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ABSTRACT High-density communications in wireless sensor networks (WSNs) demand for new
approaches to meet stringent energy and spectrum requirements. We turn to reinforcement learning, a promi-
nent method in artificial intelligence, to design an energy-preserving MAC protocol, with the aim to extend
the network lifetime. Our QL-MAC protocol is derived from Q-learning, which iteratively tweaks the MAC
parameters through a trial-and-error process to converge to a low energy state. This has a dual benefit of
1) solving this minimization problem without the need of predetermining the system model and 2) providing
a self-adaptive protocol to topological and other external changes. QL-MAC self-adjusts the WSN node
duty-cycle, reducing energy consumption without detrimental effects on the other network parameters. This
is achieved by adjusting the radio sleeping and active periods based on traffic predictions and transmission
state of neighboring nodes. Our findings are corroborated by an extensive set of experiments carried out on
off-the-shelf devices, alongside large-scale simulations.

INDEX TERMS Wireless sensor network, artificial intelligence, reinforcement learning, energy-efficient
network, medium access control.

I. INTRODUCTION
Due to their ability of collecting data from the physical
world, elaborating and communicating it in a responsive
manner,Wireless Sensors Networks (WSNs) represent essen-
tial building blocks for the Internet of Things (IoT) [1].
However, the limited computational resources and energy
typically featuring the WSNs motes collide with the rising
smart applications’ demands as well as with the balloon-
ing end-users’ expectations. Therefore, in order to improve
WSNs functionality, utility and survival aspects despite their
intrinsic constraints, Artificial Intelligence (AI) techniques
can be successfully applied both at network and node level,
thus enabling intelligent behaviors and adaptivity to a variety
of contexts (smart factory, structural health, etc., like the
ones reported in Fig. 1) [2]. For example, especially when
nodes deployment/replacement is not trivial (e.g., large-scale
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industrial and outdoor monitoring applications, patients mon-
itoring in small-scale indoor environments), network life-
time and operation greatly benefit from intelligent motes.
Indeed, whatever the IoT application, motes require power
of some sort, and energy-efficiency enables them to operate
in a standalone manner, reducing managing costs and mainte-
nance time. In particular, Reinforcement Learning (RL) is an
AI-based approach that enables a decision maker to observe,
learn, and take actions in its operating environment in order to
increase its accumulated reward. RL promises to play a major
role in AI-enabled cognitive networks of the future because,
more than other paradigms (e.g., neural networks, swarm
intelligence, software agents), it demands low computation
resources and implementation efforts thus providing high
flexibility to topological changes and near-optimal results,
without requiring any apriori network model [3], [4].

According to this challenging vision, this paper exploits
RL techniques for WSNs to design a non-fixed and adap-
tive node duty-cycle at MAC layer that reduces the energy
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FIGURE 1. Intelligent sensor motes supporting different WSNs
application scenarios.

consumption over time, without affecting the other network
performances. In particular, Q-Learning [5], one of the most
popular and powerful algorithms based on RL, has been used
to develop the proposed QL-MAC protocol, whose aim is
the optimization of the radio sleeping and active periods of
network’s nodes according to both the traffic condition and
the neighbors transmission state. The performance of the
QL-MAC protocol, implemented both on a real small-scale
testbed using TelosB motes and on a large-scale scenario
using the Contiki Cooja simulator, have been evaluated in
terms of effectiveness and efficiency and compared to the
conventional asynchronous CSMA-CA MAC protocol. The
results show that, in small- as well as in large-scale sce-
narios, the adaptive behavior of QL-MAC guarantees better
network performances compared to standard MAC protocols
with respect to both Packet Delivery Ratio (PDR) and energy
consumption.

Summarizing, the novelty of this work with respect to
conventional networking is the introduction of an intelli-
gent/predictive radio scheduling strategy for WSN’s motes
to minimize their energy consumption. The extensive set
of comparative experiments represents a major contri-
bution with respect to our previous work [6], in which
the preliminary studies on the QL-MAC protocol were
presented, providing only a partial parametric analysis
of the configuration settings and a reduced performance
study.

