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BACKGROUND: We describe a kindred with high-density lipoprotein (HDL) deficiency due to
APOA1 gene mutation in which comorbidities affected the phenotypic expression of the disorder.

METHODS: An overweight boy with hypertriglyceridemia (HTG) and HDL deficiency (HDL
cholesterol 0.39 mmol/L, apoA-I 40 mg/dL) was investigated. We sequenced the candidate genes
for HTG (LPL, APOC2, APOA5, GPIHBP1, LMF1) and HDL deficiency (LCAT, ABCA1 and
APOA1), analyzed HDL subpopulations, measured cholesterol efflux capacity (CEC) of sera and con-
structed a model of the mutant apoA-I.

RESULTS: No mutations in HTG-related genes, ABCA1 and LCAT were found. APOA1 sequence
showed that the proband, his mother and maternal grandfather were heterozygous of a novel frameshift
mutation (c.546_547delGC), which generated a truncated protein (p.[L159Afs*20]) containing 177
amino acids with an abnormal C-terminal tail of 19 amino acids. Trace amounts of this protein
were detectable in plasma. Mutation carriers had reduced levels of LpA-I, preb-HDL and large
HDL and no detectable HDL-2 in their plasma; their sera had a reduced CEC specifically the
ABCA1-mediated CEC. Metabolic syndrome in the proband explains the extremely low HDL choles-
terol level (0.31 mmol/L), which was half of that found in the other carriers. The proband’s mother and
grandfather, both presenting low plasma low-density lipoprotein cholesterol, were carriers of the
b-thalassemic trait, a condition known to be associated with a reduced low-density lipoprotein choles-
terol and a reduced prevalence of cardiovascular disease. This trait might have delayed the develop-
ment of atherosclerosis related to HDL deficiency.
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CONCLUSIONS: In these heterozygotes for apoA-I truncation, the metabolic syndrome has delete-
rious effect on HDL system, whereas b-thalassemia trait may delay the onset of cardiovascular disease.
� 2015 National Lipid Association. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

High-density lipoprotein (HDL) deficiency is currently
defined as an HDL cholesterol (HDL-C) level below 40 mg/
dL (1.04 mmol/L) for men or below 50 mg/dL (1.29 mmol/
L) for women (corresponding approximately to the bottom
tertile in Caucasian population).1 In primary HDL defi-
ciency due to monogenic disorders, HDL-C level is usually
below the fifth percentile: 29 mg/dL (0.75 mmol/L) in
males and 36 mg/dL (0.93 mmol/L) in females.2 Severe
HDL deficiency occurs when the levels of HDL-C are
below the first percentile: 20 mg/dL (0.52 mmol/L).3,4

These extreme values are often observed in patients with
hypertriglyceridemia (HTG; triglyceride [TG] . 5.7
mmol/L) or, in the absence of HTG, in patients with malig-
nancy or treated with anabolic steroids and in patients with
rare monogenic disorders affecting the metabolism of HDL
(primary HDL deficiency).1,2,4 The most frequent primary
HDL deficiencies are caused by mutations in any of 3 major
HDL-related genes such as ABCA1, LCAT, and APOA1.

The presence of 2 defective ABCA1 alleles is the cause
of Tangier disease2,4; heterozygous carriers of ABCA1
mutation have reduced plasma HDL-C and may be more
susceptible to premature atherosclerosis and coronary heart
disease. Genetic deficiency of LCAT due to 2 defective
alleles is the cause of 2 conditions known as LCAT defi-
ciency and fish-eye disease. Heterozygous carries of defec-
tive LCAT alleles are asymptomatic but show a variable
reduction of plasma HDL-C levels.2,4

APOA1 gene encodes apoA-I, the major protein constit-
uent of HDL, which provides the structure of HDL parti-
cles, mediates the initial steps in HDL assembly
(lipidation by ABCA1 transporter), and promotes LCAT
activation. The presence of 2 defective alleles, which
abolish or greatly reduce the synthesis of apoA-I (asyn-
thetic mutations) is associated with extremely low or
undetectable level of apoA-I and systemic manifestations,
such as cutaneous xanthomas, corneal opacity, and prema-
ture cardiovascular disease (CVD). Heterozygous carriers
of mutant alleles have reduced plasma HDL and apoA-I
and appear to be more susceptible to develop premature
CVD.2,4 Missense mutations of apoA-I (usually found in
heterozygous condition) affect the structure of apoA-I,
often leading to altered function and/or increased catabo-
lism. The low HDL-C level is not necessarily associated
with cardiovascular risk (as demonstrated by the case of
apoA-I Milano). Some apoA-I missense mutations are
associated with hereditary amyloidosis due to tissue
accumulation of apoA-I fragments as amyloid deposits
(Supplementary Table S1 and Supplementary references).

