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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1.  Introduction 

The logic of Industry 4.0 foresees humans and machines as 
indistinguishable parts of a larger heterogeneous body of 
distributed autonomous and cooperative entities. Under such a 
perspective, machines are endowed with self and environment 
awareness and can smartly interact with both humans and other 
machines [1]. This innovative standpoint brings forth the 
concept of cyber-physical system (CPS) [2], due the significant 
shift in embedded systems design that it entails: from dedicated 
devices operating and handling a limited number of resources, 
to fully featured perceptive interactive devices, able to handle 
intimate interactions with physical process and peers through 
networked communication systems. 

In contrast to the third industrial revolution, CPS are not 
intended to substitute humans in industry, but to work with 
them in synergy. Accordingly, CPS not only perform their own 
tasks in autonomy or semi-autonomy, but also provide support 
to humans in terms of physical, perceptive and cognitive aid 

systems. Such a tight interaction between CPS and humans 
requires (i) a rich unambiguous bidirectional information flow 
and (ii) a proper set of abstract interactive human-machine 
interfaces (HMI). Each of the above listed requirement 
represents a fundamental contemporary research field in 
Industry 4.0. 

The HMI of a CPS must allow the configuration of its 
behavior or set of automated actions to be performed in 
autonomy or in semi-autonomy along with other CPS or 
humans. This implies that a HMI must include methods for 
adapting and reacting to unexpected environmental conditions, 
without requiring explicit human intervention, thus improving 
the task execution in terms of accuracy, reliability and safety. 

In less than half of a century, HMI methods in industry have 
seamlessly evolved from indicator lights, buttons and levers to 
every-day graphical user interfaces (GUI), keyboards, mouse 
and touch-screens reaching up to the concept of multi-modal 
interfaces [3], where voice, hands, and the entire body become 
a single communication channel. This HMI evolution reflects 
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systems. Such a tight interaction between CPS and humans 
requires (i) a rich unambiguous bidirectional information flow 
and (ii) a proper set of abstract interactive human-machine 
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represents a fundamental contemporary research field in 
Industry 4.0. 

The HMI of a CPS must allow the configuration of its 
behavior or set of automated actions to be performed in 
autonomy or in semi-autonomy along with other CPS or 
humans. This implies that a HMI must include methods for 
adapting and reacting to unexpected environmental conditions, 
without requiring explicit human intervention, thus improving 
the task execution in terms of accuracy, reliability and safety. 

In less than half of a century, HMI methods in industry have 
seamlessly evolved from indicator lights, buttons and levers to 
every-day graphical user interfaces (GUI), keyboards, mouse 
and touch-screens reaching up to the concept of multi-modal 
interfaces [3], where voice, hands, and the entire body become 
a single communication channel. This HMI evolution reflects 
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the intrinsic need of defining interaction between CPS and 
humans in terms of natural human-machine interfaces (NHMI) 
[4], i.e., the need of endowing CPS with an anthropomorphic 
dimension. 

NHMI in cyber-physical productions system (CPPS) are 
expected to hide greater levels of complexity as the fourth 
industrial revolution will exhibit new work areas where, as 
remarked in [5][6][7], highly skilled occupations will increase 
while low-skilled and auxiliary occupations will decrease. In 
this context, a fundamental issue to be addressed is how to 
make accessible to the CPS the human expertise. A way to 
overcome such a technological challenge is to define a 
anthropocentric mechanism known as the human-in-the-loop 
approach [8][9], which allows a direct sharing or transfer of 
human skills into inside a subset of CPS control loops. The aim 
of this work is therefore to test and to validate some examples 
of possible NHMI for human-in-the-loop control, coordinate 
and cooperate with CPS in collaborative workspaces. Like in 
[9], we focus on the expertise transfer, but in contrast to both 
[8] and [9], we do not investigate mechanism for endowing the 
CPS with decision-making capabilities. The implementation 
was realized in a laboratory environment of a learning factory 
lab, a demonstrator for other researchers as well as students and 
practitioners from industry. 