The rest of the paper is organized as follows: a brief anal-
ysis on the AI-oriented approach exploited to design smart
communications and networks is reported in Sect. II, while
a background on Reinforcement and Q-Learning along with
QL-MAC protocol details are provided in Sect. III. Design
and implementation choices of the proposed QL-MAC pro-
tocol at Application, Network and MAC layers as well as the
Sink-Node communication phases are reported in Sect. IV.
The proposed QL-MAC configuration (learning rate, frame
dimension, etc.) and the performance analysis, both in small
and large scale scenarios as well as in real and simulated

environments, find place in Sect. V. The conclusions are
given in Sect. VI, drawing future research directions.

II. RELATED WORK
Recently, in order to design smart communications and net-
works with optimized resource management, dynamic device
configuration and feasible service provision, intelligence has
been pushed from the network’s core (data centers) to the
edge (nodes) by following decentralized, autonomic and
cognitive approaches [7]–[9]. Indeed, network’s elements,
even the resource-constrained ones, have been upgraded
with different degrees of smartness and provided with new
capabilities of computation, reasoning and learning through
AI-related and data mining techniques. In particular, sev-
eral researches efforts have been focused on optimizing
the node’s task scheduling, routing paths, and computation-
related aspects [10]–[12]. However, it has been also largely
studied that most of node’s energy expenditure is due to the
radio activity (transmitting one bit may consume as much
as executing a few thousands instructions), thus suggesting
that communication should be traded for computation [13].
Therefore, a large number of contributions have been pro-
vided aiming to optimize (i) the network data traffic, thus
minimizing the overall message load and, consequently,
the individual nodes’ transmission and receiving times,
(ii) the behavior of communication-related node’s compo-
nents, abandoning fixed configurations for an efficient and
adaptive management of the node’s sleep and active periods,
idle listening, transmission power, etc.

With respect to the first direction, the mainstream
approach consists in software-level interventions to develop
on-node and ad-hoc data mining techniques, leveraging
distributed computation paradigms as enablers (e.g., Soft-
ware Agents [14], [15]). The pursued goal is extracting
application-oriented models and patterns with acceptable
accuracy from continuous and rapid sensors data streams,
thus transforming (i.e., preprocess, filter, aggregate) raw
sensed data directly in-situ and reducing the overall data
traffic [16]. To the same end but with a different strategy,
intelligent nodes can autonomously and adaptively manage
the logical network organization (e.g., dynamic clustering
of the nodes according to their properties such as posi-
tion, available resource, residual energy) through genetic
algorithms [17], perform event recognition or prediction
(e.g., inferring node faults) through neural networks [18],
or locally cooperate for minimizing the expensive, multi-hop
and fail-prone communications to the sink on behalf of short-
range message exchanges [19], [20].

With respect to the communication-related components’
behavior, instead, a well-established research line foresees
the application of machine learning approaches to achieve
autonomous behavior and operation of node’s hardware for
the sake of energy-efficiency [4]. The goal here is to auto-
matically learn the properties of both the environment and the
neighborhood in order to reactively adjust the radio activity
and settings. For example, through RL, nodes can adapt
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FIGURE 2. Slot and frames.

the radio scheduling (i.e., sleeping and active periods) by
actively inferring the state of nodes neighborhood through
exchanging control messages about the number of waiting
messages, ratio of successfully transmitted messages, resid-
ual energy, etc., as in [21] and [22]. Similarly, other works
aim at transmitting only in slots with a lower probability of
collision and selectively turning on/off their radio to save
energy [23]. A different approach is adopted by cognitive
algorithms which dynamically control the node’s transmis-
sion power, perform spectrum sharing or intelligent antenna
switching according to the current service requirements and
environmental conditions [24].

Our proposal falls within the second category of
approaches, aiming to optimize the radio sleeping and
active periods through RL. Indeed, more than neural net-
works, swarm intelligence and software agents, reinforce-
ment learning demands for less computation resources, it is
easy to implement, highly flexible to topology changes and
achieves optimal results even without an apriori network
model [3], [4].