Here, we describe a child with HTG, in whom the
extremely low level of HDL was initially thought to be
linked to a disorder of TG metabolism. However, further
investigations revealed that HDL deficiency was largely
due to presence of a novel frame-shift mutation in APOA1
gene, which causes the formation of a truncated apoA-I.
Methods

Patient MG

The proband was a 13-year-old overweight boy who was
referred to our Lipid Clinic for HTG associated with severe
HDL deficiency. Since the age of 7, he has been gaining
weight reaching a body mass index (BMI) value of
23.0 kg/m2 (.97th percentile for age- and gender-
matched Italian children).5 At the age of 12, when deter-
mined for the first time, his plasma lipid profile was the
following: total cholesterol (TC) 4.65, TGs 4.16, HDL-C
0.48, non-HDL-cholesterol (non-HDL-C) 4.17 mmol/L.
On admission to the Lipid Clinic, clinical, biochemical,
and genetic investigations of the proband and all available
family members were performed.

Informed consent was obtained from all subjects inves-
tigated and in the case of the proband from his parents. The
study protocol was approved by the institutional human
investigation committee of each participating institution.

Biochemical analyses

Plasma lipids
Plasma levels of TC, HDL-C, and TG were determined

by standard enzymatic techniques (Roche Diagnostics
GmbH, Mannheim, Germany). Serum non-HDL-C concen-
tration was calculated by subtracting HDL-C concentration
from TC concentration. Low-density lipoprotein choles-
terol (LDL-C) was calculated using the method suggested
by Martin et al.6 Plasma apoA-I and apoB were measured
by nephelometry (Siemens AG Healthcare Diagnostics,
M€unchen, Germany).
HDL subpopulations
Plasma levels of HDL particles containing only apoA-I

(LpA-I) and both apoA-I and apoA-II (LpA-I:A-II) were
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determined by electroimmunodiffusion in agarose gel.7

HDL subclass distribution according to particle size was
determined by non-denaturing polyacrylamide gradient
gel electrophoresis of the d , 1.21 g/mL total plasma lipo-
protein fraction.7,8 HDL particles were divided into 3 size
intervals: small (diameter 7.2–8.2 nm), medium (diameter
8.2–8.8 nm), and large (diameter 8.8–12.7 nm), and the
percentage of band corresponding to each size interval
was reported.7,8 HDL subclasses were also analyzed by
nondenaturing 2-dimensional electrophoresis followed by
immunodetection against human apoA-I (Calbiochem,
San Diego, CA), and serum content of preb-HDL was
expressed as a percentage of total apoA-I.8 LCAT ability
to esterify cholesterol within endogenous lipoproteins
(cholesterol esterification rate, CER) was determined as
previously described.9

Sequence of candidate genes

Genomic DNA was extracted from peripheral blood
leukocytes by a standard procedure. The exons and
flanking regions of the major candidate genes for HTG
(LPL, APOC2, APOA5, GPIHBP1, and LMF1) and for
hypoalphalipoproteinemia (APOA1, ABCA1, and LCAT)
were amplified and sequenced as reported previ-
ously.10,11 For APOA1 sequencing, see Supplementary
Methods for details. The mutation in APOA1 gene was
designated according to the Human Genome Variation
Society, 2013 version (http://www.hgvs.org/mutnomen/
recs-DNA.html). ApoA-I protein sequence variants were
designated according to http://www.hgvs.org/mutnomen/
recs-prot.html.

Genotyping for APOE, APOC3, and GCKR gene
polymorphisms

The proband and family members were also genotyped
for the APOE (rs7412 and rs420358), APOC3 –482 C/T
(rs2854117) and GCKR c.1337 C/T (rs1260326) single
nucleotide polymorphisms (SNPs), known to affect plasma
TGs.12

Sequence of beta-globin gene (HBB)

In some members of the family carrying the b-thalas-
semic trait, the HBB gene was sequenced according to a
previously reported method.13

Detection of truncated apoA-I in plasma and
molecular modeling of the mutant apoA-I

Plasma samples from some members of the proband’s
family were run on 16% SDS-PAGE and electrophoreti-
cally transferred to a nitrocellulose membrane. The
membrane was probed with a rabbit anti-human apoA-I
antibody (Calbiochem, San Diego, CA).14
Molecular modeling of mutant apoA-I

The tridimensional structure coordinates file of apoA-I
(PDB code: 2A01), which was downloaded from the
Protein Data Bank (PDB; http://www.rcsb.org/pdb/). The
apoA-I mutant model was obtained by the residue rotamer
explorer function implemented in the MOE Sequence
Editor (MOE: Chemical Computing Group Inc, Montreal,
Canada [http://www.chemcomp.com/MOE_Protein_and_
Antibody_Modeling.htm] (see Supplementary Methods
for details).

