1 ⋅ ⋅ ⋅ �̂� ⋅ ⋅ ⋅ | 1 ⋅ ⋅ ⋅ 𝑗 ⋅ ⋅ ⋅ ) is (𝑚, 𝜎)-standard, where
𝜎 : 𝐼\{1, . . . , 𝑚, 𝑖} → 𝐼\{1, . . . , 𝑚, 𝑗} is not surjective because
𝑖 ∉ 𝜎(𝐼\{1, . . . , 𝑚, 𝑖}), and so𝐴

𝑖𝑗
= 0 again; from formula (29),

this implies that 𝐴−1 is (𝑚, 𝜎)-standard.

Definition 18. Define the function ‖ ⋅ ‖ : C𝐼 → [0, +∞] by

‖𝑥‖ = sup
𝑛∈𝐼

𝑥𝑛
 , ∀𝑥 = (𝑥

𝑛
: 𝑛 ∈ 𝐼) ∈ C𝐼, (34)

and define the following vector space on the field C, with the
norm ‖ ⋅ ‖:

𝐹 = {𝑥 ∈ C𝐼 : ‖𝑥‖ < +∞} ⊃ 𝐸. (35)

Definition 19. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

be a real matrix 𝐼 × 𝐼; then,
define the linear function 𝐴 = (𝑎

𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐹 → C𝐼 and write
𝑥 → 𝐴𝑥, in the following manner:

(𝐴𝑥)
𝑖
= ∑

𝑗∈𝐼

𝑎
𝑖𝑗
𝑥
𝑗
, ∀𝑥 ∈ 𝐹, ∀𝑖 ∈ 𝐼, (36)

on condition that, for any 𝑖 ∈ 𝐼, the sum in (36) converges to
a complex number.

Proposition 20. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

be a real matrix 𝐼 × 𝐼; then

(1) the linear function 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐹 → C𝐼 given by
(36) is defined if and only if, for any 𝑖 ∈ 𝐼, ∑

𝑗∈𝐼
|𝑎
𝑖𝑗
| <

+∞.
(2) 𝐴(𝐹) ⊂ 𝐹 and 𝐴 is continuous if and only if

sup
𝑖∈𝐼

∑
𝑗∈𝐼

|𝑎
𝑖𝑗
| < +∞; moreover, in this case ‖𝐴‖ =

sup
𝑖∈𝐼

∑
𝑗∈𝐼

|𝑎
𝑖𝑗
|.

Proof. The proof is analogous to that one of Proposition 7.

Definition 21. Let 𝑉 be a vector space on C, and let 𝑇 :

𝑉 → 𝑉 be a linear function; indicate by 𝑉𝑃(𝑇) the set of
the eigenvalues of 𝑇.

Proposition 22. Let𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a linear (𝑚, 𝜎)-
standard function, with 𝜎 biunique; then, by considering 𝐴 as
a function from 𝐹 to 𝐹, one has

𝑉𝑃 (𝐴) = 𝑉𝑃 (𝐴
𝑚
) ∪ {𝜆

𝑛
: 𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}} . (37)

Moreover

det𝐴 = ∏

𝜆∈𝑉𝑃(𝐴)

𝜆. (38)
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Proof. Let 𝜆 ∈ C be an eigenvalue of 𝐴
𝑚
, let x ∈ C𝑚 \ {0} be

the corresponding eigenvector, and let 𝑦 ∈ C𝐼 \ {0} be such
that 𝑦

𝑛
= 𝑥

𝑛
, ∀𝑛 ∈ {1, . . . , 𝑚}, and 𝑦

𝑛
= 0, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}.

We have (𝐴𝑦)
𝑛

= (𝐴𝑥)
𝑛

= (𝜆𝑥)
𝑛

= (𝜆𝑦)
𝑛
, ∀𝑛 ∈ {1, . . . , 𝑚},

and (𝐴𝑦)
𝑛

= 0 = (𝜆𝑦)
𝑛
, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}, from which

𝐴𝑦 = 𝜆𝑦, and so 𝜆 ∈ 𝑉𝑃(𝐴). Moreover, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚},
since 𝜎 is biunique, from the Remark 9, we have 𝜎(𝑛) = 𝑛. If
𝑎
𝑖𝑛