III. QL-MAC PROTOCOL
In this section we describe a MAC protocol, well suited for
WSNs, that dynamically learns the traffic conditions over the
time to better adopt the most suitable sleep/active scheduling
policy. In particular, each node not only takes into considera-
tion its own packet traffic due to the application layer, but also
considers its neighborhood’s state. The underlying behavior
of the QL-MAC relies on a simple asynchronous CSMA-CA
approach according to a frame-based structure dividing the
time into discrete time units, the frames, which are further
divided into smaller time units, the slots (see Fig. 2). Both
frame length and slot number are fixed parameters of the
algorithm and remain unchanged during the execution. In par-
ticular, within each frame, every slot stores a Q-value while
the last one is used to store information exchanged among
neighboring nodes that will affect the rewarding function.

In summary, the main beneficial effect of such Q-Learning
based algorithm is the implementation of a non-fixed and
adaptive duty-cycle that reduces the energy consumption over
the time without affecting the other network performances,
as shown by the simulations results discussed in Section V.
Thanks to the QL-MAC protocol, each node can indepen-
dently determine an efficient wake-up schedule to limit as
much as possible the number of slots in which the radio

is turned on, thus greatly increasing its own (and overall
network) lifetime.

A. REINFORCEMENT LEARNING AND Q-LEARNING
Reinforcement Learning (RL) is a sub-area of machine learn-
ing related to the maximization of some long-term rewards
according to the actions taken by a specific agent. In par-
ticular, the agent explores its environment by selecting at
each step a specific action and receiving a corresponding
reward from the environment. Since the best action is never
known a-priori, the agent has to learn from its experience,
by means of the execution of a sequence of different actions
in order to infer what should be the best behavior from the
obtained corresponding rewards. One of the most popular and
powerful algorithm based on RL is Q-Learning [5], which
does not need any a-priori knowledge of the environment
to be modeled and whose actions depend on a so called
Q-function, which indicates the quality of a specific action at
a specific agent’s state. Specifically, the Q-values are updated
as follows:

Q(st+1, at )

= Q(st , at )+ λ[rt+1 + ψ max
a

Q(st+1, a)− Q(st , at )] (1)

where Q(st , at ) is the current value at state st , when action at
is selected. At some state st , the agent selects an action at .
It finds the maximum possible Q-value in the next state st+1,
given that at is taken, and updates the current Q-value. The
discounting factor 0 < ψ < 1 gives preference either to
immediate rewards (if ψ � 1) or to rewards in the future
(if ψ � 0), whereas the learning rate 0 < λ < 1 is used to
tune the speed of learning.

B. PROTOCOL DETAILS
According to the depicted communication scenario and the
related radio scheduling issues, the actions available to each
agent/node consist in deciding whether it should stay in active
or in sleep mode during each single time slot. Thus, the action
space of a node is determined by the number of slots within
a frame. Every node stores a set of Q-value, each of which
is coupled to a specific slot within the frame. The Q-value
represents an indication of the benefits that a node get when
is awake during the related time slot. The Q-value is updated
over the time according to some specific events occurring dur-
ing the same slot at each frame. Furthermore, it is also related
to the state information coming from the node’s neighbors.
Specifically, every Q-value of each specific node i is updated
as follows:

Qis(f + 1) = (1− λ)Qis(f )+ λR
i
s(f ) (2)

where Qis(f ) ∈ [0, 1] is the current Q-value associated to the
slot s on the frame f ,Qis(f +1) is the updated Q-value, which
will be associated to the same slot s but on the next frame, λ is
the learning rate and Ris is the earned reward. Differently from
the update rule shown in 1, the future reward is not considered
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and the discount factor ψ is set to 0. Following such decen-
tralized approach, it is important to define a suitable reward
function able to take into account both the condition node and
its neighborhood conditions. In this direction, the QL-MAC
protocol takes into considerations the events related to the
packet traffic load, so that the reward function for the node
i and related to a specific slot s is computed as follows:

Ris = α
(
RP− OH

RP

)
+ βSi + γ

∑|Nj|j=1 Pj

|Nj|

 (3)

where OH is the number of over-heard packets representing
the packets received but actually not intended for node i; RP
is the total amount of packets received by node i during the
slot s of frame f also including over-heard packets; Si has a
positive value equal to +1 if node i has at least one packet to
broadcast during slot s, 0 otherwise; Pj has a positive value
equal to +1 if the neighboring node j has sent at least one
packet to node i during slot s, 0 otherwise; Ni is the set of
neighbors of node i and the constants α, β, and γ weigh the
different terms of the function accordingly.

