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We study, for some subsets I of N, the Banach space E of bounded real sequences {x,,}

;- For any integer k, we introduce a measure

over (E, B(E)) that generalizes the k-dimensional Lebesgue measure; consequently, also a theory of integration is defined. The main
result of our paper is a change of variables’ formula for the integration.

1. Introduction

In the mathematical literature, some articles introduced
infinite-dimensional measures analogous to the Lebesgue one
(see, e.g., the paper of Léandre [1], in the context of the
noncommutative geometry, that one of Tsilevich et al. [2],
which studies a family of o-finite measures on RY, and that

one of Baker [3], which defines a measure on RY that is not
o-finite).

The motivation of this paper follows from the natural
extension to the infinite-dimensional case of the results of
the article [4], where we estimate the rate of convergence of

some Markov chainsin [0, p)k to a uniform random vector. In

order to consider the analogue random elements in [0, p) ,
it is necessary to overcome some difficulties, for example,
the lack of a change of variables’ formula for the integration

in the subsets of RN . A related problem is studied in the
paper of Accardi et al. [5], where the authors describe the
transformations of generalized measures on locally convex
spaces under smooth transformations of these spaces.

In our paper, we consider some subsets I of N*, and we
suppose that R’ is endowed with the standard infinity-norm
generalized to assume the values in [0, +00]; then, the vector
space E of the elements of R’ with finite norm is a Banach
space with respect to the distance defined by the norm.
Observe that although in general it is possible to construct
a o-algebra on R' simply by considering the product indexed

by I of the same Borel o-algebra on R, in this way a product
of o-finite measures ¢ on R can be defined only if I is finite
or y is a probability measure (by Jessen theorem).

To solve this problem and others, in Section 2 we use
Corollary 4 (that generalizes the Jessen theorem) to define a

measure )L(If,) , over (E, B(E)), where k € N; consequently, we

define also a theory of integration. In the case I = {1,...,k},
the measure A(IS) , coincides with the k-dimensional Lebesgue

measure on R,

In Section 3, we introduce the determinant of a class
of infinite-dimensional matrices, called (m, o)-standard, and
we expose briefly a theory that generalizes the standard
theory of the m x m matrices. Moreover, we prove that
the determinant of a (m,o)-standard matrix is equal to
the product of its eigenvalues, as in the finite-dimensional
case. In Section 4, we present the main result of our paper,
that is, a change of variables formula for the integration
of the biunique linear functions associated with the (m, 0)-
standard matrices (Theorem 29). This result agrees with the
analogous finite-dimensional result. In Section 5, we expose
an application in the probabilistic framework, that is, the
definition of the infinite-dimensional probability density
of a random element. Moreover, we prove the formula of
the density of such a random element composed with a
(m, 0)-standard matrix. In Section 6, we expose some ideas
for further study in the mathematical analysis and proba-
bility.



2. Construction of a Generalized
Lebesgue Measure

Suppose that k € N, N € R ,and I = {n € N* : n < M},
wherek+1 <M < +coanda = (a,:nel) e R such
that there exists [],.;a, € R". Moreover, indicate by %, by
A%, by Leb, and by Leb®, respectively, the Borel o-algebra
on R, the Borel o-algebra on R, the Lebesgue measure on R,
and the Lebesgue measure on R¥. Finally, for any topological
space E and for any D ¢ E, indicate by % (D) the Borel o-
algebra on D.

Definition 1. Define the function || - | : R! = [0, +00] by

[lx]| = sup |xn| R
nel

Vx=(x,:nel)eR, )

and define the following vector space on the field R:
E={xeR':|x| < +oo}. )
Remark 2. E is a Banach space.

Proof. It is easy to prove that | - || is a norm on E; then, E is a
metric space with the distance d : E x E — [0, +00) defined
by d(x, y) = llx— yll = sup,¢;l1x, = v, Vx = (x,: neI) € E,
and Vy = (y, : n € I) € E. Moreover, let {x;},. be a Cauchy
sequence on E; then, Ve > 0, 3i; € N such that Vi,j € N
such that i, j > i,, we have ||x; — ijI < & and so, Vi € I,
[(x;),, — (xj),,l < & Since R is complete, Vn € I, 31, € R such

that lim; _,  ,(x;) =1, then, by settingl = (I, : n€I) € R,
we have
|(x;),, = 1| = jEer |Gxi) = (x)),| < 2
3)
= ||x; = 1| = sup |(x;), - 1| <&
nel

This implies that I € E and lim; ,, x; = [; then, E is
complete, and so it is a Banach space. O

In order to develop the next arguments, for any set I and
for any H c I define the projection 71;; on R* as the function
my : RY — R given by my(x, : n e I) = (x,, : h € H).
We will use the following result, whose proof can be found,
for example, in Rao [6, page 346].