Serum cholesterol efflux capacity

The cholesterol efflux capacity (CEC) of the whole
serum and of apoB-depleted serum from family members
carrying APOA1 mutation and from 6 control subjects was
evaluated in cell models expressing ABCA1, ABCG1, or
SR-BI. Cells were labeled with [1,2-3H]-cholesterol that
was used as a tracer for cholesterol efflux assay. Details
of the methods used in our laboratory were previously re-
ported15 and are summarized in Supplementary Methods.

Capacity of serum to remove cholesterol from
cholesterol-loaded macrophages

Murine peritoneal macrophages cells preloaded with
cholesterol by exposure to acetylated low-density lipopro-
tein (LDL) were incubated in the presence of 2.5% of
serum from carriers of APOA1 mutation and from 3 control
subjects for 7 hours. Cell cholesterol mass was determined
before and after the incubation with serum16 (see
Supplementary Methods for details).
Results

Proband’s kindred

On admission to our Lipid Clinic, the 13-year-old
proband (III.1 in Fig. 1) had a BMI of 28.2 kg/m2 and a
waist circumference of 91.5 cm (both above the 95th

percentile), whereas systolic and diastolic blood pressures
were close to the median levels for gender and age.
Biochemical evaluation confirmed the previously docu-
mented HTG (plasma TG 7.13 mmol/L) associated with
very low levels of HDL-C and apoA-I (Table 1) and
showed a fasting plasma glucose of 4.28 mmol/L, plasma
insulin of 27.8 mU/mL and homeostatic model
assessment of insulin resistance (HOMA-IR) of 5.29 (the
latter 2 parameters were above the 99th percentile), indi-
cating insulin resistance and the presence of metabolic syn-
drome.17,18 Additional laboratory data are reported in
Supplementary Results. Carotid ultrasound examination
showed a max-intima-media thickness (IMT) of
0.65 mm, a value .75th percentile for comparable age

http://www.hgvs.org/mutnomen/recs-DNA.html
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http://www.hgvs.org/mutnomen/recs-prot.html
http://www.rcsb.org/pdb/
http://www.chemcomp.com/MOE_Protein_and_Antibody_Modeling.htm
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Figure 1 Pedigree of the proband’s kindred. The proband is
indicated by an arrow. Half-shaded symbol indicates the carriers
of the apoA-I mutation.
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and gender.19 In view of these findings, the patient was put
on hypocaloric diet supplemented with n-3 fatty acids
(850 mg/d). After 6 months of treatment, his BMI
decreased to 26.6 kg/m2 and plasma TG to 2.81 mmol/L,
whereas the extremely low level of HDL-C was unaffected
(Table 1). The proband’s 53-year-old father (II.1 in Fig. 1)
was overweight, had a mixed hyperlipidemia (Table 1) and
an increased IMT (max IMT 1.3 mm) in the external ca-
rotid arteries. The proband’s 52-year-old mother (II.2 in
Fig. 1) was also overweight and had a reduced HDL-C
level (,5th percentile for gender and age; Table 1) and
LDL-C of 2.98 mmol/L (,25th percentile). She was a
Table 1 Plasma lipids and apolipoproteins and APOE, APOC3, GCKR

Subject I.2 I.3 I.4 II.

APOA1 alleles W/W M/W W/W W/
Age (y) 75 86 82 5
Gender F M F M
BMI (kg/m2) 25.3 27.0 24.0 2
TC 4.00 3.93 4.32
HDL-C 1.00 0.62 1.19
Non-HDL-C 3.00 3.31 3.13
LDL-C 2.31 2.83 2.53
TG 1.90 1.03 1.44
ApoA-I 120 64 136 13
ApoB 90 91 82 17
APOE genotype ε3ε3 ε3ε3 ε2ε3 ε3ε
APOC3-482C.T
rs2854117

CT CC CC TT

GCKR c.1337C.T
rs1260326

CT CT CC CT

HBB genotype and
b-globin protein

c.118CC
W/W

c.118CT
W/p.(Q40*)

c.118CC
W/W

c.1

W, wild type allele or protein; M, mutant allele.

