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Abstract

By using intersection types and filter models we formulate a theory of types for
a λ-calculus with record subtyping via a finitary programming logic. Types are
interpreted as spaces of filters over a subset of the language of properties (the
intersection types) which describes the underlying type free realizability structure.
We show that such an interpretation is a PER semantics, proving that the quotient
space arising from “logical” PERs taken with the intrinsic ordering is isomorphic
to the filter semantics of types.

1 Introduction

Subtyping is a form of polymorphism which is based on the intuition that
any term of type A might safely occur in a context of type B whenever A is
a subtype of B. The basic approach to the theory of subtyping is syntactic
in nature: looking for semantic investigations of this relation one is led to
the successful approach which has been proposed in [6]. This is based on the
same interpretation of types than second order types, namely PERs over the
Kleene partial combinatory algebra (ω, { } ); in this framework the subtyping
relation is modeled simply by subset inclusion of PERs.

The study of models of polymorphism has largely profited of Cardone and
Amadio [8,4] proposal to move from ω to D∞ models of the type-free lambda-
calculus, seen as realizability structures. The advantage is that D∞ carries a
topological structure that can be exploited to interpret a rich variety of type
constructors, like recursive types and bounded quantification. Building over
this theory [2] provides a general way to ordering the domain of complete
and uniform PERs introduced in [8,4] in such a way that it is an ω-algebraic

1 Partially supported by MURST Cofin’01 COMETA Project, IST-2001-33477 DART
Project and IST-2001-322222 MIKADO Project.
2 Email: deligu@di.unito.it

c©2002 Published by Elsevier Science B. V.

mailto:deligu@di.unito.it


de’Liguoro - Subtyping in logical form

cpo. This construction has been framed in [7] in a general theory of “accept-
able” PERs which give rise to models of Fω with F -bounded quantification, a
problem which was left open in [2].

Filter models based on intersection type assignment systems [5] and do-
main logic [3] using (pre)-locales as the base logic provide a logical approach
to domain theory and denotational semantics, where domains are essentially
sets of theories and the denotation of a program is the set of sentences true of
it (its theory). While filter models have been invented to model type free cal-
culi, domain logic provides a framework to model (first order) typed languages
within the category of 2/3 SFP.

When dealing with models of polymorphism over realizability structures
we are in an intermediate situation, where the term interpretation is type
free (based on erasure maps), and the type structure is recovered via partial
equivalence relations. As remarked in [4] these models “suffer from a typical
drawback of denotational semantics, namely their equational theories are hard
to characterize and typically not even r.e. Therefore there are obvious diffi-
culties to extract from the models and justify a finitary programming logic”.

We face here this problem: by restricting to intersection types (but we
think that our construction can be carried on to the framework of domain
logic with a modest overhead) we are able to show that a filter model, close
to that one used in [9] to study termination of type free ς-terms, models a
λ-calculus with record subtyping in such a way that types are interpreted into
certain subdomains of the underlying realizability structure which admit a
logical description.

The basic idea to capture subtyping logically is that terms are identified
with the sets of their properties, and properties are classified according to
types. A subtype A of some type B is then associated to a finer language
than the language associated to B, so that any pair of terms which cannot be
distinguished according to A, will be such with respect to B. So if M : A is
the set of properties of M of type A and A < : B then we expect from the
theory that M : B = (M : A) ∩ B. Therefore terms are not equal in general,
rather they are (or are not) equal with respect a type A: M = N : A means
(roughly) that M ∩ A = N ∩ A. Combining these two, if M = N : A and
A < : B then M = N : B as expected.

Then we prove that this semantics is a PER semantics, although different
from the standard one: indeed subtyping is modeled by discriminability w.r.t.
certain sets of properties rather than by relation inclusion.

2 Subtyping over realizability structures

For the sake of concreteness we introduce first order types with record types, a
notion of subtyping syntactically defined by an inference system, and a simply
typed λ-calculus with records. The choice of the calculus is motivated by the
fact that it is the first order fragment of what is needed to encode object-
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Type grammar

A,B ::= G | {`i : Bi
(i∈I)} | A→ B

Subtyping System

Σ ` A < : A

Σ ` A < : B Σ ` B < : C

Σ ` A < : C

Σ ` A′ < : A Σ ` B < : B′

Σ ` A→ B < : A′ → B′

G < : G′ ∈ Σ

Σ ` G < : G′

Σ ` Aj < : Bj ∀j ∈ J ⊆ I

Σ ` {`i : Ai
(i∈I)} < : {`j : Bj

(j∈J)}

Term grammar

M,N ::= x | c | (λx : A.M) | (MN) | {`i = Mi
(i∈I)} |M.`,

Typing System

x : A ∈ Γ

Γ ` x : A

Γ, x : A `M : B

Γ ` λx : A.M : A→ B

Γ `M : A→ B Γ ` N : A

Γ `MN : B

c : G

Γ ` c : G

Γ `Mi : Bi ∀i ∈ I

Γ ` {`i = Mi
(i∈I)} : {`i : Bi

(i∈I)}

Γ `M : {`i : Bi
(i∈I)} j ∈ I

Γ `M.`j : Bj

Γ `M : A Σ ` A < : B
(Sub)

Γ `M : B

Fig. 1. Systems for deriving subtyping and typing judgments

calculi (but for the recursive types, which have not been considered here, for
simplicity) [1,10,9].