Theorem 3 (Jessen theorem). Let I be a set and, for anyi € I,
let (E;, &;, u;) be a probability space. Then, over the measurable
space ([ 1;e;E» Q1 &:), there is a unique probability measure
. indicated by Q). 4 such that, for any H C I such that
|H| < +co and for any A = [[jepAn X [lienuEi € @i ®s
where A, € &, Vh € H, we have u(A) = [[eqpn(Ay). In
particular, if I is countable, then u(A) = [[;c;p;(A;) for any
A =TlicjAi € Qier i

Corollary 4. Let I be a set and, for anyi € I, let (E;, &}, u;) be
a measure space such that y; is finite. Moreover, suppose that,
for some countable set | C I, y; is a probability measure for any
i€I\Jand Hjejyj(E]-) € R". Then, over the measurable space
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(ILiciEi> Qe &), there is a unique finite measure y, indicated
by Q;ciphp» such that, for any H C I such that |H| < +00 and
forany A = [],epAp % HieI\HEi € Qi1 &, where A), €
&), Yh € H, one has u(A) = HheHyh(Ah)Hjel\Hyj(Ej). In
particular, if I is countable, then u(A) = [[;c;u;(A;) for any
A =[lic/Ai € Qies &

Proof. Foranyi € I, u; = (y;/4;(E;)) is a probability measure;
then, if 4 = ;1 is the probability measure defined by
Theorem 3, the finite measure y = ([[;¢;p;(E;))u satisfies the
statement. O

Since for any n € I \ {1,...,k} the measure
(1/2N)Leb(- N [-Na,, Na,]) is a finite measure over (R, %),
from Corollary 4 we can define the o-finite measure /\(IS?Q over
(E, %B(E)) in the following manner:

L Leb(-n[-Na,Na,]).
nel\(1,...k}

1
A, = ——LebP @
- (@N)

(4)

Remark 5. For any N € R", we have

a, ifk=0
AL, (E) = 11 (5)
+00 if k e N*.

Proof. If N € R" and k = 0, from Corollary 4, we have

A8, (B) = [T mcleb ((-Na, Nay)) = [T ()

nel nel

Analogously, if N € R" and k € N™:

a, = +00.  (7)

(k) 1 ®) (pk
AL, (B) = —— Leb®™ (R)
(2N) nel\(L,...k} 0

3. Infinite-Dimensional Matrices

Definition 6. Let A =

I (eventually infinite, if I = N"); then, define the linear
function A = (aij) : E > Rl and write x — Ax, in

(a;;)..  be a real matrix I x
1174, jel

i,jel
the following manner:

(Ax); = Zla,.jxj, Vx € E, Viel, (8)
JE

on condition that, for any i € I, the sum in (8) converges to a

real number.

Proposition 7. Let A = (a;), el be a real matrix I x I; then

(1) thelinear function A = (aij)i’jd :E —> R! given by (8)
is defined if and only if, for anyi € I, }, ;¢ |a;;| < +00;

(2) A(E) < E and A is continuous if and only if
SUP;e; Zjd Ia,»jl < +00; moreover, in this case, |A| =
SUDjer Zje[ |aij|'
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Proof. (1) Suppose that the function A = (aij)ijd :E > R!
is defined; then, Vi € I; let x = (x,, : n € I) € E be such that

= 1ifa, > 0,and x, = -1 if @, < 0; since Ax € R, we
have

Z |a,-j' = (Ax); €R. )
jel
Conversely, suppose that ) jer lagj| < +00, Vi € I; then, Vx €
EandVi € I, } ;¢ (a;x;)" < Yier lagllx;l < 2 jer lag;llxl
+00; analogously, ) ;¢; (a;x;)” < +00, from which (Ax)
Z]d (a;;x ]) Z]d (a;x;)” € R,and so Ax € R
(2) If A(E) ¢ E and A is continuous, from the previous

arguments, we have that, Vi € I, there exists x € E such that
x|l = 1 and such that

> lay| = (Ax); <

jeI

A

lAx[ < Al < +00

(10)
= supz 'a,]| < Al < +00.
iel jer

Conversely, if sup,; Z]d Ia | < +00, Vx € E, such that || x| =
1, we have

|Ax| = sup |(Ax),| = sup

Zal} J

sup |Ax| < supz |a,]' < +00.

x€E:|x||=1 i€l jeI

< supz |a,J| < 400
i€l jer

(11
= Al =

Finally, if sup;; Zjd la;;| < +o0, from (10) and (11) we have

IA] = supZ |a,| - (12)

iel
jeI ]

Definition 8. A linear function A = (a,])”d : E - E

is called (m,o)-standard, where m € T U {0} and o : I\
{1,...,m} — I\{l,...,mj}is an increasing function, if
(1 ajj = 0, V(, ]) ¢ ({1,
UnGI\ m}{(n’ U(”))}

(2) there exists Hnel\{l ..... }/\ 0l
,VnelI\{l,.

..m} x I) U

€ R, where A,

a, ,0(n)?

Moreover, indicate by A,, the matrix (a"f)i,je{l,...,m}

M,,(R). Finally, indicate by ., ,,(E) the set of the linear
(m, 0)-standard functions from E to E.