Rx represents data on treatment with hypocaloric diet and n-3 fatty acids
carrier of the b-thalassemic trait, due to heterozygosity
for the beta-globin (HBB) gene mutation c.118C.T, p
(Q40*). The 54-year-old maternal uncle (II.3 in Fig. 1),
affected by severe obesity, had a mild elevation of plasma
TG, a moderate reduction of HDL-C (Table 1), hyperurice-
mia (547 mmol/L), and normal glucose tolerance (HbA1c
38 mmol/mol); carotid ultrasound showed a max IMT of
1.2 mm in the external carotid arteries. The 75-year-old
paternal grandmother (I.2 in Fig. 1) was affected by type
2 diabetes mellitus. The 86-year-old maternal grandfather
(I.3 in Fig. 1) was a carrier of the b-thalassemic trait
(HBB c.118C.T) and in the past had been a heavy smoker.
Since the age of 74, he had suffered from peripheral arte-
rial disease at lower limbs (grade IIb of Leriche-
Fontaine), mainly due to a severe atherosclerosis with
70% stenosis of the left external iliac artery and 60% ste-
nosis of the left superficial femoral artery. He also had
sub-renal fusiform aortic aneurysm with diameter of
w35 mm, bilateral carotid atherosclerosis with fibrocalcific
plaques, causing respectively 30% and 40% stenosis of the
external and internal carotid arteries and hypertensive heart
disease; at the age of 84, he had an episode of atrial flutter
treated with cooled-tip radiofrequency catheter ablation.
Repeated evaluations of his plasma lipid levels over the
last 15 years had documented a stable reduction of HDL-
C (HDL-C 0.68 6 0.09 mmol/L), with LDL-C below the
15th percentile (3.23 6 0.13 mmol/L) and normal TG
levels (0.96 6 0.13 mmol/L). The 82-year-old maternal
grandmother (I.4 in Fig. 1) was apparently healthy and
had normal lipid levels.
and HBB genotype in MG kindred

1 II.2 II.3 III.1 III.1 on Rx

W M/W W/W M/W M/W
3 52 54 13 13.5

F M M M
5.9 25.8 38.7 28.2 26.6
8.27 4.32 5.14 4.78 3.67
0.90 0.80 1.00 0.39 0.31
7.37 3.51 4.13 4.39 3.36
5.42 2.98 3.35 2.38 2.44
4.94 1.17 1.89 7.13 2.81
2 83 102 40 —
8 87 108 85 —
3 ε2ε3 ε3ε3 ε3ε3 —

CC CC CT —

CC CC CT —

18CC
W/W

c.118CT
W/p.(Q40*)

c.118CC
W/W

c.118CC
W/W

—

850 mg/d; lipid values (mmol/L); apolipoprotein values (mg/dL).
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Analysis of TG-related genes

As summarized in Table 1, the index patient presented
with overweight associated with marked HTG and low
HDL-C. We firstly thought that HTG was related to the
presence of some rare variants in one of the major genes
(LPL, APOC2, APOA5, GPIHBP1, and LMF1), which con-
trol the intravascular lipolysis of TG-rich lipoproteins (very
low–density lipoprotein [VLDL] and chylomicrons). In
view of the absence of rare variants in these genes, a poly-
genic HTG was taken into consideration20 in the light of:
(1) the HTG in proband’s father; (2) the finding that the
proband and his father were carriers of rare APOC3 and
GCKR alleles, known to be associated with higher plasma
TG levels12; and (3) the presence in the proband of one
APOE ε2 allele (Table 1). HTG could also have resulted
from an increased secretion or a defective catabolism of
VLDL and chylomicrons, as reported to occur in obesity
and insulin resistance conditions.20,21 The reduction of
BMI and plasma TG, after 6 months of a strict hypocaloric
diet and treatment with n-3 fatty acids, suggested that over-
weight and insulin resistance were the major contributors to
HTG.

Sequence of HDL-related genes

The observation that the reduction of plasma TG level
was not associated with the expected increase in plasma
HDL-C raised the possibility that the proband had a
primary HDL deficiency. This hypothesis was supported
by the presence of low levels of HDL-C and apoA-I in
proband’s mother and maternal grandfather in the absence
of HTG (Table 1).
Figure 2 Partial sequence of exon 4 of APOA1 gene. The top panel sho
are boxed. The lower panels show the corresponding amino acid sequen
19 novel amino acids (in italics) of the C-terminal end of the truncated
For this reason, we sequenced ABCA1, LCAT, and
APOA1 genes. Although the sequence of ABCA1 and
LCAT was negative, that of APOA1 gene revealed that the
proband was heterozygous for a dinucleotide deletion in
exon 4 (c.546_547delGC), resulting in a shift of the reading
frame with the insertion of a premature termination codon
in messenger RNA (mRNA; Fig. 2). The predicted transla-
tion product of this abnormal mRNA is a truncated protein
p.(Leu159Alafs*20) of 177 amino acids containing a string
of 19 novel amino acids downstream from the alanine res-
idue at position 158 of the mature protein. The proband’s
mother and the maternal grandfather, but not the maternal
uncle, were found to carry this mutation (Table 1).