The rest of the paper is organized as follows. Section 2 
introduces the state of the art in NHMI and human-in-the-loop 
approaches in industry. In Section 3 we provide a 
comprehensive description of the collaborative assembly case 
study and the laboratory facility. Then, Section 4 introduces the 
demonstrator of NHMI in human-in-the-loop CPS, describing 
and illustrating the different technologies and interfaces that 
have been applied in this laboratory case study. Finally, Section 
5 summarizes the main findings described in the paper and 
provides an outlook for further research activities. 

2.  Theoretical background and state of the art 

Gorecky et al. [4] suggest that the main enablers of NHMI 
in the Industry 4.0 era are the automatic speech recognition, the 
gesture recognition and the enhanced reality. The latter enabler 
defined either in terms of augmented reality or virtual reality. 
For us, it is also natural to consider as determinant factors for 
NHMI the physical human-robot interaction and the prediction 
of operator’s intentions. 

Automatic speech recognition consists of the identification 
and recognition of patterns bearing the information content 
inside the speech waveform [10]. In industrial context, CPS 
implementing an automatic speech recognition system relies on 
a voice user interface to interact with humans. Lotterbach et al. 
[11] identify a set of guidelines for the implementation of voice 
user interface in industrial environments. The authors state that 
voice user interfaces cannot represent a replacement to 
classical GUI but a complement to them, that under certain 
conditions and in certain contexts, provides the most 
comfortable and efficient way of interaction. An interesting 
overview of automatic speech recognition applications in 
industrial maintenance is given in [12]. 

Any expressive and meaningful body motion (including 
fingers, hands, arms, head motions, face expressions, body 

postures, etc.) with the intent of transmitting meaningful 
information or interacting with other entities in the workspace 
can be defined as a gesture. In many practical applications, 
gesture recognition relies on visual computing systems, either 
in terms of motion capture or pure image-based approaches. 
Regardless the approach, visual computing has been 
recognized as one of capital importance in Industry 4.0, 
specially in those cases where the visual gesture recognition 
system relies on multi-sensor measurements [13]. Visual 
gesture recognition has been long appreciated as a method for 
interacting with robots [15]. An interesting review of 
applications and technologies of this topic is given in [15]. 
Moreover, with the advent of RGB-D sensors the possibilities 
for visual gesture recognition have dramatically grown [16]. 

Augmented reality consists of the enrichment of the physical 
world information by means of digital information 
superimposed on top of a perceived representation of the 
physical world [17]. Under this definition, any of the human 
senses can be used to implement such kind of technology. 
However, nowadays augmented reality is primarily 
implemented at the visual, tactile and spatial perceptive levels 
by means of spatially augmented reality, where virtual objects 
are rendered directly within or on the user's physical space [18]. 
By mixing the perceptive capabilities of modern mobile 
devices and RGB-D sensors together with the visualization 
capabilities of smart glasses such experience can be built on top 
of virtual reality environments where the physical world 
superimposed on it [17]. In [19] a spatially augmented reality 
approach is developed to enhance the HMI of industrial 
computer numeric controlled (CNC) machines. In [20], the 
authors describe a use case of augmented reality in logistics. 

Under the perspective of multi-modal interfaces, physical 
contact represents a natural mechanism to develop HMI for 
CPS. This concept has been extensively explored in the 
robotics community. In the field of collaborative robotics 
[21][22] the contact between humans as robot is expected to be 
frequent. The mechatronic design of a collaborative robot 
allows it to sense the qualities of the physical contact, making 
possible to convey information through the physical 
interaction. The introduction of such systems in industrial 
environments have been addressed in [23] and [24]. Also, in 
the field of human-robot augmentation systems, the mechanical 
capacities of a human involving motion control and force are 
augmented with wearable robotic systems [25]. Such systems 
allow, for example, to improve the patients mobility after 
injuries [26][27], improve the dexterity of surgeons [28] and 
reduce the hand fatigue of astronauts during extravehicular 
activities [29]. 