Remark 9. Let A = (alJ)sz E — E be a linear

(m, 0)-standard function. Then, A is continuous; moreover,
o is biunique if and only if 6(n) =n, Vn € I\ {1,...,m}.

Proof. From the point 1 of Definition 8,

supz |al]' =sup 4 sup Z |‘11]' up A,
€l jer i€{l,...m} jel m}p:d, #0

(13)

.....

quence {Ank}keN {A 960 nel\({l,
point 2 of Definition 8, we obtain lim, _, +00An

m}}; from the
1, and so

.....

+00, from wh1ch A is continuous from Proposmon 7. More-
over, 0 is biunique if and only if o(n) = n, Vn € I\ {1,...,m},
because o is increasing. O

Proposition 10. Let A = (aij)ijd : E — E be a linear
(m, 0)-standard function; then, A is biunique if and only if the
matrix A, is invertible, a, ;) #0, Vn € I\ {1,...,m}, and o

is biunique.

Proof. 1f A, is invertible and a,, ,,, #0, Vn € I\ {1,...,m},
let x, y € E be such that Ax = Ay; from the point 1 of
Definition 8, Vn € I\ {L,...,m}, we have a, )X,

Ay o(n) Vo(n» from which x ;) = y,(,; then, if o is biunique,
we have o(n) = n,and so (x,, : n > m) = (y, : n > m).
This implies that A, "(x,,...,%,,) = A" (¥1,..., ¥,,), and
SO (Xp5...,%,) = (V15.-.»¥,); then, x = y; thatis, A is
injective. Moreover, Vy € E, define x € E in the following
manner:

xn:ﬁ, Vnel\{ mj},
A (14)
t(xl’ ’xm):A;nl (t (Zl’ ’Zm))>
where
n>m

It is easy to prove that Ax = y; that is, A is surjective.
Conversely, if A is biunique, let x, y € R™ be such that
A,x=A_y,andletX,y € Ebesuchthatx, = x,, 7, = y,,
Vn e {l,...,mhandx, =y, =0,YVn € I\ {L,...,m}. We
have A, x = myy _,1(AX), A,y =y ,(AY), and (AX), =
(Ay), = 0,Vn € I\ {1,...,m}, from which Ax = Ay; then,
since A is biunique, we have X = ¥, and so x = y. Then, the
linear functionx — A, xisinjective; thatis, A, is invertible.
Moreover, we have a,, ;) #0, Vn € I\ {1,...,m}; in fact, by
supposing by contradiction that a; ;) = 0, for some 7 > m,
then A(E) C {x € E: x; = 0} ¢ E, and this should contradict
the fact that A is surjective. Moreover, o must be injective; in
fact, by supposing that o(n,) = o(n,), for some m < n; <
ny, then A(E) € {x € E : X, 8, 5(n) = Xp,0 o(n)} &
E (a contradiction). Finally, 0 must be surjective, because
otherwise,Vy € EandV#n € (I\{L,...,m})\o(I\{1,...,m}),
we could choose arbitrarily x;; € R in order to determine
x = (x, : n € I) € E such that Ax = y. Then, A should
not be injective (again a contradiction). O

In order to study the inverse of A, we must define the
following concept, that generalizes the determinant of a mxm
matrix (see, e.g., the theory in Lang’s book [7]).



Definition 11. Let A = (aij)ijg E — E be a linear
(m, 0)-standard function; define the determinant of A, and

call it det,, ,) A, or det A, the real number:

detA,, H A, if o is biunique
nel\{1,...,m}
0 if o is not biunique.

(16)

det(m, ) A=

Remark 12. If A €
det(ml’al)A = det(mz’o.z)A.

ﬂ(ml,al)(E) n ﬂ(mz)gz)(E), then

Proof. Suppose that m, < m,; then, we have oylp\(y, 1 = 0
If 0, is biunique, o0, is biunique too, and o,(n) = n, Vn €
{m, +1,...,m,}; then

det(ml,UI)A = det Aml

[T A

nel\{1,...m;}

H )‘p H A 17)

peim+1,...m,} nel\{l,...m,}

=detA,, H

nel\{1,...m,}

=detA,,

An = det(mz’az)A.

Instead, if o, is not biunique, then either o, is not
biunique, or o, is biunique, but not o, | myy- In the first
case, we have

m;+1,.

det(ml,o,l)A =0= det(mz)o.z)A. (18)
In the second case, we have det Am2 =0, and so

det(ml)o.l)A =0= det14m2 )Ln = det(mz)o.z)A. (19)

nel\{1,..,m,} O]

Proposition13. Let A = (aij)ijeI : E — E bealinear (m,0)-
standard function, with o being biunique, let s,t € I, s < t, let

,,,,,

(1) ifthereexistu = (u,:nel)e E,v=(v,:nel) €L
and ¢;,c, € Rsuch that Y, lu,| < +00, Y1 1v,l <
+00, 4 = qu; + v, Vj € I, by indicating by U and
V the linear functions obtained by substituting the tth
row of A for u and v, respectively, then U and V are
(p, 7)-standard and det A = ¢, detU + ¢, det V;

(2)if B= (bij)ijel : E — Eisthe linear function obtained
by exchanging the sth row of A for the tth row of A, then
B is (p, T)-standard and det B = — det A;

3)ifC= (Cif)i,jel : E — Eisthelinear function obtained

by substituting the tth row of A for the sth row of A, then
Cis (p, T)-standard and det C = 0.