It is worth noting that, at the beginning, all the Q-values
on every node are set to 1, meaning that all nodes have their
radio transceiver ON on every slot (i.e., for the entire frame).
During the learning process, the Q-values changes over the
time accordingly to the variation of the reward function. A
further parameter TON which represents a threshold value, has
been used to properly set the state for the radio transceiver on
the basis of the Q-values:

Radio[slot s] =

{
On, if Qis(f ) ≥ TON
Off , otherwise

(4)

According to this strategy, the generic node will switch to
sleep mode for the duration of the whole slot if the quality
value of a specific slot s is below threshold value; on the con-
trary, it will stay in active mode because most likely there will
be communication activities directly involving the node. In
such a decentralized learning approach, the main challenge is
the definition of a suitable reward function for the individual
node that will implicitly lead to a coordinated-group behavior
by taking into consideration the current condition of both the
node and its neighborhood. In particular, each node iwill take
into account the following information as reward signals for
a specific slot s:
• Transmitted packets: the amount of packets the node has
successfully transmitted to the intended receiver during
the slot. In case of unicast communication in the MAC
layer, successful data reception is directly acknowledged
with an ACK packet.

• Received packets: the total amount of packets correctly
received by the node from its neighbors during the slot;

• Over-heard packets: the amount of over-heard packets
received during the same slot, i.e., the packets received
but actually not intended for the node itself. Again,
in unicast communication the MAC layer is able to
directly detect such packets;

• Expected received packets: the amount of packets a
specific neighboring node has sent to node i during the
slot; this is the only information explicitly exchanged
by the protocol and it is necessary when the node is
in sleep mode because it cannot perceive the commu-
nication activities of its neighborhood. Thanks to this
information, the node is then able to figure out when it
would be better to turn on the radio again during the slot
because of a new packet traffic pattern. It is also used to
compute the amount of packets not successfully received
due to collisions.

When the packets exchange at MAC layer takes place in
broadcast mode, it is necessary to get some extra information
from the upper layers because a node is not able to understand
whether each single received packet is actually destined for
itself or not. In particular, theQL-MACprotocol uses a simple
crosslayer communication by decapsulating every received
packet and delivering to the network layer, which checks
whether the packet is intended for the node. If the packet is
discarded, the network layer informs theMAC protocol about
the reception of an overheard packet, and the reward function
is updated accordingly to (3).

In case the node needs to send a packet while the radio is
turned off at a specific slot, during the same time window,
the packet is buffered and the transmission id postponed to
the next available slot in which the radio is switched ‘‘on’’.
Finally, the last term of equation (3) provides an aggregated
information about the state of the node neighborhood rep-
resenting the packet traffic activity during a specific time
slot. This protocol information is crucial for the generic node,
working in sleep mode, to understand that it should be better
to turn on the radio because of the presence of packets des-
tined for it.

IV. QL-MAC DESIGN AND IMPLEMENTATION
To properly design and test the proposed QL-MAC protocol,
the whole protocol stack to be implemented within each
sensor node, has been carefully deployed to support the com-
munication toward a central sink node of the WSN. A three
layer protocol consisting of Application, Network and MAC
layers depicted in Fig. 3, has been developed in NesC for the
TinyOS operating system.

A. APPLICATION LAYER
The application layer has been designed to interact with
the network layer to send data packets by determining the
network load through the specific packet/rate of each node
toward the sink. To accomplish this function, the applica-
tion layer defines different data fields such as the source id,
the destination id and the sequence number; moreover, it also
sends to the sink all the summary statistics of each node
to periodically compute the overall network performance
analysis.