Prediction of operator’s intentions enhance the effectiveness 
of collaboration between CPS and humans, especially in 
industrial scenarios where safety greatly depends on the 
understanding between humans and CPS. In fact, not only 
humans need to be aware of the CPS in collaborative tasks to 
guarantee their own safety. Also, CPS must identify and 
understand and human intentions in such scenarios to promptly 
react and adapt to both expected and unexpected operative 
conditions in a safe manner. It is worth noticing that a 
prediction system of this type can be built on top of visual 
gesture recognition frameworks, since the detection and 
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prediction of human intentions relies on gestures recognition 
and tracking. Koppula et al. [30] show how the link between 
human actions and object affordances can be exploited to detect 
and anticipate human intentions. In [31], the authors predict 
grasping gestures using an eye-tracker device and wearable 
attached to the user's hand. Casalino et al. [32] propose a 
framework for the prediction of human intentions from RGB-
D data while improving the human awareness by means of 
haptic feedback. Similarly, Zanchettin et al. [33] describe a 
framework to infer the most likely reaching target of the 
operator's hand based on RGB-D measurements. In [34] a 
method to predict human activity patterns is described. The 
method allows to anticipate when a specific collaborative 
operation will be requested by the operator, such that the cobot 
can perform other tasks in the meanwhile. 
 

 

3.  Description of the laboratory case study 

This work refers to the transition of an existing manual 
assembly workstation to a collaborative one through the 
implementation of NHMI. To do so, an existing manual 
assembly workstation is used as a starting point for the concept 
development of the collaborative one. Such a starting point is a 
flexible working area for the study of manual assembly of light 
industrial products (see Fig. 1), located in the Smart Mini 
Factory Laboratory (SMF) of the Free University of Bozen-
Bolzano. It is a training workstation where a single operator 
can completely assemble a pneumatic cylinder aimed to 
simulate different assembly conditions and applications to 
analyze the production system performances. It is equipped 
with a mobile workbench, a block-and-tackle for lightweight 
applications, an integrated Kanban rack, a working procedures 
panel, a double lighting system, an industrial screwer and a 
knee lever press. Main laboratory applications are the 
development of case studies for manual lean assembly, 
workplace organization, human-centered design and 
ergonomics. Other analyses refer to safe human-robot 
collaboration in hybrid assembly of light products. 
 

The SMF counts with two collaborative robots of different 
sizes both produces by Universal Robots, the UR10 and UR3. 
They are respectively the larger and the smaller robots 
produced by such house. They have 6-axis anthropomorphic 
structure with an almost spherical workspace and 500mm and 
1200mm of reach. Both are controlled by a Mini-ITX PC with 
a Linux system installed which runs, as a daemon, the low-level 

robot controller called URControl. A visual interface is 
available through a touch screen pendant, providing a Graphic 
User Interface (GUI) called PolyScope. 

The main collaborative feature of these robots lies in their 
design for safe physical human-robot interaction according to 
the standards ISO 10218 and ISO/TS 15066. The former 
standard deals with hazards that traditional industrial robots 
may pose. The latter corresponds a Technical Specification for 
operation of collaborative robots where a person and the robot 
share the same workspace. In fact, these robots are endowed 
with a series an ergonomic and lightweight design, and its 
control system makes it a so called “force limited robot”, 
thanks to its built-in capability of collision identification and 
reaction as well as limitation of dynamical features. The user 
can configure thresholds for the dynamical properties of the 
robot and geometric boundaries that, once approached, trigger 
different handling procedures, as a protective stop to minimize 
the possibility of injuries. 
 