Proof. (1) Since o is biunique, we have o(n) = n, Vn €
I'\ {1,...,m}, and so we can prove easily that U and V are
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(p, 7)-standard; moreover, det A = det A, [[,.cp\q1,.pyAn and
detA, = ¢ detU,, + ¢, detV,; then
detA = (cl detU, + ¢, det Vp) H A,
nEI\{L,...p}
= ¢ detU, H Ay + ¢ detV, H A, (20)
EI\{L,....p} nel\{L,...p}
=¢ detU + ¢, det V.

(2) As we observed in the proof of the point 1, B is (p, 7)-
is the matrix obtained by exchanging the sth row of A p for
the tth row of A ; then, det B, = — det A, from which

detB=—detA, [] A,=-detA
nel\{l,..,p}

(3) Since the sth row of C and the tth row of C are equal, by
exchanging these rows among themselves we obtain again the
matrix C; then, from the point 2, we have detC = —detC,
from which det C = 0. O

(21)

Remark 14. Let A = (a,-j)ijd E — E be a linear

(m, 0)-standard function; then, A is biunique if and only if
det A +0.

Proof. If A is biunique, from Proposition 10 ¢ is biunique,
and so detA = detA, [[,cnq,. mAss moreover, we have
detA,,#0 and A,#0, Vn € I\ {1,...,m}, from which

.....

.....

that detA,,#0 and A, #0, Vn € I\ {1,...,m}; then, from
Proposition 10, A is biunique. O

Definition 15. Let A = (aif)ijel : E — E bealinear (m, 0)-
standard function; define the I x I matrix cofA = (A,-j)
by

ijel

Aij:(—1)i+jdet(A(1"-?'-'|1"'}"')), (22)

where A(1---7-+- | 1---j---)is the (I'\ {i}) x (I'\ {j}) matrix
obtained by deleting the ith row and the jth column of A.

Proposition 16. Let A = (a;) : E — E be a linear

i,jel
(m, 0)-standard function; then, for anyi € I, one has
det A = Zal]AU (23)
jel
Proof. Suppose that o is biunique; then, Vi € {1,...,m}, we

have

det A =detA,, H

nel\{1,...,m}

/ln =i aij(Am)ij ( 1_[ An)

nel\{l,...,m}

NgE

aiinj.

J

I
—_

(24)
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Moreover, Vi € {1,...,m} and Vj > m, the matrix
A7 | 1---f~--)is (m — 1,0)-standard, where

G:I\{L,....m—-1} — I\{L,....m—-1}  (25)

is not surjective because m ¢ o(I \ {1,...,m — 1}), and so
Aj; = 0; then, detA = ) .y a;;A;;. Finally, Vi > m, we have
a; =0,V j#i; then

Zaiinj = a; Ay
jel
N2
=a;(-1)%deta,, [] A, (26)

nel\{1,...,m,i}

=detA,, [] A,=detA

nel\{1,...,m}

Instead, if o is not biunique, Vi, j € {1,...,m}, the matrix
A(l---i--- | 1---j--+)is (m — 1,0)-standard, where o(n) =
o(n+ 1), Vn > m — 1; then, & is not biunique, from which

A;; = 0. Moreover, Vi € {1,...,m} and Vj > m, as in the case
o éeing biunique, we have A;; = 0. Finally, Vi > m, we have
a; = 0,Vj#0(i); then
Zaiinj = i) Ai o) (27)
jel
Moreover, the matrix A(1...7... | 1...5@...) is (m,o)-

standard, where the function & : I \ {1,...,m,i} — I\
{1,...,m,0(i)} is not biunique; in fact, in this case necessarily
o(i) = i, and so o should be biunique (a contradiction); then,
we have A, ;) = 0, from which

detA=0= Za,]AlJ (28)
jel 0
Corollary 17. Let A = (a,-j)i)jd : E — E be a biunique and

linear (m, 0)-standard function; then, AV E > Eisalinear
. -1 _ .
(m, 0)-standard function A~ = (bij)i,jer’ moreover

det A

(cof A). (29)

Proof. From Proposition 16, we have

ZainAin = det A (30)
nel
Moreover, we have
YauA, =0, Vijel, i#j 31)

nel

in fact, from Proposition 16, the left side of (31) is equal
to det C, where C is the (p, 7)-standard matrix obtained by
substituting the ith row of A for the jth row of A; then, from
Proposition 13, we have det C = 0. This implies that

