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Abstract. Fall injury issues represent a serious problem for elderly in
our society. These people want to live in their home as long as possible
and technology can improve their security and independence. In this work
we study the joint use of a camera based system and wearable devices, in
the so called data fusion approach, to design a fall detection solution. The
synchronization issues between the heterogeneous data provided by the
devices are properly treated, and three different fall detection algorithms
are implemented. Experimental results are also provided, to compare the
proposed solutions.
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1 Introduction

Fall is defined by the World Health Organization as an event which results in a
person coming to rest inadvertently on the ground or floor or other lower level
[1]. This problem affects particularly the aged population and, as stated in [2],
approximately 28-35% of people aged 65 and over fall each year, increasing to
32-42% for those aged over 70 years of age. These numbers are confirmed also
in EU28 and EEA countries, where approximately 100000 older people die from
injury due to a fall each year [3].

The direct consequences correlated to a fall could be: superficial cuts, broken
or fractured bones, and abrasions or tissue damage. Also the “long-lie” condition,
defined as involuntarily remaining on the ground for an hour or more, following a
fall, represents a serious risk for the health. As stated in [4], half of elderly people
who experience a “long-lie” die within 6 months. Taking into account all these
aspects, a reliable and secure system to monitor an elderly during his daily life
is strongly recommended. It must ensure an adequate robustness against false
alarms, and be unobtrusive at the same time.
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In the literature, the initially proposed solutions tried to use wearable devices
to solve this task. In [4], tri-axial accelerometers are placed on the trunk and
the thigh of 10 volunteers that perform ADLs (Activities of Daily Living), and
simulate falls. Kangas et al. [5] used a tri-axial accelerometer attached to belt at
the waist, involving also elderly people in the ADLs subset of a test campaign.
An alternative research approach uses cameras as a source of information to
detect risky activity [6].

Recently, the availability of cheap depth sensors, has enabled an improvement
of the robustness in camera based approaches for fall detection solutions. In
particular, the Kinect sensor, i.e. the RGB-Depth device used in this publication,
has been adopted in different implementations, as presented in [7] and [8].

In the last years, thanks to the growth of computational resources, the combi-
nation of the previous solutions became possible and this led to an improvement
of the performance. These solutions exploit an approach defined as “data fusion”,
and examples of joint use of Kinect sensor and wearable devices are visible in [9].
The synchronization issues between Kinect and wearable devices, to the best of
our knowledge, is not totally covered in the literature. In view of this fact, we use
the synchronization approach described in [10] to design fall detection systems
that exploit heterogeneous data provided by different sensors. It is also worth
noting that we started creating a database of ADLs and falls, containing visual
and acceleration data, that can be exploited to compare different solutions [11].

The remaining part of this paper is organized as follows. In Section 2 the
synchronization approach is presented. Section 3 describes the proposed fall de-
tection solution. Experimental results are discussed in Sect. 4, while Sect. 5 is
dedicated to concluding remarks.

2 Synchronization

The synchronization issue between a wearable inertial device and a vision based
device, namely the Microsoft Kinect sensor, has been addressed in [10]. In this
work, the transmission and exposure times of the frames captured by Kinect
are exploited to synchronize the RGB-D sensor with two inertial measurement
units (IMU) from Shimmer Research. Figure 1 shows the devices involved in the
synchronization process. An ad-hoc acquisition software allows to simultaneously
capture data from Kinect, connected via USB cable, and from the accelerometers,
linked via Bluetooth to the same PC, running the acquisition software. The
same software applies a timestamp when each packet, or frame, arrives at the
PC, using theQueryPerformanceCounter andQueryPerformanceFrequency
C++ functions. The synchronization is realized by exploiting these timestamps,
taking into account the transmission times of Kinect frames and any possible
delays caused by the Bluetooth protocol. Figure 2a shows, in red, the sequence
of skeleton samples provided by the Kinect sensor, while the green and blue
lines represent the packets sent by the accelerometers. As visible, the number of
packets received from each accelerometer, is much greater than the number of
frames captured by Kinect, because the sampling rate of the Shimmer is 10 ms
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Fig. 1. The synchronization scheme involves a Microsoft Kinect v2 sensor, connected
via USB cable to a PC, and two accelerometers onboard the wearable devices, linked
via Bluetooth to the same PC.