= 0, ∀𝑖 ∈ {1, . . . , 𝑚}, let 𝑥 ∈ R𝐼 \ {0} be such that 𝑥
𝑖
= 𝛿

𝑖𝑛
,

∀𝑖 ∈ 𝐼; we have 𝐴𝑥 = 𝜆
𝑛
𝑥, and so 𝜆

𝑛
∈ 𝑉𝑃(𝐴). Otherwise,

suppose that 𝑎
𝑖𝑛

̸= 0 for some 𝑖 ∈ {1, . . . , 𝑚}; if 𝜆
𝑛
∈ 𝑉𝑃(𝐴

𝑚
),

then 𝜆
𝑛

∈ 𝑉𝑃(𝐴) by the previous arguments; conversely, if
(𝐴

𝑚
− 𝜆

𝑛
𝐼
𝑚
)x ̸= 0, ∀x ∈ C𝑚 \ {0}, the matrix (𝐴

𝑚
− 𝜆

𝑛
𝐼
𝑚
) is

invertible and so there exists x ∈ R𝑚 \ {0} such that 𝐴
𝑚
x −

𝜆
𝑛
x =

𝑡

( −𝑎
1𝑛
, . . . , −𝑎

𝑖𝑛
, . . . , −𝑎

𝑚𝑛
); then, by considering 𝑦 ∈

R𝐼 \ {0} such that 𝑦
𝑖
= 𝑥

𝑖
, ∀𝑖 ∈ {1, . . . , 𝑚}, 𝑦

𝑖
= 𝛿

𝑖𝑛
, ∀𝑖 ∈

𝐼 \ {1, . . . , 𝑚}, we have 𝐴𝑦 = 𝜆
𝑛
𝑦, and so 𝜆

𝑛
∈ 𝑉𝑃(𝐴). Then

𝑉𝑃 (𝐴
𝑚
) ∪ {𝜆

𝑛
: 𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}} ⊂ 𝑉𝑃 (𝐴) . (39)

Conversely, if 𝜆 ∈ 𝑉𝑃(𝐴), we have 𝐴𝑥 = 𝜆𝑥, for some
𝑥 ∈ C𝐼 \ {0}, and so, ∀𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}, 𝜆

𝑛
𝑥
𝑛
= (𝐴𝑥)

𝑛
= 𝜆𝑥

𝑛
;

then, by supposing 𝜆 ∉ {𝜆
𝑛

: 𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}}, we have
𝑥
𝑛
= 0, from which 𝑥

𝑛
̸= 0 for some 𝑛 ∈ {1, . . . , 𝑚}. Moreover,

we have

𝐴
𝑚

𝑡

(𝑥
1
, . . . , 𝑥

𝑚
) =

𝑡

((𝐴𝑥)
1
, . . . , (𝐴𝑥)

𝑚
) = 𝜆

𝑡

(𝑥
1
, . . . , 𝑥

𝑚
),

(40)

and so 𝜆 ∈ 𝑉𝑃(𝐴
𝑚
). Then, we have

𝑉𝑃 (𝐴) ⊂ 𝑉𝑃 (𝐴
𝑚
) ∪ {𝜆

𝑛
: 𝑛 ∈ 𝐼 \ {1, . . . , 𝑚}} , (41)

from which (37) follows. Moreover, since 𝜎 is biunique, from
(37), we have

det𝐴 = det𝐴
𝑚

∏

𝑛∈𝐼\{1,...,𝑚}

𝜆
𝑛
= ∏

𝜆∈𝑉𝑃(𝐴)

𝜆. (42)

4. Change of Variables’ Formula

Definition 23. Let 𝑘 ∈ N, let𝑀,𝑁 ∈ R+, and let 𝑎 = (𝑎
𝑛
: 𝑛 ∈

𝐼) ∈ (R+)𝐼 such that ∏
𝑛∈𝐼

𝑎
𝑛
∈ R+; define the following sets

inB(𝐸):

𝐸
(𝑘)

𝑁, 𝑎
= R𝑘 × ∏

𝑛∈𝐼\{1,...,𝑘}

[−𝑁𝑎
𝑛
, 𝑁𝑎

𝑛
] ;

𝐸
(𝑘)

𝑀,𝑁, 𝑎
= [−𝑀,𝑀]

𝑘

× ∏

𝑛∈𝐼\{1,...,𝑘}

[−𝑁𝑎
𝑛
, 𝑁𝑎

𝑛
] .

(43)

Definition 24. Let 𝑎 = (𝑎
𝑛
: 𝑛 ∈ 𝐼) ∈ (R+)𝐼 and 𝑏 = (𝑏

𝑛
: 𝑛 ∈

𝐼) ∈ (R+)𝐼 be such that ∏
𝑛∈𝐼

𝑎
𝑛
∈ R+, ∏

𝑛∈𝐼
𝑏
𝑛
∈ R+; define

𝑎𝑏 ∈ (R+)𝐼 in the following manner:

𝑎𝑏 = (𝑎
𝑛
𝑏
𝑛
: 𝑛 ∈ 𝐼) . (44)

Proposition 25. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a biunique
and linear (𝑚, 𝜎)-standard function; then, for any 𝑎 = (𝑎

𝑛
:

𝑛 ∈ 𝐼) ∈ (R+)𝐼 such that ∏
𝑛∈𝐼

𝑎
𝑛
∈ R+, there exists 𝑏 = (𝑏

𝑛
:

𝑛 ∈ 𝐼) ∈ (R+)𝐼 such that ∏
𝑛∈𝐼

𝑏
𝑛
∈ R+ and such that, for any

𝑘 ∈ N, 𝑘 ≥ 𝑚, and for any 𝑁 ∈ R+, one has

𝐴
−1

(𝐸
(𝑘)

𝑁,𝑎
) = 𝐸

(𝑘)

𝑁,𝑏
. (45)

Proof. From Corollary 17, 𝐴−1 = (𝑏
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 is a linear
(𝑚, 𝜎)-standard function. By setting 𝜌