Za,-nAjn = (detA)d

nel

ij> VI,_] el (32)

where §;; is the Kronecker symbol, and so

(Af(cofA)) = (detA)d

from which the formula (29) follows. Moreover, as we
observed in the proof of Proposition 16, Vi € {1,...,m} and
Vj > m, we have A;; = 0; finally, Vi, j > m such thati# j,

the matrix A(1-+-i--- | 1 ] -+) is (m, 0)-standard, where
o:I\{1,...,m,i} — I\{1,...,m, j}isnotsurjective because
i¢o(I\{1,...,m,i}),andso Aij = 0 again; from formula (29),

this implies that A7V is (m, 0)-standard. L]
Definition 18. Define the function || - || : c! > [0, +00] by

x| = 512) |x,|, Vx=(x,:nel)e c, (34)
n

and define the following vector space on the field C, with the
norm || - ||:

F={xeC':|x| < +oo} > E. (35)

Definition 19. Let A = (a,-j)ijd be a real matrix I x I; then,
define the linear function A = (a,-j)ijd : F — C'and write

x — Ax, in the following manner:

(Ax), = Yayx;, VxeF Viel,

jeI (36)

on condition that, for any i € I, the sum in (36) converges to
a complex number.

Proposition 20. Let A = (a;), el be a real matrix I x I; then

(1) the linear function A = (aif)i,jel : F — C given by
(36) is defined if and only if, for any i € I, ¥ i1 lay| <
+00.

(2) A(F) < F and A is continuous if and only if
SUP;; Zjel |a1-j| < +00; moreovet, in this case | Al =
SUPjer Zje[ |-

Proof. The proof is analogous to that one of Proposition 7.
O

Definition 21. Let V be a vector space on C, and let T' :
V' — V be a linear function; indicate by VP(T') the set of
the eigenvalues of T'.

Proposition 22. Let A = (aij)ijd : E — Ebealinear (m,o)-

standard function, with o biunique; then, by considering A as
a function from F to F, one has

VP(A)=VP(A,)U{r,:nel\{1,...,m}}. (37)
Moreover

detA= J] A

38
AeVP(A) (38)



Proof. Let A € Cbe an eigenvalue of A,,, letx € C" \ {0} be
the corresponding eigenvector, and let y € C’\ {0} be such
thaty, = x,,Vn e {l,...,m},and y, =0, Vn e I\ {1,...,m}.
We have (Ay), = (Ax), = (Ax), = (Ay),, Vn € {L1,...,m},
and (Ay), = 0 = (Ay),, Vn € I\ {l,...,m}, from which
Ay = Ay,and so A € VP(A). Moreover, Vn € I\ {1,...,m},
since o is biunique, from the Remark 9, we have o(n) = n. If
a,, = 0,Vi € {1,...,m}, let x € R"\ {0} be such that x; = §,,,,
Vi € I; we have Ax = A,x, and so A,, € VP(A). Otherwise,
suppose that a;, # 0 for some i € {1,...,m};if A, € VP(A,)),
then A,, € VP(A) by the previous arguments; conversely, if
(A, — A, L,)x#0,Vx € C" \ {0}, the matrix (A,, — A,,1,,,) is
invertible and so there exists x € R™ \ {0} such that A, x —
AX = (=G ... —ayy,); then, by considering y €
R'\ {0} such that y, = x,, Vi € {1,...,m}, y; = 8,,, Vi €
I'\{1,...,m}, wehave Ay = A, y,and so A,, € VP(A). Then

VP(A,)U{A,:nel\{l,...,m}} cVP(A). (39)

Conversely, if A € VP(A), we have Ax = Ax, for some
x € C'\ {0}, and so, Vn € IN{L,...,m}, A,x, = (Ax), = Ax,;
then, by supposing A ¢ {A, : n € I\ {1,...,m}}, we have
x, = 0, from which x, # 0 for some n € {1,...,m}. Moreover,
we have

A, (xp %) = (((AX), .5 (AX),) = A (%1, 05 %),

(40)
and so A € VP(A,,). Then, we have
VP(A) cVP(A,)U{r,:nel\{1,...,m}}, (41)

from which (37) follows. Moreover, since o is biunique, from
(37), we have

detA=detd, [] A= [] M

n
AeVP(A)

42
nel\{1,...,m} ( )

O

4. Change of Variables’ Formula

Definition 23. Letk € N,let M,N € R", and leta = (a, : n €

I) € (R*)' such that [],.,a, € R*; define the following sets
in B(E):

(k) k
Ey,=R*x [] [-Na,Na,];
nel\{1,...k} (43)
Ena=[-MM]*x [] [-Na,Na,].
nel\{L,...k}

Definition 24. Leta = (a, :neI) e (R") andb= (b, :n €
I) € (RY) be such that [[,.; a, € R, [I,; b, € RY; define

ab € (R+)I in the following manner:
ab=(ab,:nel). (44)