The PER semantics of this calculus is then shortly introduced by fixing a
realizability structure, introducing the PER interpretation of arrow and record
types, and giving the erasure semantics for terms.

2.1 A simply typed λ-calculus with record subtyping

Definition 2.1 Types are generated by the grammar:

A,B ::= G | {`i : Bi
(i∈I)} | A→ B

where G ranges over some finite set of ground type constants, I ⊆ ω is a finite
set of indexes and {`j | j ∈ ω} a denumerable set of labels.

If Σ is a set of subtyping axioms among ground types of the shape G < : G′,
the subtyping relation Σ ` A < : B among types is defined according to the
rules in Figure 1.
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We consider a simply typed λ-calculus with records, whose pre-terms are
generated by the grammar:

M,N ::= x | c | (λx : A.M) | (MN) | {`i = Mi
(i∈I)} |M.`,

where c ranges over some countable set of constants of ground type, I ranges
over finite sets of indexes. We adopt standard conventions for term notation.
Terms are typed in the standard way by deriving judgments of the shape
Γ ` M : A, where Γ is some finite set of assumptions x : B with pair wise
distinct subjects. The rules are given in Figure 1, where rule (Sub) has a
premise which is the conclusion of a derivation in the subtyping system: by
Γ `Σ M : A we mean that Γ ` M : A is derivable in the typing system fixing
a set of subtyping axioms Σ.

2.2 Denotational Semantics

In the following we fix D as the initial solution, in a suitable category of
domains, of the equation

D ' O + E + [L→ D] + [D → D](1)

where O = {⊥ v >}, E = E1 + · · · + Ek is a coalesced sum of domains
interpreting constants of ground type, which are either flat or topped flat
domains; L is a denumerable set of labels `0, `1, . . .; + is the coalesced sum.
Being [D → D] a retract of D, D is a λ-model equipped with a continuous
application function app : D×D → D (d·e abbreviates app(d, e)). Records are
interpreted as finite functions in [L → D], so that there exist the continuous
mappings sel : D×L→ D and lcond : D×L×D → D satisfying certain axioms
(see below definition 2.2 and [10] ch. 10, where this notion is introduced in
the general case of partial combinatory algebras). Such a structure gives a
model for the untyped λ-calculus with records, whose syntax is obtained from
that of raw terms by erasing types (see Figure 2).

Definition 2.2 A model of the untyped λ-calculus with records is a structure
〈D, · , emp, sel, lcond 〉 such that 〈D, · 〉 is a λ-model, emp ∈ D (the empty
record) and:

(i) sel(lcondx `i y)`i = y,

(ii) i 6= j ⇒ sel(lcondx `i y)`j = selx `j.

We use the following abbreviations: d.` ≡ sel d `, d.` := e ≡ lcond d ` e,
{`i = di

(i∈{1..k})} ≡ lcond(. . . (lcond emp `1 d1) . . .) `k dk: we assume that labels
`1, . . . , `k are pair wise distinct, so that their actual order does not matter.

Proposition 2.3 If D is a solution of domain equation (1), then it is a model
of the untyped λ-calculus with records.

Proof. Let ϕ : D → O + E + [L → D] + [D → D] be the isomorphism
given by the solution of the domain equation, with inverse ψ; for H among
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O,E, [L → D], [D → D] let inH : H → O + E + [L → D] + [D → D] be its
continuous injection map. Then we define:

• d · e =

 f(e) if ϕ(d) = in[D→D](f)

⊥ otherwise

• empD = ⊥ = ψ(in[L→D](λ`.⊥))

• selDd ` =

 r(`) if ϕ(d) = in[L→D](r)

⊥ otherwise

• lcondDd ` e = ψ(in[L→D](r)), where r(`′) =

 e if `′ = `

selDd `′ otherwise

That this is a λ-model is known from the literature; that equations in definition
2.2 are satisfied is an easy check. 2

Interpreting types as PERs over a suitable partial combinatory algebra,
the subtyping relation can be interpreted as set theoretic inclusion of PERs
[6]. Instead of the Kleene algebra (ω, { } ) one may consider the combinatory
algebra (D, ·) [8,4].

Definition 2.4 A PER over D is a symmetric and transitive binary relation
over D; the domain of a PER R is the set |R| = {d ∈ D | 〈d, d〉 ∈ R}; if d ∈ D
then [d]R = {e ∈ D | 〈d, e〉 ∈ R}; finally the quotient of D by R is the set
D/R = {[d]R | d ∈ |R|}.

We write dR e for 〈d, e〉 ∈ R; moreover we say simply PER in place of
PER over D.

Proposition 2.5 If R,S and Ri for all i ∈ I are PERs then (R → S) and
{`i : Ri

(i∈I)} are such, where:

(i) d (R→ S) e⇔ ∀d′, e′ ∈ D. d′Re′ ⇒ (d · d′)S (e · e′),
(ii) d {`i : Ri

(i∈I)} e⇔ ∀i ∈ I. (sel d `i)Ri (sel e `i).