Mutant apoA-I in plasma

The immunoblot of plasma apoA-I showed the presence
in the proband’s plasma of a major 28 kDa band
corresponding to wild type (WT) apoA-I and a 20.8 kDa
band consistent with the size of the predicted truncated
protein (Fig. 3). The 20.8 kDa truncated protein was also
detectable in plasma of proband’s mother and maternal
grandfather. The WT and mutant apoA-I were also evalu-
ated by Western blotting after the ultracentrifugation of
plasma at density 1.210 g/mL. The WT/mutant apoA-I ratio
in 1.210 g/mL top and bottom was the same.

Plasma HDL subpopulations

We next looked more specifically at the HDL sub-
populations present in proband’s plasma and in the plasma
of other family members. Table 2 summarizes that mutation
carriers had a reduced level of LpA-I, undetectable HDL-2,
ws the nucleotide sequence in the proband; the deleted nucleotides
ce of wild type and mutant apoA-I, respectively. The stretch of the
protein is shown.



Figure 3 Immunoblot of plasma apoA-I. The plasma of muta-
tion carriers contains the wild type apoA-I (28 kDa) and a
20.8 kDa band consistent with the size of the predicted truncated
protein. Lane 1: proband; lane 2: proband’s mother; lane 3: pro-
band’s maternal grandfather; lane 4: proband’s maternal uncle.
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and a reduced level of preb-HDL. The content of large
HDL was also reduced, whereas that of small HDL was
increased. CER was slightly reduced in the proband but
within, or close to, the normal range in the other two car-
riers. The maternal uncle, in spite of the moderately
reduced level of HDL-C and LpA-I, had detectable HDL-
2 (with a size within the normal range) and a normal distri-
bution of HDL subpopulations.

Cholesterol efflux capacity of whole sera and
apoB-depleted sera

First, we evaluated the total CEC of whole serum and
apoB-depleted serum (B [-] serum) using J774 murine
macrophages treated with cAMP. In such conditions, total
release of cholesterol from these cells occurs through the
major pathways of known relevance in cholesterol efflux
from macrophages (ie, aqueous diffusion, ABCA1,
ABCG1, and SR-BI mediated efflux, respectively). As
summarized in Table 3, TC efflux to B(-) sera of the 3
apoA-I mutation carriers was significantly reduced, as
compared with the efflux to B(-) sera of the 6 controls.
Similar results were obtained when cAMP stimulated
J774 murine macrophages were incubated with whole
serum (Table 3).

Aqueous diffusion process was evaluated in J774 murine
macrophages, which under basal conditions express negli-
gible levels of ABCA1, ABCG1, and SR-BI. Under these
conditions, the efflux to B(-) sera of the 3 apoA-I mutation
carriers was significantly lower than the efflux to B(-) sera
of controls (Table 3). Similar results were obtained when
J774 were incubated with whole serum (Table 3).
Table 2 HDL subpopulations in MG kindred

Subject
APOA1 gene
alleles

LpA-I
(mg/dL)

LpA-I:A-II
(mg/dL)

HDL-2
(nm)

HD
(n

I.3 M/W 30 61 ND 8.
II.2 M/W 30 53 ND 8.
II.3 W/W 38 57 10.3 8.
III.1 M/W 20 28 ND 8.
Control W/W 52 60 10.8 8.
Ref. values .42 .58 9.0–12.7 7.

M, mutant allele; ND, not detectable; W, wild-type allele.
ABCA1-mediated efflux to B(-) sera of apoA-I mutation
carriers was markedly reduced as compared with B(-) sera
of controls. ABCA1-mediated cholesterol efflux to whole
sera of apoA-I mutation carriers showed a similar trend,
although the difference with respect to control sera was less
pronounced (Table 3).

ABCG1-mediated cholesterol efflux to B(-) sera of the 3
apoA-I mutation carriers was reduced as compared with
(B-) control sera, especially in the index case (3.52 6 0.22
vs 4.48 6 0.39 in the proband’s mother and 4.19 6 0.59 in
the maternal grandfather). No difference was found in CEC
values to whole serum (Table 3).