Proposition 25. Let A = (aij)ijez : E — E be a biunique

and linear (m, 0)-standard function; then, for any a = (a,, :
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nel) e (R such that [1,c;a, € RY, there exists b = (b, :

nel) e R such that [, b, € R* and such that, for any
k € N, k > m, and for any N € R", one has

AT (ER,) = ES,. (45)

Proof. From Corollary 17, A™" = (bij)i,jel : E — Eisalinear

(m, 0)-standard function. By setting p, = b,,, Vn > m, from

nn>
(29), we have

P = 1 _ 1
" ann An
1 (46)
= H Pn = A_ € R*
nel\{1,...,m} nel\{1,..,m}"'n
Setb=(b,:nel) e (R+)I such that
b,=1, Vnefl,...,m},
(47)

(by:n>m)=(a,:n>m)(|p,| :n>m).

By definition of b, we have

_ 1 +,
Ebﬂ - (nel\l{:[...,m}an> (nEI\l{:[...,m} |/\n| > K ’ (48)

moreover, for any k € N, k > m, and for any N € R, we
have A_I(E%)a) C E%?b. Analogously, it is possible to prove
that A(E%?b) C E%?C, where

(u:n>m)=(b,:n>m)(|A,| :n>m)=(a,:n>m).
(49)

) (k)
» and so Egy €

Al (E§\];,)a)> from which (45) follows. O

Moreover, since k > m, we have E%L = E%

Lemma 26. Let A = (aij)i,jel : E — E be a biunique and
linear (m, o)-standard function; then, for any M; € R" and
foranya = (a,:n €I) e (R") suchthat ], a, € R*, there
exist My, My € R andb= (b, :nel)e R, c=(c,:ne

) € (RY) such that ], b, € RY, [Ie;¢, € RY, and such
that, for any k € N and for any N € R, one has

1 () ®

A (EMDN,a) CEp Ny (50)
(k) (k)

A (EMZ,N,b) CEp e (51)

Moreover, (¢, : n>m) = (a, : n > m).

Proof. From the Banach theorem of the open function (see
also the exercise 5.14 in [8]), A™! is continuous; then, VN ¢
R" and Vx ¢ Eg\le)I,N,a’ we have

A o < A7 el < A7 | max {M,, N, flall}. (52)
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Set M, = |[A™" max{M,, N, |al} andb = (b, : n € I) € (R*)'
such that

n

M
b, =—2%, Vnel{l,...,m},
N (53)

(by:n>m)=(a,:n>m)(|p,| :n>m),

where p,, Vn € I, is defined as in the proof of Proposition 25.
By definition of b, we have

G (L)L)

nel nel\{l,...m} / \nel\{l,..,
(54)

and (50) holds. Analogously, it is possible to prove (51);
moreover

(c,:n>m)=(b,:n>m)(|A,| :n>m)=(a,:n>m).
(55)
U

Remark 27 Let A = (a,-j)ijd : E — E be alinear (m,0)-
standard function; then, A is B(E)/%(E)-measurable.

Proof. Let T be the topology induced by the norm || - || on E;
then, since A is continuous by Remark 9, VB € 7 we have
AY(B) € T ¢ B(E). Moreover, since o(t) = B(E), we have
A"Y(B) € B(E), VB € B(E). O

Proposition 28. Let y; and u, be two measures on a measur-
able space (S, Z) that coincide on a n-system % on S; then, if
0(F) = Z and u,(S) = u,(S) < +o00, then y, and p, coincide
on X.

Proof. See, for example, Theorem 3.3 in Billingsley [9]. I

Now, we can prove the main result of our paper, that
generalizes the change of variables formula for the integration
of a biunique linear function on R™ with values in R” (see,
e.g., Lang’s book [10]).

Theorem 29 (change of variables' formula). Let A =
(aij)ijel : E — E be a biunique and linear (m, o)-standard
function, leta = (a, : n € I) € (R*)I be such that [ [, a, €

R*, andletb € (R*)" be the sequence defined by Proposition 25,
Then, foranyk € N,k > m, forany N € R", forany B € B(E),
and for any measurable function f : (E, B(E)) — (R, %)
such that f* (or f7)is /\(If,?a—integrable, one has

JB Y, = LA(B) F(A) detAlAY, (s6)

Proof. Vn € N, let h, : E — E be the biunique and linear
(m, 0)-standard function given by

,,,,,

(h, (x)), = Aix;, Vx€E, Viel\{l,...,n}.