B. NETWORK LAYER
The network layer supports the routing of data packets
towards the sink node by handling the discovery phase to
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FIGURE 3. Different layers of the developed protocol stack.

define the real network topology in order to make each node
aware of its own position and that of its neighbors. In particu-
lar, theMulti-Path ring routing scheme [25] that utilizes a ring
level to separate sensor nodes into several sections, has been
implemented due to the low overhead and high data reliability
of such strategy.

The basic idea of multipath construction phase is to orga-
nize the network into levels according to the hop distance
from the sink node to a sensor node i.e., by the end of this
phase each node will get a ring level which indicates how
many hops away from the sink node; in this phase, the sink
node broadcasts a packet with its ring level 0. The nodes
which received the packet will increase their ring number and
rebroadcast the packet to their neighbors and at the end, all the
nodes in WSN will be separated into several levels.

C. MAC LEVEL
The MAC layer represents the core of this work because it
embeds the learning algorithm to effectively schedule the on-
off periods of the radio transmission module; in particular,
it handles the access to the transmission medium and interact
with the network layer not only to send and receive data
packets but to detect if the overheard packets are destined to
the current node.

It basically divides the time into discrete time units, the
frames, which are further divided into smaller time units,
the slots as depicted in Fig. 2, then the Q-values are com-
puted for each slot according to the formulas described in
section III.B to decide the best radio configuration for the
next frame. This choice is taken by considering different
information for each slot such as those related to the state
of the current node and its neighborhood; as a consequence,
to guarantee a correct messages exchange within the network
nodes, the last slot of each frame has been dedicated to host
these specific information that will impact on the reward
function of the algorithm.

The Fig. 4 shows the changes in the on-off radio activation
over the time due to the learning process; the sequences are
shown for each time slot of different frames of the same node.

FIGURE 4. On-Off schedule of the radio transmission during the learning
phase.

FIGURE 5. Data format included by each layer.

FIGURE 6. a) Node-sink communication phases; b) different network
levels according to the hops distance from the sink.

The Fig. 5 summarizes the different data fields within
the implemented communication protocol for each of the
described layers.

D. SINK-NODE COMMUNICATION
The communication between the sensor nodes and the sink
represents a key aspect due to the distributed characteristics of
the transmission environments; for this reason we put atten-
tion on the design of both synchronization and transmission
phases to guarantee the right transmission of all parameters
needed to implement the QL-MAC protocol. In this context,
the sink node plays the role of coordinator among the follow-
ing different communication phases as shown in Fig. 6.a:

1) Send Parameter - A broadcast communication between
the sink and the other nodes is implemented with the
aim of setting the communication parameters such as
the packet rate.

2) Send Setup - The sink sends low power broadcast mes-
sage containing its own network level (assumed equal
to 0) to reach the neighbor nodes in order to create the
first level ring communication that will be used in the
routing algorithm. In this way, the neighbor nodes are
aware of the sink network level in terms of hops number
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and they can update their level accordingly. Then, they
can propagate the broadcast message to their neighbors
belonging to the next level that can receive the massage
and update their network level number. Thanks to this
setup phase, each node can be aware of its distance
from the sink as shown in Fig. 6.b.

3) Send Start - The sink, acting as a coordinator, sends
a start broadcast message to activate the data sending
action of each node. This phase guarantees that each
node can receive the sending message at the same time
also avoiding the presence of isolated nodes.

4) Send Pkt - Each node periodically sends data packets
to the sink; this phase also exploits the functionalities
of the MAC layer with particular focus on the new
features of the presented QL-MAC protocol dividing
the transmission time in frames and slots within which
the nodes con send and receive data packets. During
this transmission phase, all nodes adapt to network
traffic using a radio on-off schedule, thanks to the
learning techniques described in section III. Specifi-
cally, the packets are transmitted in broadcast and with
low power to guarantees a multi hop communication
towards the sink passing through the different network
rings discovered during the Send Setup phase. It is clear
that, due to the broadcast communication nature, data
can reach nodes that are out of the paths towards the
sink, thus generating a certain amount of overheard.