SR-BI–mediated cholesterol efflux to B(-) sera of mu-
tation carriers was lower than the efflux to B(-) sera of
controls. A similar finding was observed for the CEC to
whole sera (Table 3).

Capacity of serum to remove cholesterol from
cholesterol-loaded macrophages

We next measured the capacity of serum to remove
cholesterol from cholesterol-loaded macrophages. All
tested sera had a cholesterol removal capacity comparable
to that of control sera, with the exception of the serum of
the proband, whose removal capacity was almost half of
that observed in the other carriers of the apoA-I mutation
(Supplementary Table S3).

Model of mutant apoA-I

As specified previously, the dinucleotide deletion in
exon 4 results in a C-terminal truncated protein of 177
amino acids (73% of the size of the 243 amino acids of the
WT mature apoA-I). In addition, mutant apoA-I contained
a string of 19 novel amino acids at the C-terminal end.

With the aim of exploring at a molecular level, the
pathological impact caused by apoA-I amino acidic muta-
tions (in the truncated apoA-I), in the absence of experi-
mental X-ray for the mutant protein, a 3D-model was built
and used to analyze any difference concerning the steric and
electrostatic profile of the WT and mutant apoA-I proteins.

On the basis of our calculations, the derived mutant
apoA-I model proved to be characterized by a quite different
hydrophilic and hydrophobic profile, if compared with the
L-3
m)

preb-HDL
(%)

Large
(%)

Medium
(%)

Small
(%)

CER
(nmol/mL/h)

6 4.3 41 22 37 29.1
6 4.0 42 20 38 35.7
5 11.4 51 22 27 45.9
6 4.5 41 21 38 24.1
5 10.6 56 20 24 34.0
8–9.0 10–14 50–75 13–30 6–24 30–60



Table 3 Cholesterol efflux capacity (CEC) to apoB-depleted sera and to whole sera in controls and in apoA-I mutation carriers

CEC

ApoB-depleted sera Whole sera

Controls Carriers P* Controls Carriers P*

Total diffusion 7.92 6 0.33 4.15 6 0.64 ,.001 10.58 6 0.41 7.87 6 0.77 ,.001
Aqueous diffusion 5.71 6 0.34 3.37 6 0.42 ,.001 6.90 6 0.28 5.43 6 0.62 ,.001
ABCA1-CEC 2.21 6 0.27 0.78 6 0.32 ,.001 3.68 6 0.50 2.44 6 0.51 ,.001
ABCG1-CEC 5.41 6 0.44 4.06 6 0.56 ,.001 6.10 6 0.74 6.12 6 0.84 NS
SR-BI-CEC 2.35 6 0.22 1.05 6 0.36 ,.001 3.07 6 0.30 1.92 6 0.38 ,.001

NS, not significant.

*Mann-Whitney test.
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WT XR data (see Supplementary Table S4). More specif-
ically, the WT protein was folded bearing 2 highly polar re-
gions properly oriented outside the helix domain, including
the negative charged motif Asp168 and Glu169 (NCM) and
the positive charged motif (PCM) Arg 171, Gln 172 and Arg
173, as highlighted by the contact preference depicted in
Figure 4. In sharp contrast, the mutant apoA-I model
displayed positive charged and hydrophobic residues
(Arg168 and Ala169) and mild polar or hydrophobic amino
acids (Pro171, Ala172, Leu173) at the corresponding WT
NCM and PCM positions. With regard to the lipophilic pro-
tein profiles, the WT apoA-I showed numerous bulky resi-
dues, such as Leu159, Leu163, Tyr166, Leu170, and
Leu174, which were projected inside the helix core domain.
The corresponding positions of the mutant apoA-I model
were occupied by smaller or charged amino acids
(Ala159, Gly163, Gln166, Ala170, Gly174; Fig. 4).

Discussion

In the present work, we describe a novel frameshift
mutation in APOA1 gene (c.546_547delGC), which causes
the production of a truncated protein of 177 amino acids
Figure 4 (A) Molecular model of wild type apoA-I. The contact prefe
and hydrophobic regions are colored in cyan and purple, respectively).
178–243 in yellow). (B) Molecular model of truncated apoA-I. The conta
depicted. H-bonding and hydrophobic regions are colored in cyan and
colored in magenta.
(p.[L159Afs*20]). The mutation was found in heterozygous
form in a 13-year-old overweight boy with HTG and severe
HDL deficiency and in 2 family members, the proband’s
mother and maternal grandfather. The truncated protein of
20.8 kDa was detectable in plasma in minute amounts,
with respect to the WT apoA-I of 28 kDa encoded by the
normal allele. The abnormal protein is devoid of the C-ter-
minal domain (helix 7-10),22,23 which is crucial for the
ABCA1-mediated efflux of cholesterol and phospholipids
from cell membrane and for the initial lipid binding to
lipid-free apoA-I and lipid-poor apoA-I (pre-b1) and the
formation of nascent discoidal HDL particle.24–27