Proof. Easy from definitions. 2

Definition 2.6 Given a mapping η from ground types to PERs over E (hence
over its image in D), the interpretation [[A]]η of the type A over D is defined
inductively:

(i) [[G]]η = η(G),

(ii) [[A→ B]]η = ([[A]]η → [[B]]η),

(iii) [[{`i : Bi
(i∈I)}]]η = {`i : [[Bi]]η

(i∈I)}.

Proposition 2.7 If η(G) ⊆ η(G′) for all G < : G′ ∈ Σ and Σ ` A < : B, then
[[A]]η ⊆ [[B]]η.
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Untyped terms

U, V ::= x | c | (λx.U) | (UV ) | {`i = Ui
(i∈I)} | U.`

Erasure map

erase(x) = x

erase(c) = c

erase(MN) = erase(M)erase(N)

erase(λx : A.M) = λx.erase(M)

erase({`i = Mi
(i∈I)}) = {`i = erase(Mi) (i∈I)}

erase(M.`) = erase(M).`

Interpretation of untyped terms

[[x]]
D

ρ = ρ(x)

[[c]]
D

ρ = ψ(inE(c)), for a constant c ∈ E

[[UV ]]
D

ρ = [[U ]]
D

ρ · [[V ]]
D

ρ

[[λx.U ]]
D

ρ = ψ(in[D→D](λd ∈ D.[[U ]]
D

ρ[x:=d]))

[[{`i = Ui
(i∈I)}]]Dρ = {`i = [[Ui]]

D

ρ
(i∈I)}

[[U.`]]
D

ρ = [[U ]]
D

ρ .`

Fig. 2. Untyped interpretation of terms

Proof. By induction over the derivation of Σ ` A < : B 2

Any D satisfying the domain equation (1) can be turned into a model of
this calculus by defining the obvious erasing mapping erase(M) sending typed
into type free terms and then giving them the standard interpretation [[ ]]Dρ as
defined in Figure 2.

Proposition 2.8 Let η be an interpretation of ground types into PERs sat-
isfying Σ, and ρ a mapping from term variables to D; suppose that ρ, η |= Γ
that is ρ(x) ∈ |[[B]]η| whenever x : B ∈ Γ. Then if Γ `Σ M : A then

[[erase(M)]]Dρ ∈ |[[A]]η|.

Proof. This follows by proving, by induction over derivations and by proposi-
tion 2.7, the statement that [[erase(M)]]Dρ [[A]]η[[erase(M)]]Dρ′ whenever ρ(x)[[B]]η
ρ′(x) for all x : B ∈ Γ. (For details see e.g. [10], ch. 10). 2

3 Complete Uniform PERs

A solution D of the domain equation (1) can be constructed as the inverse
limit D∞ = lim←Dn, where Dn = F n(⊥), with F a continuous functor whose
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object action is described by equation (1), and ⊥ is the initial object of the

given category. Each Dn is isomorphic to a subdomain D̂n of D, which is
the image of a continuous projection πn : D → D such that

⊔
n πn = IdD

(with π0 = λx.⊥) and D̂n is a subset of K(D), the set of compact (finite)
elements of D. These well known facts determine a notion of approximation
over D (in the sense of [8]), where the approximation at n of d ∈ D is just
d[n] = πn(d); moreover for all n > 0 and a ∈ E it is the case that a[n] = a. The
following notion of complete uniform PERs has been independently introduced
by Cardone [8] (who calls them CUA relations), and Amadio [4]:

Definition 3.1 A complete uniform PER, shortly a CUPER over D is a PER
R ⊆ D ×D which is:

(i) pointed: ⊥R⊥,

(ii) complete: if 〈d, e〉 =
⊔

r<ω〈dr, er〉 and drR er for all r, then d R e,

(iii) uniform: if d R e then d[n] R e[n] for all n.

As suggested by the definition, CUPERs are some kind of relational do-
mains, and their construction is the inverse limit of suitable functors extending
F , as shown by the “fundamental diagram” in [7]. Nonetheless the problem
of ordering the quotient space D/R when R is a CUPER in such a way that
it is an algebraic cpo is a non trivial one, as argued in [4]; we shall consider
the solution proposed in [2].

Definition 3.2 The intrinsic preorder ≤R over |R| is the binary relation:

d ≤R e⇔ ∀f ∈ |(R→ O)|. f · d = > ⇒ f · e = >,
where O is identified with the diagonal over O.

This defines a complete preorder over |R| which includes both R and v;
because of completeness and uniformity of R, ≤R is the least complete preorder
with such a property.

Theorem 3.3 Suppose that R is an antisymmetric CUPER, that is for all
d, e ∈ |R|:

d ≤R e ≤R d⇒ dR e.

Then the ordering [d]R ≤ [e]R ⇔ d ≤R e is well defined, and turns D/R into
an ω-algebraic cpo, where [⊥]R is the least element, [

⊔
r d

r]R the sup of the
[dr]R (if the dr form a v-directed set in |R|), and compact elements are of the
form [a]R, with a ∈ K(D) ∩ |R|.