(57)

Moreover, YM; € R*andVa = (a, : n € I) € R") such
that [],c;a, € RY, let M,(n), M;(n) be the constants, and
let b(n), c(n) be the sequences defined by Lemma 26 and the
function h,,; finally, consider the analogous constants M,, M,
and the sequences b, ¢ defined by A. Observe that M,(n) <
M,, (b(n)); < b, Vi € I,VYn € N. Suppose that n > k > m and
N € R*; then, VB = HPeIBP, where B, € B([-M;, M,]),
Vpefl,...,k}, B, € #([-Na,, Na,l),Vp > k, we have

(k)
.[BdAN’“
| a (60 reb o[ @ L e
= —Lel — Lel
(Byx-xBy ) X[ 1B, et 2N ok 2N B([-Na,,Na,])

SB([*Na,{,Naq]) ) >

n 1 1
= d —Leb |® —Leb
Jocrn 2 (80 stes )o@ 51

o1
= d —Leb
IB,X-->XBH <® 2N ¢ >

p=1

xj d
I..B

q>nq

<® ﬁLeb

pred |£Z’([*Naq,Naq])>

n

1
= detA,|d —Leb
JA;‘(BIX-<-XB”)| LAl <® N ¢ )

=1

1
A,ld —Leb
) Jl'lwuq B, q>Hn| q‘ (@ ZNLe @([beq,th])>

n 1 1
- deth,|d —Leb |® —Leb‘
L;‘(B) | nl << @ 2N ) <§ 2N @([th,qu])>>

k
1 1
= deth,|d —Leb |® (g)—Leb
L;;(B) | n' <<§ 2N > <q>k 2N @([qu,qu])>>

(k)
- LT(B) |deth,|dA%),.

(58)

Consider the measures y; and y, on %(EE\IZ,N,,;) defined by

m®) = [ al
B
(59)
i, (B) = J |deth,|dAY),.
k' (B) ’

From (58), y; and p, coincide on the set ¥ = {B ¢

%(Eg\lz’l\,ﬂ) : B = [l,eB,); since 5 is a m-system on

k k . k
EEVI)l N Suchthato(f) = 95’(E§V[)l N.o) and since ¢ (Eg\,[)l Na) =

MZ(EE\]Z’N’Q) = (MI/N)k]_[P>kaP < 400, from Proposition 28,

we have that VB € %(EE\IZ Na)

(k) (k)
Lw leAN’a=L(k) 15 (h,) [deth,| AL, (60)

Mj.N.a 'My.N.b



This implies that if ¢ : (E§\I:I Na,%(EE\IfI Na)) — ([0, +00),
AB([0,+00))) is a simple funct10n such that o(x) = 0,Vx ¢

EE\IZ)IN ,» we have
k k

J L A= J o P |deth|dAQ, (o)

EMyNa EM Nb

: (k) (k)
Then, if [ : (EM Na,t%’(EM3 na)) — ([0,+00), B([0, +00)))
is a measurable function such that ¢(x) = 0, Vx ¢
EE\Z) ~Naand{g}; Nisasequence of increasing positive simple
functions over E N such that lim; , . ¢; = [, ¢;(x) = 0,

Vx ¢ EE\’,‘I)I’N’H, Vi € N, from Beppo Levi theorem we have

(k) (k)
j(k) 1A%, = lim JEW 9, dAY.

‘Mj,N, i +
1.Na
= lim ¢; (h )|deth |d)t(k)
i+ E;’;I)Nb 1 " " o
2N,

(62)

(k)
Lm () |deth,| dA%,

My,N,b

. (k)

lim L@ ) et | ax,
2N,

In particular, the formula (62) is true for any continuous

and bounded function [ : Eg{f[) ~Na — [0,1]. In this case,

let {f,},,cn be the sequence of the measurable functions o

(E(A’y N 99(15;’;) Na) — (R, B) given by

(k)
VerM N

fu(x) =1(h, (x))|deth,|,
Since deth, = detA, Vn > m, we have |f,| < g, where
g (Ey) yp BEG ) — (10,+00), B((0,+00)) is the

measurable function defined by

VneN. (63)

g(x) =|detA], Vxe E;’; N (64)
Moreover
(k)
gd/\
J o
(k
= |det A| A, (ESy np)

|detA| (2M, ) (65)

Q2N)F H( b([_Nbp’Nbp]))

det A| M¥
|e | znb < +00.
p>k

Moreover, we have lim,, , , h, = A,and solim, , f, =

I(A)| det Al; then, from the dominated convergence theorem,

lim
n—+co J gk
My, Nb

1(h,) |deth,|dAY),

(66)
_ (k)
- Lw 1(A) |det A|dA%),

My, Nob
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Then, from (62) we have

® _
Ji, 5= ]

Mj,N.a Mj,Nb

1(A)|det A|AT),.  (67)

Let B = HPHB € %(EM Na)» Where B, = (a,,b,), Vp €
I; moreover, Vn € N*, consider the continuous function L, :
EE\IZ)NM — [0, 1] defined by

1 1fxel_[< —%)

Lo =1 |- 1fx€B\1_[< %, _5_p>
"xl _x2" pel h
0 if x ¢ B,
(68)
where (SP = (bp - ap)/2, Vp e Lx, =rnN B(Hpg(ap +

(SP/n), bp - (6P/n))), x, = rNOB, where r is the half-line with
initial point Hpel((ap + bp)/Z) and containing x. Since {1},
is an increasing positive sequence such that lim,, _, , [, = 15,
from Beppo Levi theorem and (67), we have