5) Send Statistics - This phase is implemented only for
testing purpose to properly collect the statistics used
to evaluate the system performance. Once the sink has
collected all the received data, each node sends a sum-
mary of its own statistics that will be used by the sink to
compute performance metrics such as the packet deliv-
ery ratio, the overhead and the energy consumption of
each node; moreover, each node sends to the sink the
specific information on the status of the transmitted
frames that will be used to measure the time needed
for all nodes to adopt the right on-off radio scheduling
policy.

E. TINYOS COMPONENTS
The designed communication stack consisting of three layers
(Application, Network and MAC) has been developed in
NesC in order to deploy a testbed on real sensor devises
supporting the TinyOS operating system. The implemented
software is composed by four modules, three of which to
support the three stack layers of the sensor node and one
for the sink to support the routing strategy. The Fig. 7 shows
the logical communication scheme of the software modules
developed inside the generic sensor node also highlighting
the logical exposed interfaces that allow the communications
among the different software modules.

V. PERFORMANCE EVALUATION
In this section the performance of the proposed QL-MAC
protocol have been evaluated, both in small and large scale

FIGURE 7. Software modules communication within the sensor node.

TABLE 1. Scenario and QL-MAC parameters.

scenarios, by focusing on two main metrics: the packet deliv-
ery ratio (PDR, which provides important indications about
the protocol’s effectiveness) and the energy consumption
(which decisively impacts the nodes lifetime and hence the
protocol’s efficiency). Under these metrics, QL-MAC has
been compared to the conventional asynchronous CSMA-CA
MAC both in real and simulated cases. Referring to the first
case, the mote considered for the tests is TelosB, an IEEE
802.15.4-compliant device whose main features are the TI
MSP430 Microcontroller with 10kB RAM, an integrated on-
board antenna, Integrated Temperature, Light and Humidity
Sensors, a 250 kbps High Data Rate Radio, and the TinyOS
open-source operating system. Due to its high versatility
and usability, TelosB motes are widely spread in the WSN
contexts. To the latter case, the Contiki Cooja simulator,
which leverages the MSPSim to emulate TI MSP430-based
devices such as TelosB motes [26], has been exploited. In the
following, it will be firstly discussed the scenario design with
its basic settings, then the small and large scale scenarios.

A. SCENARIO DESIGN
A set of experiments has been carried out to evaluate the
QL-MAC protocol with different traffic loads in a data-
collection application, which is one of the most typical use
cases of a WSN in real contexts, has been chosen as case
study. The parameters related to the general scenario and
specifically featuring the QL-MAC protocol are reported
in Table 1 and discussed in the following.

With respect to the Scenario Parameters, seven nodes
have been deployed in a small scale scenario as depicted
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FIGURE 8. Simulation topologies: small-scale scenario (left side) and
large-scale scenario (right side) with 100 nodes (10×10 grid).

in Fig. 8(a), while 16, 49 and 100 nodes in a large scale
scenario have been placed in regular grids (4×4,7×7,10×10)
as in Fig. 8(b) within an area of 10.000m2. All nodes
transmit messages with a fixed 32 bytes payload through
the same CC2420 radio transceiver at a transmission power
level of 0dBm (which allows roughly 46 meters transmis-
sion range) and employing the nodes-to-sink communication
pattern described in Sec. IV-D (which is based on a simple
multipath ring routing protocol at network layer because the
sink is not in the transmission range of every node).

With respect to QL-MAC parameters, we experienced that
the protocol is robust to different packet rates (0.5, 1 and
2 pkt/s) and frame lengths (1 and 2s). Instead, as the number
of slots increases, PDR is stable but the energy spent by
nodes tends to decrease thanks to a more fine-grained radio
switch/slots management. Actually, with the use of 8 slots,
QL-MAC exhibits the better trade-off, i.e., similar PDR with
respect to the cases with 4 and 6 slots (random variation in
terms of ±3%), but minor energy expenditure. In this first
study, we set the same value 0.33 to the three variables α,
β, and γ of the equation 3 in order to fairly weight the
components of the reward function, reserving the parametric
analysis as a future work. An important setting concerns the
value of λ, which rules the learning rate and impacts the
protocol performance, especially when the number of nodes
changes. Therefore, we separately reported a λ-analysis for
small and large scale scenario in Tables 2 and 3.