(a) (b)

Fig. 2. (a) Raw sample time correlated to Skeleton frames and packets generated by
the two accelerometers, (b) same curves after linearization.

while Kinect outputs data approximately every 33 ms. The rectangle contains
a zoomed interval of the data sent by device 1. The nonlinear trend is caused
by the behaviour of the Bluetooth protocol, as highlighted in [12]. Indeed, each
packet arrives at the PC with a variable delay that must be corrected to enable
the synchronization with the Kinect data. Using a linear regression algorithm,
the wearable device curves are linearized, and the result is shown in Fig. 2b. The
zoomed area shows that delays between subsequent packets have been corrected.

The aim of the synchronization process is to associate one acceleration sample
to each Kinect skeleton frame. Thus, after having linearized the samples from
accelerometers, the following operations have to be done:

– synchronization of skeleton and depth frames captured by Kinect, by using
timestamps provided by the Microsoft SDK 2.0;

– compensation of the transmission time of the skeleton frame, which is the
same as the depth frame;

– association of the closest in time acceleration sample to each skeleton frame.
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(a) (b)

Fig. 3. (a) Setup of Kinect v2 and wearable sensors, (b) orientation of accelerometers
angle.

3 Fall Detection

The synchronization algorithm summarized in the previous section is used to
perform data fusion in a fall detection solution. It is possible to use Kinect
and acceleration data to design reliable fall detection algorithms. The idea is
to propose different algorithms, that can compute different parameters, and to
evaluate their performances.

3.1 System Setup

The system setup includes two IMUs, mounted on the wrist and on the waist
of the subject, and a Microsoft Kinect v2 sensor, placed as shown in Fig. 3a. A
Shimmer device is placed to the right side of the body, constrained to the waist
using a belt, since Kepski et al. [9] recommend to place the sensor to the trunk
or lower back. Another accelerometer is placed to the right wrist, to simulate a
smartwatch. The Kinect sensor monitors the test area, and it is positioned at
about 1.5 meters from the floor and 2 meters from the person.

3.2 Acceleration Data Processing

The Shimmer device integrates the Freescale MMA7260QT accelerometer that
provides 3-axis raw accelerations data. They are converted into gravity accelera-
tions (X,Y, Z), taking into account possible biases. The acceleration magnitude
is:

Macc =
√
X2 + Y 2 + Z2 (1)

and the angle θt between the X axis and the g vector (Fig. 3b) is given, as
defined in [13], by:

θt = atan2
(√

Z2 + Y 2, X
)

(2)

Normally when the person is standing, with arms parallel to the body, the angle
θt measured by both the accelerometers is equal to 180◦. When the person lies
down on the floor this angle should be 90◦.
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3.3 Algorithms 1 and 2

The first implemented solution for fall detection exploits acceleration data from
the wrist IMU and skeleton information from Kinect. In particular, the following
information are considered:

– variation in the skeleton joint position;
– Macc of the wrist accelerometer;
– θt angle of the wrist accelerometer, after the extraction of the gravity accel-

eration component.

The first parameter, i.e. the variation of a skeleton joint position, considers
the socalled SPINE BASE joint (JSPB), located at the base of the spine [14].
As visible in Fig. 3a, the y axis represents the vertical component in the reference
system of the skeleton, and it can be monitored to evaluate any movements
referable to a fall. In the first captured frames, the reference y value of the JSPB

joint is evaluated and then, if the difference between the actual value and the
reference one exceeds a threshold of 50 cm, an irregular activity is detected. The
second considered parameter is the magnitude of acceleration, revealed by the
wrist IMU. In this case, an acceleration peak greater than 3g, as suggested by
[15], has to be found within a time interval of two seconds, centered in the time
instant where the irregular activity of the skeleton has been identified. The third
parameter is represented by the orientation of the sensor. In order to detect a
fall, the angle θt should be around 90◦ for a not negligible amount of time. In
the proposed implementation, a threshold value of 90◦, with a guard interval
of 20◦, for at least 0.5 s, has been considered. If all the parameters satisfy the
chosen conditions, the action is classified as a fall.

The Algorithm 2 computes the same parameters as Algorithm 1, but it ex-
ploits data from the accelerometer placed on the waist of the subject.