𝑛
= 𝑏

𝑛𝑛
, ∀𝑛 > 𝑚, from

(29), we have

𝜌
𝑛
=

1

𝑎
𝑛𝑛

=
1

𝜆
𝑛

⇒ ∏

𝑛∈𝐼\{1,...,𝑚}

𝜌
𝑛
= ∏

𝑛∈𝐼\{1,...,𝑚}

1

𝜆
𝑛

∈ R∗.
(46)

Set 𝑏 = (𝑏
𝑛
: 𝑛 ∈ 𝐼) ∈ (R+)𝐼 such that

𝑏
𝑛
= 1, ∀𝑛 ∈ {1, . . . , 𝑚} ,

(𝑏
𝑛
: 𝑛 > 𝑚) = (𝑎

𝑛
: 𝑛 > 𝑚) (

𝜌𝑛
 : 𝑛 > 𝑚) .

(47)

By definition of 𝑏, we have

∏

𝑛∈𝐼

𝑏
𝑛
= ( ∏

𝑛∈𝐼\{1,...,𝑚}

𝑎
𝑛
)( ∏

𝑛∈𝐼\{1,...,𝑚}

1

𝜆𝑛


) ∈ R+; (48)

moreover, for any 𝑘 ∈ N, 𝑘 ≥ 𝑚, and for any 𝑁 ∈ R+, we
have 𝐴

−1

(𝐸
(𝑘)

𝑁,𝑎
) ⊂ 𝐸

(𝑘)

𝑁,𝑏
. Analogously, it is possible to prove

that 𝐴(𝐸
(𝑘)

𝑁,𝑏
) ⊂ 𝐸

(𝑘)

𝑁,𝑐
, where

(𝑐
𝑛
: 𝑛 > 𝑚) = (𝑏

𝑛
: 𝑛 > 𝑚) (

𝜆𝑛
 : 𝑛 > 𝑚) = (𝑎

𝑛
: 𝑛 > 𝑚) .

(49)

Moreover, since 𝑘 ≥ 𝑚, we have 𝐸
(𝑘)

𝑁,𝑐
= 𝐸

(𝑘)

𝑁,𝑎
, and so 𝐸

(𝑘)

𝑁,𝑏
⊂

𝐴
−1

(𝐸
(𝑘)

𝑁,𝑎
), from which (45) follows.

Lemma 26. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a biunique and
linear (𝑚, 𝜎)-standard function; then, for any 𝑀

1
∈ R+ and

for any 𝑎 = (𝑎
𝑛
: 𝑛 ∈ 𝐼) ∈ (R+)𝐼 such that ∏

𝑛∈𝐼
𝑎
𝑛
∈ R+, there

exist 𝑀
2
,𝑀

3
∈ R+ and 𝑏 = (𝑏

𝑛
: 𝑛 ∈ 𝐼) ∈ (R+)𝐼, 𝑐 = (𝑐

𝑛
: 𝑛 ∈

𝐼) ∈ (R+)𝐼 such that ∏
𝑛∈𝐼

𝑏
𝑛

∈ R+, ∏
𝑛∈𝐼

𝑐
𝑛

∈ R+, and such
that, for any 𝑘 ∈ N and for any 𝑁 ∈ R+, one has

𝐴
−1

(𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

) ⊂ 𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

; (50)

𝐴(𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

) ⊂ 𝐸
(𝑘)

𝑀
3
,𝑁,𝑐

. (51)

Moreover, (𝑐
𝑛
: 𝑛 > 𝑚) = (𝑎

𝑛
: 𝑛 > 𝑚).

Proof. From the Banach theorem of the open function (see
also the exercise 5.14 in [8]), 𝐴−1 is continuous; then, ∀𝑁 ∈

R+ and ∀𝑥 ∈ 𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

, we have


𝐴
−1

(𝑥)

≤


𝐴
−1

‖𝑥‖ ≤


𝐴
−1

max {𝑀

1
, 𝑁, ‖𝑎‖} . (52)
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Set𝑀
2
= ‖𝐴

−1

‖max{𝑀
1
, 𝑁, ‖𝑎‖} and 𝑏 = (𝑏

𝑛
: 𝑛 ∈ 𝐼) ∈ (R+)𝐼

such that

𝑏
𝑛
=

𝑀
2

𝑁
, ∀𝑛 ∈ {1, . . . , 𝑚} ,

(𝑏
𝑛
: 𝑛 > 𝑚) = (𝑎

𝑛
: 𝑛 > 𝑚) (

𝜌𝑛
 : 𝑛 > 𝑚) ,

(53)

where 𝜌
𝑛
, ∀𝑛 ∈ 𝐼, is defined as in the proof of Proposition 25.

By definition of 𝑏, we have

∏

𝑛∈𝐼

𝑏
𝑛
= (

𝑀
2

𝑁
)

𝑚

( ∏

𝑛∈𝐼\{1,...,𝑚}

𝑎
𝑛
)( ∏

𝑛∈𝐼\{1,...,𝑚}

1

𝜆𝑛


) ∈ R+,

(54)

and (50) holds. Analogously, it is possible to prove (51);
moreover

(𝑐
𝑛
: 𝑛 > 𝑚) = (𝑏

𝑛
: 𝑛 > 𝑚) (

𝜆𝑛
 : 𝑛 > 𝑚) = (𝑎

𝑛
: 𝑛 > 𝑚) .