To date, several mutations of APOA1 gene have been
identified: 53 of them (in homozygous, compound heterozy-
gous, or heterozygous forms) were associated with HDL
deficiency; 21 other mutations (in heterozygous form)
were involved in the development of amyloidosis
(Supplementary Table S1). Among the previously described
mutations causing HDL deficiency, 18 were nonsense or
frameshift mutations causing truncated proteins. Six of these
mutations eliminated a region spanning from helix 6 to helix
10, resulting in proteins containing a number of amino acids
ranging from 177 to 229 (Supplementary Table S2).
rence areas involving residues 159 to 177 is depicted (H-bonding
The protein backbone is shown by ribbon (residues 1–158 in blue,
ct preference areas of the truncated apoA-I (residues 159–177) are
purple, respectively. The protein backbone is shown by ribbon,
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The extremely low level of the truncated apoA-I found
in the plasma of the 3 mutation carriers may be due to
several factors such as: (1) a low production rate by liver
and intestine due to a rapid degradation of the correspond-
ing mRNA containing a premature termination codon
(nonsense-mediated mRNA decay), as documented for
another truncated apoA-I28; (2) a rapid degradation of a
protein recognized as structurally abnormal by endoplasmic
reticulum degradation machinery; and (3) a poor lipidation
of the protein by ABCA1-mediated pathway due to the lack
of the normal C-terminal domain (see previous section) and
the presence of an abnormal novel C-terminal domain.
Defective lipidation may promote a rapid removal of the
protein from the circulation, as documented by the kinetic
analysis of labeled C-terminal truncated apoA-I in normo-
lipemic rabbits.29 Whether the plasma of the mutation
carriers contains a small subset of HDL particles containing
exclusively the mutant apoA-I or the latter is incorporated
in HDL containing the WT apoA-I is an open question.
In principle, it is difficult to envisage the belt dimerization
of truncated with the WT apoA-I, as the truncation elimi-
nates the arginine residue at position 173 (R173), which
is involved in formation of salt bridges D89/E92-R173
crucial for dimer formation of WT apoA-I.30 It is, however,
possible that a formation of salt bridges occurs between
D89/E92 residues and the arginine at position 175 (R175)
of the novel C-terminal amino acid tail of the truncated
protein (Fig. 2). Regardless of the mechanisms of belt for-
mation, it is possible that the coexistence of both WT and
truncated apoA-I or the presence of dimers of truncated
apoA-I in the same particle, may render the latter more
unstable and more prone to a rapid removal from the
circulation.

The domain involved in LCAT activation (residues 134–
145), which in discoidal HDL forms an amphipatic tunnel,
allowing the presentation of phospholipids and free choles-
terol to LCAT active site,31 is maintained in the truncated
apoA-I. However, the elimination of the C-terminal domain
involved in the lipid binding would abolish the function of
the LCAT activation domain for lack of lipid substrates.
The CER found in the apoA-I truncation carriers
(Table 2) was slightly below or close to the lower limits
of the normal range. This might be the result of a reduced
availability of WT apoA-I containing discoidal particles,
which maintain a full LCAT activation capacity.

The plasma concentration of WT apoA-I was very low in
the proband and was approximately 40% to 50% of the
control values (136.7 6 22.0 and 146.0 6 23.0 in a sample
of 750 males and 550 females randomly selected from
Italian population) in the other 2 carriers. The reduced pool
of WT apoA-I explains the reduced level of LpA-I particles
and preb-HDL. The reason underlying the absence in the
carriers of HDL-2 and the reduction of large HDL with the
concomitant increase in small HDL, which are common
findings in both primary and secondary forms of HDL
deficiencies, is poorly understood. It is possible that this
change in particle size distribution is caused by some
impairment of the intravascular remodeling of HDL
mediated by LCAT or a more rapid removal of the large
HDL from the plasma compartment.

The quantitative and qualitative changes of plasma HDL
prompted us to investigate CEC of whole serum and apoB-
depleted serum, a well-established function of the HDL
system. By using experimental settings designed to explore
the various cell pathways involved in cell cholesterol
removal, we show that overall, the CEC was greatly
reduced in the carries of truncated apoA-I. This finding is
likely to reflect the changes in HDL subpopulations,
specifically of preb-HDL particles, which are involved in
the ABCA1-mediated cholesterol efflux. This implies that
the early stages of reverse cholesterol transport are greatly
impaired in mutation carriers, rendering them more sus-
ceptible to develop atherosclerotic plaques.