B. SMALL SCALE SCENARIO
The small scale scenario consists of seven nodes deployed
as in Fig. 8(a). Starting from the aforementioned prelimi-
nary considerations about the QL-MAC parameters settings
(frame length=1s, packet rate=1pkt/s and slot#=8), we per-
formed an initial set of simulations to figure out the most
suitable value of λ to be adopted in the subsequent tests, see
Table 2.
As one could note, the λ = 0.05 case provides a higher

PDR and, especially, it ensures greater stability to the protocol
(the lowest average packet lost per minute with the smallest
standard deviation). Indeed, after a quick transition phase,
all the nodes find a radio scheduling alignment which is
stably maintained over the time, thus minimizing collision

TABLE 2. λ analysis for small scale scenario (in bold, the optimum value
for each metric).

and overheard packets. In detail, nodes initially hold the radio
on in all the slots for some frames (transition phase, the whole
8 slots are consecutively on) until they get synchronized
and converge to the optimal, energy saving, radio schedul-
ing configuration (an average of 2 active slots), as reported
in Fig. 9 (left side). Such configuration is ‘‘guessed’’ more
than ‘‘learnt’’ with higher λ values, since nodes try to directly
synchronize with each other minimizing the number of slot
with radio on. However, this implies that a definitive radio
scheduling configuration, in practice, will never be reached,
with continuous misalignment among the nodes (see Fig. 9),
ride side and, hence, a higher probability of packet lost.
Indeed, the λ value used in the learning phase affects the Q-
Value of each slot, as a high λ value gives greater importance
to the current reward function with respect to the Q-value of
the slot in the previous frame. So, if a node decides to send
messages in a slot different from the one used in the previous
frame, there will be a misalignment and a stable configuration
will never be achieved.

After this analysis, it has been straightforwardly decided to
fix the λ value to 0.05 since the only drawback of such config-
uration is a light increase of the energy expenditure (25.76%
vs 23.5%), which, however, is fully compensated by a higher
PDR and overall stability. Hence, the QL-MAC performances
with the λ = 0.05 setting have been compared by means
of simulation and real tests, with conventional asynchronous
CSMA-CA MAC with duty cycle at 100% (in the following,
MAC100) and 60% (in the following, MAC60). Results are
reported in Fig. 10. Both in simulated and real tests, QL-MAC
and MAC100 have almost the same PDR performance, but
they differ for the node energy consumption. In fact, QL-
MAC allows nodes to spend much less energy, as a result
of the sleep/wake-up radio schedule. Moreover, QL-MAC
notably outperforms the MAC60 especially in terms of PDR
but also with respect to the energy consumption. In order
to figure out the implication of the adaptive QL-MAC radio
scheduling on the nodes lifetime, a long-time set of tests has
been carried out (using new AA alkaline batteries - LR6 E91)
aiming to determine the nodes’ maximum working time (in
hours). Fig. 11 shows that the TelosB cutoff voltage of 2.1V
(namely, the energy threshold under which the node’s chip
radio stop operating even if batteries still have a few of
residual energy [27]) is reached in 27 hours by the MAC100
(almost 28 hours in simulation), 45 hours by MAC60 (almost
47 in simulation), and in 104 hours by QL-MAC (almost
108 in simulation). It means that, in terms of network lifetime
for both the real and simulated test, QL-MAC outperforms
of 4.5× the MAC60 and of 26× the MAC100. In summary,
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TABLE 3. λ analysis for large scale scenario (in bold, the optimum value for each metric).

FIGURE 9. By choosing λ = 0.05, after a quick transition phase in which all the slots are consecutively on (left side), the QL-MAC finds a stable radio
scheduling configuration which minimizes the number of misalignments (right side).