Proof. See [2] theorem 1. 2

Properties of elements in a domain D are basic opens of the Scott topology
over D. We call sub-basis a subset of the basis of the latter topology, which
is still a basis.
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Definition 3.4 A sub-basis of a domain D is a subset X ⊆ K(D) which is
closed under finite sups of compatible elements (i.e. bounded in D) and such
that ⊥ ∈ X. If D has a notion of approximation, we say that X is closed
under approximations if for any d ∈ D and n ∈ N:

ddX 6= {⊥} ∧ d[n] 6= ⊥ ⇒ d[n]dX 6= {⊥},
where ddX = K(d) ∩X and K(d) = {a ∈ K(D) | a v d}.

If X is a sub-basis then by the algebraicity of D, the set {a ↑| a ∈ X} is
the basis of a topology TX over D which is coarser than the Scott topology
of D. Similarly, if X ⊆ Y ⊆ K(D) and both X and Y satisfy the above
requirements, then TX is coarser than TY . If we define a binary relation
d ∼X e ⇔ ddX = edX (in other words ∼X is the equivalence induced by the
specialization preorder of TX), then ∼Y⊆∼X , so that, reasoning by analogy
with PER inclusion, the finer topology TY should be a subtype of TX . The
problem here is that ∼X is an equivalence relation, and not just a PER;
therefore we refine the construction as follows.

Definition 3.5 Let X be a sub-basis of D: then RX ⊆ D×D is the relation
such that

dRXe⇔ d = ⊥ = e ∨ ddX = edX 6= {⊥}.
We call RX a topological PER.

Observe that d ∈ |RX | if and only if either d = ⊥ or there exists x ∈ X\{⊥}
such that x v d.

Lemma 3.6 If X is a sub-basis of D, then RX is a pointed and complete
PER.

Proof. RX is pointed by definition. Suppose that drRXe
r for all r and 〈d, e〉 =⊔

r<ω〈dr, er〉: then either dr = ⊥ = er for all r, in which case d = ⊥ = e and
we are done, or there exists t s.t. dt 6= ⊥, and therefore et 6= ⊥. Indeed
dtRXe

t, which implies that there exists x ∈ X s.t. x v dt, et; it follows that
x v d, e, so that both ddX \ {⊥} 6= ∅ and edX \ {⊥} 6= ∅. If x ∈ ddX \ {⊥}
then x v ds for some s since d =

⊔
r d

r and x is finite; by hypothesis x v es

which implies x v e: it follows that ddX \ {⊥} ⊆ edX \ {⊥}; the opposite
inclusion is proved similarly, and we conclude that RX is complete.

2

Proposition 3.7 Let X ⊆ K(D) be a sub-basis: then RX is a CUPER if and
only if X is closed under approximations.

Proof. By lemma 3.6 RX is a pointed complete PER. To see that it is uniform
let dRXe, where d and e are both different than⊥. If n = 0 then d[n] = ⊥ = e[n]

which immediately implies that d[n]RXe[n]. Otherwise let n > 0: by hypothesis
ddX 6= {⊥} so that, if d[n] 6= ⊥ then d[n]dX \ {⊥} 6= ∅, by the hypothesis that
X is closed under approximations. Let x be an element of the latter set: then
⊥ v x v d[n] so that x v d: it follows that x v e hence x = x[n] v e[n] since
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x ∈ Di and ( )[n] is monotonic. We conclude that {⊥} 6= d[i]dX ⊆ e[n]dX: the
opposite inclusion is symmetric, whence d[n]RXe[n].

Vice versa let ddX 6= {⊥} and d[n] 6= ⊥. It follows that dRX d so that
d[n]RXd[n] for any n ∈ N since RX is uniform which implies d[n]dX 6= {⊥},
namely X is closed under approximations.

2

To make reading easier in the following we write simply (d⇒ e) instead of
ψ(in[D→D](d ⇒ e)) and similarly (` ⇒ d) in place of ψ(in[L→D](` ⇒ d)). We
also write functional application as f(d) instead of f · e.

Lemma 3.8 If d, e ∈ |RX |, where X ⊆ K(D) is a sub-basis of D which is
closed under approximations, then

d ≤RX
e⇔ ddX ⊆ edX.

It follows that RX is antisymmetric.

Proof. Suppose d ≤RX
e: if a ∈ ddX then (a ⇒ >) ∈ |(RX → O)| and

(a ⇒ >)(d) = >: were a 6v e we had (a ⇒ >)(e) = ⊥, contradicting the
hypothesis.

On the other hand suppose that ddX ⊆ edX and f ∈ |(RX → O)| s.t.
f(d) = >. If f(e) = ⊥ then, by observing that eRX(

⊔
edX), f(

⊔
edX) = ⊥,

namely f(z) = ⊥ for all z ∈ edX by continuity; but then f(z) = ⊥ for all
z ∈ ddX by hypothesis, which implies ⊥ = f(

⊔
ddX) = f(d).

2

Observe that in the above lemma the hypothesis d, e ∈ |RX | is essential,
since otherwise ddX = edX is only necessary but not sufficient condition for
d RX e to hold.

In definition 2.1 the arrow and record type constructors are considered;
these are interpreted by the arrow an record functors over PER, according
to proposition 2.5. We introduce arrow and record operators acting on sub-
bases, and compare the resulting logical PERs to those obtained by applying
the arrow and record functors.