3.4 Algorithm 3

The third implemented solution avoids using the orientation of the accelerome-
ters, and exploits the following parameters:

– variation in the skeleton joint position;
– distance of the JSPB joint from the floor;
– Macc of the waist accelerometer.

The parameter that indicates an irregular activity is the remarkable change in
the y component of the JSPB joint. Then, the distance of that joint from the
floor is also evaluated. The floor is modeled as a plane, which is automatically
detected from the first available skeleton frame. Given the plane equation:

ax+ by + cz + d = 0 (3)

the constant term d is computed using the following equation:

d = −(ax0 + by0 + cz0) (4)
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where vn = [a, b, c] is the orthogonal vector to the plane, and P0 = [x0, y0, z0] is
one point in the plane. In the proposed approach, the vector vn is evaluated as
the vector that models the spine, assuming that the subject is standing at the
beginning of the test, that is when the plane is identified. Considering two vectors
that identify two joints of the spine, namely the JSPB and the SPINE MID
joint (JSPM ), the following equation is used to find the normal to the floor
vector:

vn =
JSPM − JSPB

||JSPM − JSPB|| (5)

while the point belonging to the plane is one of the ankle joints of the subject.
The distance distSPB between the SPB joint and the floor is evaluated using
the following equation:

distSPB =
|vn · JSPB + d|

||vn|| (6)

When the distance distSPB decreases below a threshold value (20 cm), the al-
gorithm evaluates the time instant and selects a time window of 2 seconds in
the Macc trajectory, looking for an acceleration peak greater than 3g. If also this
peak is found, the action is classified as a fall.

4 Results and Discussion

The designed algorithms have been tested in a laboratory environment, on a
database composed by 11 healthy volunteers. The people involved in the test
are aged between 22 and 39, with different height (1.62-1.97 m) and build. The
actions that populate the dataset are separated in two main groups: ADLs and
Fall. Each activity is repeated three times by each subject involved. The whole
database, containing 264 different actions for a total number of 46k skeleton and
230k acceleration values, is available at [11]. The proposed algorithms are imple-
mented in MATLAB and they have a very low complexity. The time required to
process a sequence of skeleton and acceleration data goes from 2 to 6 ms, hav-
ing sequences with durations in the interval 2.5-15 s. The detailed experimental
protocol is provided in Table 1. Results are evaluated, as defined in [5], in terms
of sensitivity, specificity and accuracy.

Table 2 shows the accuracy evaluated over the entire dataset, for the three
considered algorithms. Algorithm 1 is the less invasive one because it simply re-
lies on the accelerometer placed on the wrists and, despite it shows a specificity
of 98%, it is characterized by a sensitivity of 59%, which means that a quite poor
set of falls are correctly detected. Looking at Table 2, it can be noticed that the
most difficult fall to detect is the side one, featured by an accuracy of 48% while
the highest accuracy (82%) is reached by the backward fall that ends up lying,
labelled as back. The weakness of Algorithm 1 is represented by the orientation
of the accelerometer. In fact, even if the person is fallen and he/she is lying,
the arm could be not parallel to the floor, thus avoiding the detection of the
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Table 1. Experimental protocol

Category Activity Description

ADL sit The subject sits on a chair

grasp The subject walks and grasps an object from the floor

walk The subject walks back and forth

lay The subject lies down on the mattress

Fall front The subject falls from the front and ends up lying

back The subject falls backward and ends up lying

side The subject falls to the side and ends up lying

EUpSit The subject falls backward and ends up sitting

fall. In order to have better performance, it is necessary to use the accelerom-
eter placed on the waist, which provides a more reliable information about the
orientation of the subject’s body. The sensitivity and specificity of Algorithm 2
reach respectively the percentage of 79% and 100%; looking more in detail at
Table 2, it gives an accuracy of 100% for each test, except the EUpSit fall test.
In this specific case, the orientation of the accelerometer does not give values
below the chosen threshold, because the torso remains perpendicular to the floor
in almost all the tests. The correct detection of the EUpSit fall is attained using
Algorithm 3 (specificity 99%, sensitivity 100% and accuracy 99%), that exploits
the distance from the floor of the JSPB joint instead of the accelerometers ori-
entation. The variation of the y axis during an EUpSit fall is shown in Fig. 4a,