J A%, = lim j(k) 1A%
B n— +0o EY) v g
= lim j(k) L (A)[det AlAAY,  (69)
n—+00 E

My,N,b

|det A| dA®)
JA’l(B) N:b

Moreover, Proposition 28 again implies that the formula (69)

is true VB € %’(EEQ N.q)- Consider the measures ¢ and v on

B(EL),) defined by
AM(B) = J d)‘gl\ia’
(70)
v(B) = det A|dA%),,
(B) A71(B>I ldAN),
and set B, = BN EX ,Vn € N*,VB € B(EY). Since

B, ¢ B,,, A'B,) ¢ A'B,.) Uen B, = B and
Upen+ A7 (B,) = A'(B), from the continuity property of y
and v and (69), we have

k . k
[, = [ o,
B B

n

n—+00 Jz-

lim J detAl Ay, ()
'(B,)

J det ] dA%),.
A-(B)
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(k)
Then, VD € B(Ey,),

J 1pdA® = J O = det A1 dA%,
B BND

JA*I(BOD)

_ L—m Loy Idet AJdAY), 72)
- j 1 (A) |det A| dA®
ATY(B) ’

Thus, by proceeding as in the proof of the formula (62),
for any measurable function f : (E%?H,Q(E%?a)) —
([0) +OO), '%([0) +OO))), we Obtain

[ 5arg, =J FA) et AldAD (73)
B A~1(B) ?

Then, if f : (E® %’(E%?ﬂ)) — (R, %) is a measurable

N,a>
function such that f* (or f7) is /\(Is?a—integrable:

[ = [ rant,- [ rard,

- I 17 (A) |det A|dA®,
A7(B) ’
(74)
- J £ (A) |det A|dA®,
A™(B) ’

- J £(A)[det AldA®,
ATY(B) ’

Finally, suppose that B € B(E) and f : (E, B(E)) —
(R, &) is a measurable function such that f* (or f7)
is )L(If,?a-integrable; from formula (74), Proposition 25 and

definitions of )x(f,?u and /\(Is?b given by (4), we have

k) _ (k)
.[B Jhya = JBmEﬁ? AN

f(A)[det A|dAY,  (75)

.[ AN (BnEY),)

- j F(A)|det AldA®,
A™Y(B) ’

5. Probabilistic Applications

Definition 30. Let (), %, P) be a probability space; a random
element X : (Q,%#,P) — (E,%(E)) is called A(Is)a-conti-
nuous if there exists a measurable function fy : (E, B(E)) —
([0, +00), B([0, +00))) such that, for any A € FB(E),

P(X € A)= L FdA®,. (76)

The function fy is called infinite-dimensional probability
density of X.

Theorem 31. Let A = (aij)ijez : E — E be a biunique and

linear (m, 0)-standard function, leta = (a, : n € I) € (R+)I
be such that [[,.;a, € R, and let b € (R*)" be the sequence
defined by Proposition 25. Then, for any k € N, k > m, for
any N € R, and for any A(Ii(,)b-continuous random element
X:(Q,%,P) - (E,%4(E)), the random element T = A o X :
(Q, %, P) - (E,B(E)) is Agf,?a-continuous and one has

fr®) = fx (A" @) |det A‘1|, Vt € E. (77)
Proof. VB € B(E), we have

P(T € B)

= E[15(1)] = E[15 (A(X))]
- L 15 (A (%) fx () dA%, (x)

- Lfl(B) fx (AT (A(x)) [det A™!|[det A A, ()

= J fx (A_l (t)) 'det A_l|d/\(£?a (t) (from Theorem 29).
B

(78)
O

6. Problems for Further Study

A natural extension of this paper is the generalization of
Theorem 29 by considering the measurable and C' -invertible
functions A : E — E. As in the finite case, we can define
the infinite-dimensional Jacobian matrix of these functions
and the determinant of this Jacobian, if it is a (11, 0)-standard
matrix.

Moreover, from Definition 30 and Theorem 31, in the
probabilistic context it is possible to introduce many random
elements that generalize the well-known continuous random
vectors in R (e.g., the Gaussian random elements in E
defined by the (m, 0)-standard matrices) and to develop a
theory and some applications in the statistical inference.

In particular, as we point out in the introduction, we can
generalize the paper [4] by considering the recursion {X,}, .y
on [[;en- [0, p) defined by

X, = AX,+B, (modp), (79)
where X, = x, € E, Ais a (m,o)-standard matrix,
p € R, and {B,},.y is a sequence of independent and
identically distributed random elements on E. Our target is
to prove that, with some assumptions on the law of B,, the
sequence {X, }, . converges with geometric rate to a random
element with law (9;cn- (1/p)Lebl (g - Moreover, we wish
to quantify the rate of convergence in terms of A, p, m and the
law of B, and to prove that if A has an eigenvalue that is a root
of 1, then O( pz) steps are necessary to achieve randomness.
We hope to develop these ideas in a further paper.
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