Definition 3.9 If X, Y,Xi ⊆ K(D) are sub-bases of D then define:

(i) X → Y = {
⊔

i∈I(di ⇒ ei) | di ∈ X, ei ∈ Y, the sup exists},
(ii) {`i : Xi

(i∈I)} = {
⊔

i∈I(`i ⇒ di) | di ∈ Xi}
where I is always finite, and di ⇒ ei, `i ⇒ di are step functions.

Proposition 3.10 Let X, Y,Xi ⊆ K(D) be sub-bases then X → Y and {`i :
Xi

(i∈I)} are such, and moreover:

(i) RX→Y ⊇ (RX → RY ),

(ii) R{`i:Xi
(i∈I)} = {`i : RXi

(i∈I)}.

Proof. That R{`i:Xi
(i∈I)} = {`i : RXi

(i∈I)} is immediate by definitions.
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To see that RX→Y ⊇ (RX → RY ) let f(RX → RY )g and suppose that
(a⇒ b) ∈ fd(X → Y ). Then b = (a⇒ b)(a) v f(a)RY g(a); hence b v g(a) so
that (a⇒ b) v g. This shows fd(X → Y ) ⊆ gd(X → Y ) whence f ≤RX→Y

g:
being (RX → RY ) symmetric this also shows that g ≤RX→Y

f and we conclude
being RX→Y antysimmetric by lemma 3.8.

2

Unfortunately RX→Y 6⊆ (RX → RY ). As a matter of fact we can show
that (a ⇒ b) ∈ |RX → RY | if and only if both a ∈ |RX | and b ∈ |RY |: but
(X → Y ) 3 (x⇒ y) v (a⇒ b) (where y 6= ⊥) does not imply x v a.

4 A logical interpretation

4.1 Intersection types and the filter model

In this section intersection types are called properties to emphasize that they
are the formulas of some program logic, and to keep them distinct from types
in the sense of definition 2.1.

Definition 4.1 The language L of properties is generated by the grammar:

σ, τ ::= α | ω | σ→τ | 〈` : σ〉 | σ ∧ τ
where α ranges over a countable set of atomic properties.

The intended meaning of 〈` : σ〉 is: the property satisfied be a record
having a field labeled by `, whose entry satisfies σ. We abbreviate

∧
i〈`i : σi〉

by 〈`i : σi
(i∈I)〉; if I = ∅ then this intersection is ω.

Definition 4.2 Over the set L of properties it is defined a binary relation ≤
(the implication) such that the following axioms are satisfied:

(i) axioms making ≤ reflexive and transitive, σ ∧ τ the meet and ω the top;

(ii) ω ≤ ω → ω,

(iii) (σ → τ) ∧ (σ→τ ′) ≤ σ → (τ ∧ τ ′),
(iv) σ ≥ σ′, τ ≤ τ ′ ⇒ σ → τ ≤ σ′ → τ ′,

(v) ω ≤ 〈` : ω〉,
(vi) σ ≤ τ ⇒ 〈` : σ〉 ≤ 〈` : τ〉,
(vii) 〈` : σ〉 ∧ 〈` : τ〉 ≤ 〈` : σ ∧ τ〉.

When restricted to arrow and intersection constructors, these are the ax-
ioms for intersection types of [5]; as far as the record properties are concerned,
these are the same as those found in [9] but for ω ≤ 〈` : ω〉: this is analogous
to ω ≤ ω → ω and says that λl.⊥ = ⊥ ∈ [L → D] (see below). Finally it is
easy to see that, if σi ≤ τi for all i ∈ I ⊇ J then 〈`i : σi

(i∈I)〉 ≤ 〈`j : τj
(j∈J)〉.

A filter is a subset F ⊆ L which is upward closed w.r.t. ≤ and closed
under finite intersections. The set of filters F ordered by set inclusion is an
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algebraic complete lattice which provides a solution of the equation (1) in this
category. Without spelling this out in detail, we only remark that compacts
(finite) elements of F are principal filters σ ↑: ω ↑ is the least element and
σ↑ t τ ↑= (σ ∧ τ)↑. The atomic properties are used to describe the compacts
of E, while the step functions in [L → D] and [D → D] are described by
properties of the shape 〈` : σ〉 and σ → τ respectively.

Even if F is a solution to equality (not just up to isomorphism) of the
domain equation (1), there is a correspondence between the structure of F
and the inverse limit construction: let us stratify the definition of L by

(i) ∀i ∈ I. σi ∈ L(n) ⇒
∧

i∈I σi ∈ L(n),

(ii) σ, τ ∈ L(n) ⇒ α, σ → τ, 〈` : σ〉 ∈ L(n+1).

Clearly L =
⋃

n L(n) (remember that
∧

i∈∅ σi ≡ ω). Setting ≤(n)=≤ ∩L(n) ×
L(n) we define F (n) as the set of filters w.r.t. ≤(n): it turns out that compacts
of F (n) have the shape σ ↑(n) for σ ∈ L(n) (where ↑(n) is the upward closure
w.r.t. ≤(n)) and that F = lim←F (n). Moreover the projections πn : F →
F are πn(F ) = F[n] = F ∩ L(n), and their collection induces a notion of
approximation.