FIGURE 10. Small-scale: QL-MAC vs MAC in simulation and real tests.
QL-MAC saves energy without worsening the PDR.

the QL-MAC scheme tested in small scale scenario pro-
vides near-optimal performance in terms of PDR and optimal
results in terms of energy saving.

Finally, it is worth nothing that simulated and real tests
show same trends with slight variations (PDR from simu-
lation is around 10% higher of PDR from real test; energy
consumption from simulation is around 2.5% lower with
respect to real consumption) and this is due to the radio inter-
ference unavoidably featuring the real physical environment.
Such data confirms the good reliability of the Contiki Cooja
simulator and encouraged us to repeat the tests set for larger
scales in the following subsection.

FIGURE 11. Hours spent before motes stop working. The QL-MAC
self-adaptive radio scheduling greatly improves the mote’s lifetime.

C. LARGE SCALE SCENARIO
The large scale scenario consists of 16, 49 and 100 nodes
deployed in a regular grid of 4×4, 7×7, and 10×10 nodes
located in a simulation area of 10.000m2. As made for the
small scale scenario, we carried out a λ-analysis to determine
the best QL-MAC configuration, see Table 3.

Likewise the λ-analysis of the small scale scenario, the best
trade-off PDR/Energy expenditure is reached by using λ =
0.05 and the trends reported in Table 2 are maintained (results
provided by λ = 0.5 are intermediate, λ = 0.95 suf-
fers of higher average packets lost and standard deviations).
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FIGURE 12. Large-scale: QL-MAC vs MAC in simulation tests. As for the
small scale scenario, QL-MAC saves energy without worsening the PDR.

Therefore, given the learning rate λ = 0.05, we compared
the QL-MAC performance with conventional asynchronous
MAC100 and MAC60 in the cases of 16, 49 and 100 nodes
(see Fig. 12). Obtained results showed that, for all the three
considered protocols, the PDR decreases and energy con-
sumption increases (the optimal scheduling configuration in
large scale requires an average of 3 slots in which the radio is
on) as consequence of the higher number of nodes to be syn-
chronized. In particular, the QL-MAC PDR values are close
to the optimum PDR of MAC100 but the QL-MAC saves
almost the 60% of energy. With respect to MAC60, QL-MAC
PDR is almost double in all the three considered network
topologies but QL-MAC energy consumption is about 15%
higher (60% vs 44%). In conclusion, as for the small scale,
also in large scale scenario the QL-MAC achieves the sub-
optimal PDR and, at the same time, minimizes the fraction of
time in which the radio is switched on and hence optimizes
energy consumption of the nodes, thus increasing the network
lifetime.

VI. CONCLUSION
AI is a valuable source of algorithms, technologies and
paradigms enabling the development of cognitive devices and
networks. Following on, the paper investigated the potential
of RL techniques to develop an enhanced and intelligent
MAC protocol for WSNs. Through subsequent trial-and-
error learning, QL-MAC allows each node to independently
predict an efficient wake-up schedule to save energy by
limiting the period in which the radio is in active mode.
Both the experimental and simulation results corroborate
our initial hypothesis that RL may be successfully used to
realize energy-efficient MAC protocols. The superiority of
learning-capable nodes is demonstrated through a compar-
ative study with conventional, reactive MAC. The addi-
tional benefit is the full adaptivity of QL-MAC to changes
in network topology and other external factors. Through a
prototypical implementation on TELOS-B motes, we have
also been able to demonstrate the viability of RL in thin

computing architectures, which has significant implica-
tions for IoT services and, generally, high-density wireless
communications.

As a future step, we intend to explore QL-MAC in
heterogeneous WSNs, considering also the coexistence of
intelligent and conventional nodes. This also opens an avenue
to additional issues, like WSNs with hybrid levels of intel-
ligence and the presence of non-collaborative or even mali-
cious nodes. Security and trust are certainly of high priority
in this context.

Having stepped away from conventional networking, with
the introduction of intelligent/predictive protocols, it will also
be interesting to further explore how cross-layer informa-
tion may further improve the ability of QL-MAC through
application- and network-layer information profiling.
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