(55)

Remark 27. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a linear (𝑚, 𝜎)-
standard function; then, 𝐴 isB(𝐸)/B(𝐸)-measurable.

Proof. Let 𝜏 be the topology induced by the norm ‖ ⋅ ‖ on 𝐸;
then, since 𝐴 is continuous by Remark 9, ∀𝐵 ∈ 𝜏 we have
𝐴
−1

(𝐵) ∈ 𝜏 ⊂ B(𝐸). Moreover, since 𝜎(𝜏) = B(𝐸), we have
𝐴
−1

(𝐵) ∈ B(𝐸), ∀𝐵 ∈ B(𝐸).

Proposition 28. Let 𝜇
1
and 𝜇

2
be two measures on a measur-

able space (𝑆, Σ) that coincide on a 𝜋-system I on 𝑆; then, if
𝜎(I) = Σ and 𝜇

1
(𝑆) = 𝜇

2
(𝑆) < +∞, then 𝜇

1
and 𝜇

2
coincide

on Σ.

Proof. See, for example, Theorem 3.3 in Billingsley [9].

Now, we can prove the main result of our paper, that
generalizes the change of variables formula for the integration
of a biunique linear function on R𝑚 with values in R𝑚 (see,
e.g., Lang’s book [10]).

Theorem 29 (change of variables’ formula). Let 𝐴 =

(𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a biunique and linear (𝑚, 𝜎)-standard

function, let 𝑎 = (𝑎
𝑛
: 𝑛 ∈ 𝐼) ∈ (R+)𝐼 be such that ∏

𝑛∈𝐼
𝑎
𝑛
∈

R+, and let 𝑏 ∈ (R+)𝐼 be the sequence defined by Proposition 25.
Then, for any 𝑘 ∈ N, 𝑘 ≥ 𝑚, for any𝑁 ∈ R+, for any𝐵 ∈ B(𝐸),
and for any measurable function 𝑓 : (𝐸,B(𝐸)) → (R,B)

such that 𝑓+ (or 𝑓−) is 𝜆(𝑘)
𝑁,𝑎

-integrable, one has

∫
𝐵

𝑓𝑑𝜆
(𝑘)

𝑁,𝑎
= ∫

𝐴
−1
(𝐵)

𝑓 (𝐴) |det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏
. (56)

Proof. ∀𝑛 ∈ N, let ℎ
𝑛

: 𝐸 → 𝐸 be the biunique and linear
(𝑚, 𝜎)-standard function given by

(ℎ
𝑛
(𝑥))

𝑖
= (𝐴

𝑛
(𝜋
{1,...,𝑛}

(𝑥)))
𝑖

, ∀𝑥 ∈ 𝐸, ∀𝑖 ∈ {1, . . . , 𝑛} ;

(ℎ
𝑛
(𝑥))

𝑖
= 𝜆

𝑖
𝑥
𝑖
, ∀𝑥 ∈ 𝐸, ∀𝑖 ∈ 𝐼 \ {1, . . . , 𝑛} .

(57)

Moreover, ∀𝑀
1

∈ R+ and ∀𝑎 = (𝑎
𝑛

: 𝑛 ∈ 𝐼) ∈ (R+)𝐼 such
that ∏

𝑛∈𝐼
𝑎
𝑛

∈ R+, let 𝑀
2
(𝑛), 𝑀

3
(𝑛) be the constants, and

let 𝑏(𝑛), 𝑐(𝑛) be the sequences defined by Lemma 26 and the
function ℎ

𝑛
; finally, consider the analogous constants𝑀

2
,𝑀

3
,

and the sequences 𝑏, 𝑐 defined by 𝐴. Observe that 𝑀
2
(𝑛) ≤

𝑀
2
, (𝑏(𝑛))

𝑖
≤ 𝑏

𝑖
, ∀𝑖 ∈ 𝐼, ∀𝑛 ∈ N. Suppose that 𝑛 ≥ 𝑘 ≥ 𝑚 and

𝑁 ∈ R+; then, ∀𝐵 = ∏
𝑝∈𝐼

𝐵
𝑝
, where 𝐵

𝑝
∈ B([−𝑀

1
,𝑀

1
]),

∀𝑝 ∈ {1, . . . , 𝑘}, 𝐵
𝑝
∈ B([−𝑁𝑎

𝑝
, 𝑁𝑎

𝑝
]), ∀𝑝 > 𝑘, we have

∫

𝐵

𝑑𝜆
(𝑘)

𝑁,𝑎

= ∫

(𝐵1×⋅⋅⋅×𝐵𝑘)×∏𝑞>𝑘𝐵𝑞

𝑑((

𝑘

⨂

𝑝=1

1

2𝑁

Leb)⊗(⨂
𝑞>𝑘

1

2𝑁

Leb






B([−𝑁𝑎

𝑞
,𝑁𝑎
𝑞
])

))