The next step is to show in more detail that F is a model of the (untyped)
λ-calculus of records. Strictly speaking this could be derived e.g. by exploiting
the above remarks and by using proposition 2.3, but we prefer a more direct
and concrete approach. (In the following some proofs are omitted or just
sketched).

Lemma 4.3

(i) For all finite I, 〈`i : σi
(i∈I)〉 6= ω;

(ii) if 〈`i : σi
(i∈I)〉 ≤ τ and τ 6= ω then there exist J ⊆ I and a family

{τj | j ∈ J} such that τ = 〈`j : τj
(j∈J)〉 and σj ≤ τj for all j ∈ J ;

(iii) if
∧

i∈I(σi → τi) ≤ µ 6= ω then µ =
∧

j∈J(φi → ψi), for some property∧
j∈J(φi → ψi), and for all j ∈ J there exists I ′ ⊆ I s.t. φj ≤

∧
i∈I′ σi

and
∧

i∈I′ τi ≤ ψj.

Lemma 4.4 If F,G ∈ F then the following are filters:

(i) (application) (F ·G) = {τ | ∃σ ∈ G. σ → τ ∈ F}
(ii) (selection) (F.`) = {σ | 〈` : σ〉 ∈ F}
(iii) (empty record) emp = ω↑
(iv) (label conditional)

(F.` := G) = {τ | ∃I, σi. τ =
∧
i∈I

〈`i : σi〉 ∧

∀i ∈ I. (` 6= `i ⇒ 〈`i : σi〉 ∈ F ) ∧ (` = `i ⇒ σi ∈ G)}

Proof. If τ ∈ F ·G, τ ≤ τ ′ and τ 6= ω then σ → τ ∈ F for some σ ∈ G; since
σ → τ ≤ σ → τ ′ we have σ → τ ′ ∈ F as F is upward closed, then τ ′ ∈ F ·G.

11
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If τ, τ ′ ∈ F ·G and both are 6= ω (otherwise τ ∧ τ ′ is trivially in F ·G), then
σ → τ, σ′ → τ ′ ∈ F for some σ, σ′ ∈ G. Now, being both F and G closed
under meets, σ → τ ∧ σ′ → τ ′ ∈ F and σ ∧ σ′ ∈ G. The thesis follows since
σ → τ ∧ σ′ → τ ′ ≤ (σ ∧ σ′) → (τ ∧ τ ′), and F is upward closed.

If τ ∈ F.` is 6= ω and τ ≤ τ ′ then 〈` : τ〉 ∈ F and 〈` : τ〉 ≤ 〈` : τ ′〉 ∈ F
which is upward closed; then τ ′ ∈ F.`. If τ, τ ′ ∈ F.` and both are 6= ω, then
〈` : τ〉, 〈` : τ ′〉 ∈ F , so that 〈` : τ〉 ∧ 〈` : τ ′〉 = 〈` : τ ∧ τ ′〉 ∈ F , hence
τ ∧ τ ′ ∈ F.`.

If τ =
∧

i∈I〈`i : σi〉 ∈ F.` := G and τ ≤ τ ′ 6= ω, then, by lemma 4.3, (ii)
τ ′ =

∧
j∈J〈`j : τj〉 for some J ⊆ I, where σj ≤ τj for all j; this implies that

〈`j : σj〉 ≤ 〈`j : τj〉 which in turn implies that 〈`j : τj〉 ∈ F if `j 6= ` and τj ∈ G
otherwise, being F and G upward closed. Then

∧
j∈J〈`j : τj〉 ∈ F.` := G by

definition. If σ, τ ∈ F · ` := G and σ =
∧

i∈I〈`i : σi〉, τ =
∧

j∈j〈`j : τj〉 then
σ ∧ τ =

∧
i∈I∪J〈`i : σi ∧ τi〉 which is in F.` := G by the closure of F and G

under ∧ and by definition.

2

The actual content of the last lemma is that F is an applicative structure
which is closed under application, record selection and update; more precisely:

Theorem 4.5 F is a model of the type-free λ-calculus with records.

Proof. By propostion 2.3 and lemma 4.4. 2

4.2 The logical interpretation of types

In the standard semantics types are interpreted as PERs; we show that, if the
PERs we choose are CUPERs of the shape RX , then these give rise to the
same domain theoretic interpretation than a filter interpretation.

Definition 4.6 Let A = {AG}G be a collection of subsets of {α | α atomic}
indexed by ground types; then A induces a hierarchy of languages for L which
is the family {LA}A of subsets of L indexed by the set of types, such that each
LA is the least set which:

(i) AG ⊆ LG, for ground G,

(ii) ω ∈ LA and if σ, τ ∈ LA then σ ∧ τ ∈ LA,

(iii) if σ ∈ LA and τ ∈ LB then σ → τ ∈ LA→B,

(iv) if σ ∈ LBj
, A ≡ {`i : Bi

(i∈I)} and j ∈ I then 〈`j : σ〉 ∈ LA.

Provided that any constant α belongs to some AG, it is easy to show that
L =

⋃
A LA: we shall indeed assume this in the sequel.