Table 2. Accuracy of the three fall detection algorithms for each activity

Category Activity
Accuracy

Algorithm 1 Algorithm 2 Algorithm 3

ADL sit 97% 100% 100%

grasp 100% 100% 100%

walk 100% 100% 100%

lay 97% 100% 100%

Fall front 54% 100% 97%

back 82% 100% 100%

side 48% 100% 100%

EUpSit 52% 18% 100%

Average 79% 90% 99%
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(a) (b) (c)

Fig. 4. (a) Variation of the y component of JSPB, (b) its distance from the floor during
an EUpSit fall, and (c) person’s point cloud with highlighted in red JSPB and detected
plane.

(a) (b)

Fig. 5. (a) Acceleration and (b) orientation revealed during an EUpSit fall.

and the threshold that indicates an irregular activity is reached after about 1.8
seconds from the beginning of the action. The second parameter that Algorithm
3 checks is the distance between the floor and the JSPB joint, revealing a value
below the threshold of 20 cm, as shown in Fig. 4b. Figure 4c shows the subject’s
point cloud in the final phase of EUpSit fall, the red plane is used as a reference
element to model the ground. The skeleton is superimposed to the person and
JSPB is highlighted by a red circle. Finally, the algorithm selects a time window
of 2 seconds and searches an acceleration peak greater than 3 g in the waist
accelerometer data, as depicted in Fig. 5a. Algorithm 1 and 2 fail to detect this
fall because they consider accelerometer orientations that do not reveal an angle
lower than the threshold of 110◦, as can be noticed from Fig. 5b.

The most used features in fall detection solutions are extracted from ac-
celerometers, gyroscope or pressure sensors, and include magnitude vectors and
tilt angles [13]. Considering only these features, it is quite difficult to detect
falls where the subject ends up sitting. In fact, only a few previously published
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works include this type of fall in the evaluated dataset. Kangas et al. [5] reach a
sensitivity of 97.5% and a specificity of 100% considering a dataset of 6 falls
and 4 ADLs. Despite the large number of performed tests, in all the considered
falls the subjects end up lying, limiting the application scenarios. Pierleoni et
al. [16], in their fall dataset, consider syncope and backward falls ending up
sitting. The authors state very high performance in terms of sensitivity and
specificity, with an average accuracy of 100%. Most of the approaches based
on wearable devices try to detect the acceleration peak and evaluate the orienta-
tion of the device, to estimate the posture of the subject when he/she is on the
ground. Thus, the wearable sensor must be positioned on the subject’s body giv-
ing a special attention to its orientation. The solution proposed herein exploits a
vision-based device and a wearable device, combining heterogeneous information
by a data fusion approach. The orientation of the subject is not evaluated using
the wearable device in Algorithm 3, but exploiting the information provided by
the camera, which allows to identify the subject on the floor even if he/she is
sitting. A drawback of the proposed solution is due to the fact that it is based
on the skeleton data automatically extracted from Kinect Microsoft SDK from
raw depth data. The joints estimation algorithm has been developed for gaming
purposes, when the subject stands is in front of the sensor. Algorithm 3, tested
on a database of 11 people performing the proposed experimental protocol, fails
only in one front fall, as can be noticed from Table 2. In that case, Microsoft
SDK is unable to estimate the skeleton when the subject is falling, and the fall
is classified as an ADL because the conditions on the skeleton joints are not
satisfied. This issue may be solved by integrating a barometric pressure sensor
in the wearable device and using that data to evaluate the height of the waist
from the floor.

5 Conclusion

This work proposed fall detection solutions exploiting skeleton data computed
using the Microsoft Kinect sensor, joint acceleration data. By means of an ad-hoc
synchronization algorithm, vision-based data and inertial data can be associated
and used to design a simple and reliable fall detection solution. The wearable
accelerometer device makes it easy to distinguish a fall from a “lying on the
floor” condition because of the different acceleration vector magnitude, while
the Kinect sensor is able to estimate the body orientation and the distance from
the floor, enabling to identify a fall where the subject ends up sitting.

Future works will concern enriching the dataset, involving more people in the
tests and considering different ADLs and falls, in order to allow a more extensive
testing of the proposed algorithms.
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