= ∫

(𝐵1×⋅⋅⋅×𝐵𝑛)×∏𝑞>𝑛𝐵𝑞

𝑑((

𝑛

⨂

𝑝=1

1

2𝑁

Leb)⊗(⨂
𝑞>𝑛

1

2𝑁

Leb






B([−𝑁𝑎

𝑞
,𝑁𝑎
𝑞
])

))

= ∫

𝐵
1
×⋅⋅⋅×𝐵

𝑛

𝑑(

𝑛

⨂

𝑝=1

1

2𝑁

Leb)

×∫

∏
𝑞>𝑛
𝐵
𝑞

𝑑(⨂

𝑞>𝑛

1

2𝑁

Leb






B([−𝑁𝑎

𝑞
,𝑁𝑎
𝑞
])

)

= ∫

𝐴
−1

𝑛
(𝐵1×⋅⋅⋅×𝐵𝑛)





det𝐴

𝑛





𝑑(

𝑛

⨂

𝑝=1

1

2𝑁

Leb)

×∫

∏

𝑞>𝑛

1/𝜆
𝑞
𝐵
𝑞

∏

𝑞>𝑛






𝜆
𝑞






𝑑(⨂

𝑞>𝑛

1

2𝑁

Leb






B([−𝑁𝑏

𝑞
,𝑁𝑏
𝑞
])

)

= ∫

ℎ
−1

𝑛
(𝐵)





det ℎ
𝑛





𝑑((

𝑛

⨂

𝑝=1

1

2𝑁

Leb) ⊗ (⨂

𝑞>𝑛

1

2𝑁

Leb






B([−𝑁𝑏

𝑞
,𝑁𝑏
𝑞
])

))

= ∫

ℎ
−1

𝑛
(𝐵)





det ℎ
𝑛





𝑑((

𝑘

⨂

𝑝=1

1

2𝑁

Leb) ⊗(⨂

𝑞>𝑘

1

2𝑁

Leb






B([−𝑁𝑏

𝑞
,𝑁𝑏
𝑞
])

))

= ∫

ℎ
−1

𝑛
(𝐵)





det ℎ
𝑛





𝑑𝜆
(𝑘)

𝑁,𝑏
.

(58)

Consider the measures 𝜇
1
and 𝜇

2
onB(𝐸

(𝑘)

𝑀
1
,𝑁,𝑎

) defined by

𝜇
1
(𝐵) = ∫

𝐵

𝑑𝜆
(𝑘)

𝑁,𝑎
;

𝜇
2
(𝐵) = ∫

ℎ
−1

𝑛
(𝐵)

det ℎ𝑛
 𝑑𝜆

(𝑘)

𝑁,𝑏
.

(59)

From (58), 𝜇
1
and 𝜇

2
coincide on the set I = {𝐵 ∈

B(𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

) : 𝐵 = ∏
𝑝∈𝐼

𝐵
𝑝
}; since I is a 𝜋-system on

𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

such that𝜎(I) = B(𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

) and since 𝜇
1
(𝐸

(𝑘)

𝑀
1
,𝑁,𝑎

) =

𝜇
2
(𝐸

(𝑘)

𝑀
1
,𝑁,𝑎

) = (𝑀
1
/𝑁)

𝑘

∏
𝑝>𝑘

𝑎
𝑝
< +∞, from Proposition 28,

we have that ∀𝐵 ∈ B(𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

):

∫
𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

1
𝐵
𝑑𝜆

(𝑘)

𝑁,𝑎
= ∫

𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

1
𝐵
(ℎ
𝑛
)
det ℎ𝑛

 𝑑𝜆
(𝑘)

𝑁,𝑏
. (60)
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This implies that if 𝜑 : (𝐸
(𝑘)

𝑀
3
,𝑁,𝑎

,B(𝐸
(𝑘)

𝑀
3
,𝑁,𝑎

)) → ([0, +∞),

B([0, +∞))) is a simple function such that 𝜑(𝑥) = 0, ∀𝑥 ∉

𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

, we have

∫
𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

𝜑𝑑𝜆
(𝑘)

𝑁,𝑎
= ∫

𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

𝜑 (ℎ
𝑛
)
det ℎ𝑛

 𝑑𝜆
(𝑘)

𝑁,𝑏
. (61)

Then, if 𝑙 : (𝐸(𝑘)
𝑀
3
,𝑁,𝑎

,B(𝐸
(𝑘)

𝑀
3
,𝑁,𝑎

)) → ([0, +∞),B([0, +∞)))

is a measurable function such that 𝜑(𝑥) = 0, ∀𝑥 ∉

𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

, and {𝜑
𝑖
}
𝑖∈N is a sequence of increasing positive simple

functions over 𝐸
(𝑘)

𝑀
3
,𝑁,𝑎

such that lim
𝑖→+∞

𝜑
𝑖
= 𝑙, 𝜑

𝑖
(𝑥) = 0,

∀𝑥 ∉ 𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

, ∀𝑖 ∈ N, from Beppo Levi theorem we have

∫
𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

𝑙𝑑𝜆
(𝑘)

𝑁,𝑎
= lim
𝑖→+∞

∫
𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

𝜑
𝑖
𝑑𝜆

(𝑘)

𝑁,𝑎

= lim
𝑖→+∞

∫
𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

𝜑
𝑖
(ℎ
𝑛
)
det ℎ𝑛

 𝑑𝜆
(𝑘)

𝑁,𝑏

= ∫
𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

𝑙 (ℎ
𝑛
)
det ℎ𝑛

 𝑑𝜆
(𝑘)

𝑁,𝑏

= lim
𝑛→+∞

∫
𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

𝑙 (ℎ
𝑛
)
det ℎ𝑛

 𝑑𝜆
(𝑘)

𝑁,𝑏
.