By definition, if A ≡ {`i : Bi
(i∈I)} and j ∈ I then 〈`j : ω〉 ∈ LA; similarly

if σ, τ ∈ LBj
then 〈`j : σ ∧ τ〉 ∈ LA.

Note that languages are not upward closed w.r.t. the ≤ relation: take
σ ≡ 〈`1 : σ1〉 and σ′ ≡ 〈`1 : σ1, `2 : σ2〉 with σi ∈ LBi

, then σ ∈ L{`1:B1} and
σ′ ∈ L{`1:B1,`2:B2}; on the other hand σ′ ≤ σ so that σ → τ ≤ σ′ → τ for

12
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any τ ∈ LC and type C; now σ → τ ∈ L{`1:B1}→C but this is not the case for
σ′ → τ .

Let ≤A be the restriction of ≤ to LA and FA be the set of filters over
(LA,≤A). We call FA the filter interpretation of the type A. The subset
{σ↑A| σ ∈ LA} (where ↑A is the upward closure w.r.t. ≤A) of principal filters
over LA is a sub-basis w.r.t. ⊆, and in fact it is K(FA): it follows that
RA = R{σ↑A|σ∈LA} is well defined. The main theorem of this section shows
that filter interpretation and relational interpretation using logical PERs give
rise to the same domain theoretic interpretation of types.

Theorem 4.7 For all type A, FA ' F/RA.

Proof. Let ΦA : FA → F/RA be defined as F 7→ [F̂ ]RA
, where F̂ = {σ ∈ L |

∃τ ∈ F. σ ≤ τ}. Further define ΨA : F/RA → FA by [P ]RA
7→ P ∩ LA which

is well defined. Then ΦA ◦ΨA = IdF/RA
and ΨA ◦ ΦA = IdFA

.

Suppose that F,G ∈ FA are such that F ⊆ G: then F̂ ⊆ Ĝ, and hence
K(F̂ ) ∩ {σ | σ ∈ LA} ⊆ K(Ĝ) ∩ {σ | σ ∈ LA}; therefore, by lemma 3.8,

F̂ ≤RA
Ĝ, that is [F̂ ]RA

≤ [F̂ ]RA
.

Vice versa if P,Q ∈ F with P ≤RA
Q then by lemma 3.8 K(P ) ∩ {σ↑A|

σ ∈ LA} ⊆ K(Q) ∩ {σ↑A| σ ∈ LA}; therefore P ∩ LA ⊆ Q ∩ LA.

2

4.3 A program logic of the λ-calculus with records

Let us introduce a program logic, namely an assignment system of properties
to typed terms which is an instance of intersection type assignment system
and of (though simpler than) endogenous logic [3]. A typed basis is a set
∆ = {x1 : B1 : σ1, . . . , xn : Bn : σn} where σi ∈ LBi

. Each typed basis
∆ determines a context Γ∆ which is obtained form ∆ by forgetting about
properties. Then we derive judgments of the form ∆ ` M : A : σ from the
rules in Figure 3.

Assuming that α ∈ LG if c : G : α, it is easy to see that if ∆ `Σ M : A : σ
then σ ∈ LA (which is the reason for the third hypothesis in the subsumption
rule). Moreover under a restricted use of (ω), namely by checking that Γ∆ `Σ

M : A to deduce ∆ `M : A : ω, we clearly have that ∆ `Σ M : A : σ implies
Γ∆ `Σ M : A. We henceforth fix a set of subtyping axioms Σ.

The logical interpretation of a term M w.r.t. a type A and an environment
ρ is the set of properties in LA that can be deduced for M under a typed
basis which is consistent with ρ. We might think of a term as a model of its
properties, and of the set of these properties as the theory of this model.

Definition 4.8 Let ρ be a mapping from term variables to pairs (A′, F ) where
A′ is a type, and F ∈

⋃
AFA: we say that ρ is a typed environment if

∀x. ρ(x) = (A,F ) ⇒ F ∈ FA.

13



de’Liguoro - Subtyping in logical form

x : A : σ ∈ ∆

∆ ` x : A : σ

c : G : α

∆ ` c : G : α

∆, x : A : σ `M : B : τ

∆ ` λx : A.M : A→ B : σ → τ

∆ `M : A→ B : σ → τ ∆ ` N : A : σ

∆ `MN : B : τ

∆ `Mi : Bi : σi ∀i ∈ I

∆ ` {`i = Mi
(i∈I)} : {`i : Bi

(i∈I)} : 〈`i : σi
(i∈I)〉

∆ `M : {`i : Bi
(i∈I)} : 〈`j : σ〉 j ∈ I

∆ `M.`j : Bj : σ

(ω)
∆ `M : A : ω

∆ `M : A : σ ∆ `M : A : τ

∆ `M : A : σ ∧ τ

∆ `M : A : σ σ ≤A τ

∆ `M : A : τ

∆ `M : A : σ Σ ` A < : B σ ∈ LB

∆ `M : B : σ

Fig. 3. The program logic

If ∆ is a typed basis and ρ a typed environment then: ρ |= ∆ if and only if

∀x : B : τ ∈ ∆ ∃F. ρ(x) = (B,F ) ∧ σ ∈ F.
Then we define the logical interpretation of M in type A w.r.t. ρ as the set

[[M : A]]Lρ = {σ | ∃∆. ρ |= ∆ & ∆ `Σ M : A : σ}.