When compared with the other mutation carriers, the
proband showed much lower levels of HDL-C and apoA-I,
which remained unchanged after a substantial reduction of
plasma TG after a hypocaloric diet. In this subject, the
severe HDL deficiency is likely to ensue from the combined
effect of several factors: (1) the apoA-I mutation inherited
from his mother; (2) the presence of metabolic syndrome,
which is known to affect HDL metabolism by increasing
hepatic lipase–mediated catabolism of TG-loaded HDL
particles resulting from an enhanced CETP activity, which
occurs in HTG32; and (3) the inheritance of some additional
genetic factors from his father who has combined hyperlip-
idemia with low HDL.33

The very low level of HDL observed in the proband may
also explain the reduced capacity of his serum to remove
cholesterol from cholesterol-enriched macrophages, as
shown in Supplementary Table S3.

The geographical origin of the proband’s kindred was
Guastalla, a small town in the North-East of Italy close to
the Po river. In this region, there is a relatively high
prevalence of carriers of b-thalassemia trait due to the
presence of a few mutations of the HBB gene.34 Indeed, we
found that the proband’s mother and maternal grandfather
were carriers of the p.(Q40*) mutation of the b-globin
chain. Studies conducted in a large number of subjects car-
rying the b-thalassemia trait have shown that the presence
of this trait has a lowering effect on plasma concentration
of TC, LDL-C, and apoB.35,36 In vivo kinetics study docu-
mented an increased fractional clearance rate of LDL in
carriers of the b-thalassemia trait,37 possibly due to an
increased receptor-mediated uptake of LDL by the bone
marrow to provide cholesterol for the increased prolifera-
tion of erythroid precursors. Moreover, the LDL lowering
effect associated with the b-thalassemia trait may be also
related to the activation of the monocyte/macrophage sys-
tem in spleen, liver, and bone marrow with the generation
of several inflammatory cytokines, which at least in vitro
in HepG2 cells, increase LDLR gene expression and reduce
the assembly of apoB-containing lipoproteins.38 In addi-
tion, a recent meta-analysis of 8 case-control studies
(involving 9479 individuals) showed that the b-thalassemia
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trait was associated with a reduced risk of arterial cardio-
vascular and cerebrovascular events in male patients
(odds ratio 0.39; confidence interval 0.24–0.62).39 In agree-
ment with the aforementioned findings, the LDL-C level
was ,25th percentile in proband’s mother and ,15th

percentile in proband’s grandfather with respect to the dis-
tribution of LDL-C level in gender- and age-matched
normal individuals of the Italian population. The b-thalas-
semia trait does not appear to reduce HDL-C level,
although a reduced plasma apoA-I level was observed in
males carrying this trait.36 In this context, it is likely that
in the proband’s grandfather, the b-thalassemic trait, by
maintaining a low level of atherogenic apoB-containing
lipoproteins, has attenuated the ‘‘combined deleterious’’
effect of the low plasma HDL-C (due to apoA-I mutation)
and of the heavy smoking habits on the development of
atherosclerosis, the manifestations of which occurred late
in life.

Needless to say that the proband, being at high risk of
developing CVD, requires therapeutic interventions and a
strict follow-up schedule. We have recommended life style
modifications, which include a hypocaloric diet with
restriction of saturated fat and carbohydrate intake (specif-
ically simple sugars) supplemented with n-3-fatty acids
(3 g/d),40–42 and an increased physical activity. These mod-
ifications are expected to reduce body weight, insulin resis-
tance, and plasma TG levels. If no normalization of plasma
TG is obtained, fibrates, either alone or in combination with
statins (or ezetimide), will be given to reduce non-HDL
cholesterol level as much as possible.42 In the future, we
may consider new therapies such as apoC-III-targeted anti-
sense oligonucleotide to reduce the secretion of VLDL,
promote LPL-mediated VLDL, and chylomicron hydrolysis
and reduce the apoC-III–induced arterial inflammation.42,43
Conclusions

In conclusion, we describe a novel frameshift mutation
of the APOA1 gene found in an Italian kindred. The mutant
allele generates a truncated protein, which is devoid of the
C-terminal domain and is detectable in plasma in minute
amounts. In 2 carriers of the apoA-I mutation, additional
factors, namely the metabolic syndrome in the proband
and the b-thalassemic trait in the maternal grandfather,
seem to play a role in modifying the biochemical and clin-
ical phenotypic expression of the main genetic disorder.
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