(62)

In particular, the formula (62) is true for any continuous
and bounded function 𝑙 : 𝐸

(𝑘)

𝑀
3
,𝑁,𝑎

→ [0, 1]. In this case,
let {𝑓

𝑛
}
𝑛∈N be the sequence of the measurable functions 𝑓

𝑛
:

(𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

,B(𝐸
(𝑘)

𝑀
2
,𝑁,𝑎

)) → (R,B) given by

𝑓
𝑛
(𝑥) = 𝑙 (ℎ

𝑛
(𝑥))

det ℎ𝑛
 , ∀𝑥 ∈ 𝐸

(𝑘)

𝑀
2
,𝑁,𝑏

, ∀𝑛 ∈ N. (63)

Since det ℎ
𝑛

= det𝐴, ∀𝑛 ≥ 𝑚, we have |𝑓
𝑛
| ≤ 𝑔, where

𝑔 : (𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

,B(𝐸
(𝑘)

𝑀
2
,𝑁,𝑎

)) → ([0, +∞),B([0, +∞))) is the
measurable function defined by

𝑔 (𝑥) = |det𝐴| , ∀𝑥 ∈ 𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

. (64)

Moreover

∫
𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

𝑔𝑑𝜆
(𝑘)

𝑁,𝑏

= |det𝐴| 𝜆
(𝑘)

𝑁,𝑏
(𝐸

(𝑘)

𝑀
2
,𝑁,𝑏

)

=
|det𝐴| (2𝑀

2
)
𝑘

(2𝑁)
𝑘

∏

𝑝>𝑘

(
1

2𝑁
Leb ([−𝑁𝑏

𝑝
, 𝑁𝑏

𝑝
]))

=
|det𝐴|𝑀

𝑘

2

𝑁𝑘

∏

𝑝>𝑘

𝑏
𝑝
< +∞.

(65)

Moreover, we have lim
𝑛→+∞

ℎ
𝑛

= 𝐴, and so lim
𝑛→+∞

𝑓
𝑛

=

𝑙(𝐴)| det𝐴|; then, from the dominated convergence theorem,

lim
𝑛→+∞

∫
𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

𝑙 (ℎ
𝑛
)
det ℎ𝑛

 𝑑𝜆
(𝑘)

𝑁,𝑏

= ∫
𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

𝑙 (𝐴) |det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏
.

(66)

Then, from (62) we have

∫
𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

𝑙𝑑𝜆
(𝑘)

𝑁,𝑎
= ∫

𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

𝑙 (𝐴) |det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏
. (67)

Let 𝐵 = ∏
𝑝∈𝐼

𝐵
𝑝
∈ B(𝐸

(𝑘)

𝑀
1
,𝑁,𝑎

), where 𝐵
𝑝
= (𝑎

𝑝
, 𝑏
𝑝
), ∀𝑝 ∈

𝐼; moreover, ∀𝑛 ∈ N∗, consider the continuous function 𝑙
𝑛
:

𝐸
(𝑘)

𝑀
3
,𝑁,𝑎

→ [0, 1] defined by

𝑙
𝑛
(𝑥) =

{{{{{{{

{{{{{{{

{

1 if 𝑥 ∈ ∏

𝑝∈𝐼

(𝑎
𝑝
+

𝛿
𝑝

𝑛
, 𝑏
𝑝
−

𝛿
𝑝

𝑛
)

𝑥 − 𝑥
2


𝑥1 − 𝑥

2



if 𝑥 ∈ 𝐵 \ ∏

𝑝∈𝐼

(𝑎
𝑝
+

𝛿
𝑝

𝑛
, 𝑏
𝑝
−

𝛿
𝑝

𝑛
)

0 if 𝑥 ∉ 𝐵,

(68)

where 𝛿
𝑝

= (𝑏
𝑝
− 𝑎

𝑝
)/2, ∀𝑝 ∈ 𝐼, 𝑥

1
= 𝑟 ∩ 𝜕(∏

𝑝∈𝐼
(𝑎
𝑝
+

(𝛿
𝑝
/𝑛), 𝑏

𝑝
−(𝛿

𝑝
/𝑛))), 𝑥

2
= 𝑟∩𝜕𝐵, where 𝑟 is the half-line with

initial point∏
𝑝∈𝐼

((𝑎
𝑝
+𝑏

𝑝
)/2) and containing 𝑥. Since {𝑙

𝑛
}
𝑛∈N

is an increasing positive sequence such that lim
𝑛→+∞

𝑙
𝑛
= 1

𝐵
,

from Beppo Levi theorem and (67), we have

∫
𝐵

𝑑𝜆
(𝑘)

𝑁,𝑎
= lim
𝑛→+∞

∫
𝐸
(𝑘)

𝑀
1
,𝑁,𝑎

𝑙
𝑛
𝑑𝜆

(𝑘)

𝑁,𝑎

= lim
𝑛→+∞

∫
𝐸
(𝑘)

𝑀
2
,𝑁,𝑏

𝑙
𝑛
(𝐴) |det𝐴| 𝑑𝜆

(𝑘)

𝑁,𝑏

= ∫
𝐴
−1
(𝐵)

|det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏
.