If ρ is a typed environment, then ρ̂ defined by ρ̂(x) = F̂ whenever ρ(x) =
(A,F ), is a mapping from term variables to F , namely an environment for
the type free calculus. The following lemma relates the logical interpretation
of a typed term to the interpretation of its erasure in the filter model of the
type free λ-calculus with records.

Lemma 4.9 For all M and A, if ρ is an environment over
⋃

AFA, then

[[erase(M)]]Fρ̂ ∩ LA = [[M : A]]Lρ .

Proof. To prove [[erase(M)]]Fρ̂ ∩ LA ⊆ [[M : A]]Lρ we reason by induction on

M . A non trivial case is when M ≡ LN . If τ ∈ [[erase(LN)]]Fρ̂ then there

exists some σ ∈ [[erase(N)]]Fρ̂ s.t. σ → τ ∈ [[erase(L)]]Fρ̂ ; since σ ∈ LB for

some B, then σ → τ ∈ LB→A, so that by induction σ → τ ∈ [[L : B → A]]Lρ
and σ ∈ [[N : B]]Lρ . It follows that there are ∆0,∆1 s.t. ρ |= ∆0,∆1 and both
∆0 ` L : B → A : σ → τ and ∆1 ` N : B : σ. The fact that ρ |= ∆0,∆1

implies that the type assumed for each variable declared in both of them is

14
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the same, hence if we set x : C : µ to be x : C : ϕ ∧ ψ if x : C : ϕ ∈ ∆0

and x : C : ψ ∈ ∆1; x : C : ϕ if x : C : ϕ ∈ ∆0 and x 6∈ ∆1; x : C : ψ if
x : C : ψ ∈ ∆1 and x 6∈ ∆0. Then ∆ |= ρ and ∆ ` L : B → A : σ → τ ,
∆ ` N : B : σ. From this we conclude ∆ ` LN : A : τ .

To prove [[erase(M)]]Fρ̂ ∩LA ⊇ [[M : A]]Lρ we show, by induction on deriva-

tions, that if ∆ |= ρ and ∆ `Σ M : A : σ then σ ∈ [[erase(M)]]Fρ̂ (which is
enough, since σ ∈ LA by a previous remark about the logical system).

2

Definition 4.10 For any terms M,N , type A and environment ρ define the
predicate:

[[M = N : A]]Lρ ⇔ [[M : A]]Lρ = [[M : A]]Lρ .

Then we say that M,N are logically equivalent w.r.t. A and ρ.

In words, two typed terms are logically the same w.r.t. some type if and
only if they cannot be taken apart by any predicate in the language associated
to the type, which is deducible for one them. We end this section by stating
that the latter model is the same as the PER model determined by the erasure
map and the hierarchy {RA}A.

Theorem 4.11 For all M,N,A and typed environment ρ:

[[M = N : A]]Lρ ⇔ [[erase(M)]]Fρ̂ RA [[erase(M)]]Fρ̂ .

Proof. Let ΦA : FA → F/RA be the isomorphism of theorem 4.7, and ΨA its

inverse. By lemma 4.9 both [[erase(M)]]Fρ̂ RA
̂[[M : A]]Lρ and [[erase(N)]]Fρ̂ RA

̂[[N : A]]Lρ ,

so that if [[M = N : A]]Lρ then:

[[[erase(M)]]Fρ̂ ]RA
= [ ̂[[M : A]]Lρ ]RA

= ΦA([[M : A]]Lρ )

= ΦA([[N : A]]Lρ ) = [[[erase(N)]]Fρ̂ ]RA
.

Vice versa, if [[erase(M)]]Fρ̂ RA [[erase(M)]]Fρ̂ then we have ΨA([[[erase(M)]]Fρ̂ ]RA
) =

ΨA([[[erase(N)]]Fρ̂ ]RA
); now ΨA([[[erase(M)]]Fρ̂ ]RA

) = ΨA ◦ ΦA([[M : A]]Lρ ) =

[[M : A]]Lρ , and similarly ΨA([[[erase(N)]]Fρ̂ ]RA
) = [[N : A]]Lρ so that [[M = N : A]]Lρ

holds.

2

5 Conclusion and further work

In [10] one finds a derivation system of equations Γ ` M = N : A. It is
remarked that derivable equations do depend on the type: if Γ ` M = N : A
and A < : B then Γ `M = N : B but not vice versa, in general. This is nicely
mirrored by interpreting equality A as being related by the PER associated
to A, and subtyping by PER inclusion.
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By establishing the invariance of predicates under equality we can prove
that the logical semantics [[M = N : A]]ρ provides a sound interpretation of
the system.

Similar results are expected when moving to more complex languages of
terms and types, like object calculi. These admit an interpretation based on
CUPERs (see [1] ch. 14). In this case the complexity of the standard PER
description of the object types strongly calls for an alternative treatment of
types and subtyping, for which we propose an approach based on domain logic.
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