(69)

Moreover, Proposition 28 again implies that the formula (69)
is true ∀𝐵 ∈ B(𝐸

(𝑘)

𝑀
1
,𝑁,𝑎

). Consider the measures 𝜇 and 𝜐 on
B(𝐸

(𝑘)

𝑁,𝑎
) defined by

𝜇 (𝐵) = ∫
𝐵

𝑑𝜆
(𝑘)

𝑁,𝑎
,

𝜐 (𝐵) = ∫
𝐴
−1
(𝐵)

|det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏
,

(70)

and set 𝐵
𝑛

= 𝐵 ∩ 𝐸
(𝑘)

𝑛,𝑁,𝑎
, ∀𝑛 ∈ N∗, ∀𝐵 ∈ B(𝐸

(𝑘)

𝑁,𝑎
). Since

𝐵
𝑛

⊂ 𝐵
𝑛+1

, 𝐴
−1

(𝐵
𝑛
) ⊂ 𝐴

−1

(𝐵
𝑛+1

), ⋃
𝑛∈N∗ 𝐵𝑛 = 𝐵, and

⋃
𝑛∈N∗ 𝐴

−1

(𝐵
𝑛
) = 𝐴

−1

(𝐵), from the continuity property of 𝜇
and 𝜐 and (69), we have

∫
𝐵

𝑑𝜆
(𝑘)

𝑁,𝑎
= lim
𝑛→+∞

∫
𝐵
𝑛

𝑑𝜆
(𝑘)

𝑁,𝑎

= lim
𝑛→+∞

∫
𝐴
−1

(𝐵𝑛)

|det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏

= ∫
𝐴
−1
(𝐵)

|det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏
.

(71)
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Then, ∀𝐷 ∈ B(𝐸
(𝑘)

𝑁,𝑎
),

∫
𝐵

1
𝐷
𝑑𝜆

(𝑘)

𝑁,𝑎
= ∫

𝐵∩𝐷

𝑑𝜆
(𝑘)

𝑁,𝑎
= ∫

𝐴
−1
(𝐵∩𝐷)

|det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏

= ∫
𝐴
−1
(𝐵)

1
𝐴
−1
(𝐷)

|det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏

= ∫
𝐴
−1
(𝐵)

1
𝐷
(𝐴) |det𝐴| 𝑑𝜆

(𝑘)

𝑁,𝑏
.

(72)

Thus, by proceeding as in the proof of the formula (62),
for any measurable function 𝑓 : (𝐸

(𝑘)

𝑁,𝑎
,B(𝐸

(𝑘)

𝑁,𝑎
)) →

([0, +∞),B([0, +∞))), we obtain

∫
𝐵

𝑓𝑑𝜆
(𝑘)

𝑁,𝑎
= ∫

𝐴
−1
(𝐵)

𝑓 (𝐴) |det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏
. (73)

Then, if 𝑓 : (𝐸
(𝑘)

𝑁,𝑎
,B(𝐸

(𝑘)

𝑁,𝑎
)) → (R,B) is a measurable

function such that 𝑓+ (or 𝑓−) is 𝜆(𝑘)
𝑁,𝑎

-integrable:

∫
𝐵

𝑓𝑑𝜆
(𝑘)

𝑁,𝑎
= ∫

𝐵

𝑓
+

𝑑𝜆
(𝑘)

𝑁,𝑎
− ∫

𝐵

𝑓
−

𝑑𝜆
(𝑘)

𝑁,𝑎

= ∫
𝐴
−1
(𝐵)

𝑓
+

(𝐴) |det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏

− ∫
𝐴
−1
(𝐵)

𝑓
−

(𝐴) |det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏

= ∫
𝐴
−1
(𝐵)

𝑓 (𝐴) |det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏
.

(74)

Finally, suppose that 𝐵 ∈ B(𝐸) and 𝑓 : (𝐸,B(𝐸)) →

(R,B) is a measurable function such that 𝑓
+ (or 𝑓

−)
is 𝜆

(𝑘)

𝑁,𝑎
-integrable; from formula (74), Proposition 25 and

definitions of 𝜆(𝑘)
𝑁,𝑎

and 𝜆
(𝑘)

𝑁,𝑏
given by (4), we have

∫
𝐵

𝑓𝑑𝜆
(𝑘)

𝑁,𝑎
= ∫

𝐵∩𝐸
(𝑘)

𝑁,𝑎

𝑓𝑑𝜆
(𝑘)

𝑁,𝑎

= ∫
𝐴
−1
(𝐵∩𝐸

(𝑘)

𝑁,𝑎
)

𝑓 (𝐴) |det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏

= ∫
𝐴
−1
(𝐵)

𝑓 (𝐴) |det𝐴| 𝑑𝜆
(𝑘)

𝑁,𝑏
.

(75)

5. Probabilistic Applications

Definition 30. Let (Ω,F, 𝑃) be a probability space; a random
element 𝑋 : (Ω,F, 𝑃) → (𝐸,B(𝐸)) is called 𝜆

(𝑘)

𝑁,𝑎
-conti-

nuous if there exists ameasurable function𝑓
𝑋

: (𝐸,B(𝐸)) →

([0, +∞),B([0, +∞))) such that, for any 𝐴 ∈ B(𝐸),

𝑃 (𝑋 ∈ 𝐴) = ∫
𝐴

𝑓
𝑋
𝑑𝜆

(𝑘)

𝑁,𝑎
. (76)

The function 𝑓
𝑋

is called infinite-dimensional probability
density of𝑋.

Theorem 31. Let 𝐴 = (𝑎
𝑖𝑗
)
𝑖,𝑗∈𝐼

: 𝐸 → 𝐸 be a biunique and

linear (𝑚, 𝜎)-standard function, let 𝑎 = (𝑎
𝑛
: 𝑛 ∈ 𝐼) ∈ (R+)𝐼

be such that ∏
𝑛∈𝐼

𝑎
𝑛
∈ R+, and let 𝑏 ∈ (R+)𝐼 be the sequence

defined by Proposition 25. Then, for any 𝑘 ∈ N, 𝑘 ≥ 𝑚, for
any 𝑁 ∈ R+, and for any 𝜆

(𝑘)

𝑁,𝑏
-continuous random element

𝑋 : (Ω,F, 𝑃) → (𝐸,B(𝐸)), the random element 𝑇 = 𝐴 ∘ 𝑋 :

(Ω,F, 𝑃) → (𝐸,B(𝐸)) is 𝜆(𝑘)
𝑁,𝑎

-continuous and one has

𝑓
𝑇
(𝑡) = 𝑓

𝑋
(𝐴

−1

(𝑡))

det𝐴−1 , ∀𝑡 ∈ 𝐸. (77)

Proof. ∀𝐵 ∈ B(𝐸), we have

𝑃 (𝑇 ∈ 𝐵)

= 𝐸 [1
𝐵
(𝑇)] = 𝐸 [1

𝐵
(𝐴 (𝑋))]

= ∫
𝐸

1
𝐵
(𝐴 (𝑥)) 𝑓

𝑋
(𝑥) 𝑑𝜆

(𝑘)

𝑁,𝑏
(𝑥)

= ∫
𝐴
−1
(𝐵)

𝑓
𝑋
(𝐴

−1

(𝐴 (𝑥)))

det𝐴−1 |det𝐴| 𝑑𝜆

(𝑘)

𝑁,𝑏
(𝑥)

= ∫
𝐵

𝑓
𝑋
(𝐴

−1

(𝑡))

det𝐴−1 𝑑𝜆

(𝑘)

𝑁,𝑎
(𝑡) (from Theorem 29) .

(78)

6. Problems for Further Study

A natural extension of this paper is the generalization of
Theorem 29 by considering themeasurable and𝐶

1-invertible
functions 𝐴 : 𝐸 → 𝐸. As in the finite case, we can define
the infinite-dimensional Jacobian matrix of these functions
and the determinant of this Jacobian, if it is a (𝑚, 𝜎)-standard
matrix.

Moreover, from Definition 30 and Theorem 31, in the
probabilistic context it is possible to introduce many random
elements that generalize the well-known continuous random
vectors in R𝑚 (e.g., the Gaussian random elements in 𝐸

defined by the (𝑚, 𝜎)-standard matrices) and to develop a
theory and some applications in the statistical inference.

In particular, as we point out in the introduction, we can
generalize the paper [4] by considering the recursion {𝑋

𝑛
}
𝑛∈N

on∏
𝑖∈N∗[0, 𝑝) defined by

𝑋
𝑛+1

= 𝐴𝑋
𝑛
+ 𝐵

𝑛
(mod𝑝) , (79)

where 𝑋
0

= 𝑥
0

∈ 𝐸, 𝐴 is a (𝑚, 𝜎)-standard matrix,
𝑝 ∈ R+, and {𝐵

𝑛
}
𝑛∈N is a sequence of independent and

identically distributed random elements on 𝐸. Our target is
to prove that, with some assumptions on the law of 𝐵

𝑛
, the

sequence {𝑋
𝑛
}
𝑛∈N converges with geometric rate to a random

element with law⨂
𝑖∈N∗(1/𝑝)Leb|B([0,𝑝)). Moreover, we wish

to quantify the rate of convergence in terms of𝐴,𝑝,𝑚 and the
law of 𝐵

𝑛
and to prove that if𝐴 has an eigenvalue that is a root

of 1, then 𝑂(𝑝
2

) steps are necessary to achieve randomness.
We hope to develop these ideas in a further paper.



10 International Journal of Analysis

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

Theauthor is grateful to ProfessorAljosaVolcic for his fruitful
suggestions in writing this paper.

References
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