 

4.  Demonstrator of NHMI in human-in-the-loop CPS 

As previously stated in Section 3, we focus our attention on 
collaborative robotics applications in industrial environments, 
so to provide solutions to the small and medium-sized 
enterprises (SME) sector. Therefore, one fundamental 
constraint is to define simplified robotic programming 
methodologies through NHMI. On the current collaborative 
robotics market, the so-called hand-guiding waypoint 
programming technique is well established human-on-the-loop 
approach, where the operator guides the robot in free-drive 
mode and stores in its memory a sequence of waypoints 
characterizing the task. After the operator has completed the 
sequence, the robot computes suitable joint motions and 
performs on-demand the given task. 

Nevertheless, in many practical situations the physical 
interaction between the robot and the operator could represent 
a limitation (e.g., service-oriented robotics). In fact, 
considering that the CPS “nature” relies on the ability to handle 
intimate interactions with physical process and peers through 
networked communication systems, we impose as a research 
objective to implement a NHMI that doesn't rely on physical 
interaction and that can be implemented remotely on top of a 
networked communication system. Moreover, depending on 

Fig. 1. Left: original manual assembly station of our case study. Right: 
toward a fully collaborative station based on the UR3 robot. 

Fig. 2. Graphical user interface of the proposed framework. Left: 
visualization tool. Right: parameters setup screen. 
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the CPS capabilities, three distinct levels of autonomy can be 
identified: direct control of the CPS; supervision of actions 
executed in total autonomy by the CPS; shared execution of 
actions by combining human and machine skills. Like the case 
of hand-guiding waypoint programming, here we are focused 
on shared control architectures for task-oriented applications. 

Our framework consists of a remote human-in-the-loop 
control mechanism the combines an enhanced reality 
visualization tool together with a gesture recognition system to 
implement a natural interaction between the human operator 
and two collaborative robots. The control mechanism translates 
a sequence of operator's gestures into corresponding motions 
of the end-effector of each robot independently. Moreover, our 
framework was developed on top of the robot operating system 
(ROS) middleware, that provides a publish-subscribe 
messaging infrastructure designed for rapid prototyping of 
distributed networked systems, a set of tools for handling such 
networked systems and an extensible collection of libraries for 
robotics programming. As a consequence, our framework can 
decomposed on three main units: NHMI (Section 4.1), motion 
controller (Section 4.2) and distributed communication 
network (Section 4.3). 

4.1.  Natural human-machine interfaces 

Our NHMI is defined by the combination of a gesture 
recognition system and a powerful GUI composed by an 
enhanced reality visualization environment and a configuration 
panel (see Fig. 2). The gesture recognition system decodes and 
transmits the operator gestures, defining the input signals of the 
control unit (see Section 4.3). The enhanced reality 
environment provides to the operator the images acquired from 
the cameras mounted on both end-effectors and a simulation 
environment where to observe from any arbitrary viewpoint the 
robot states and mapped gestures in workspace. The 
configuration panel allows to set in real-time any parameter of 
the interface, the controller or the networked communications 
system. 

Two different types of gesture recognition systems have 
been included in our framework: 

Leap Motion Controller. This device is a small USB 
consumer-grade optical tracking sensor based on stereo vision, 
developed by Leap Motion.  This sensor can recognize hand 
gestures and finger positions with sub-millimeter accuracy. To 
achieve this, it integrates two monochromatic IR cameras and 
three infrared sources to compute a 3D reconstruction of a 
roughly hemispherical area up to about 1 meter.  A detailed 
analysis of the accuracy and robustness of the sensor is 
discussed in [35]. In conjunction with the sensor, an API in 
different programming languages is provided. This API allows 
to retrieve the positions in Cartesian space and orientations 
vectors of fingers, hands, and wrists.  Unfortunately, the API 
doesn't provide any mechanism to obtain the underlying point 
cloud data. Based on the leap motion measurements we define 
six different type of gestures. Three of them associated to the 
orthogonal linear displacement of the hand (up/down, 
forward/backward and left/right), like the one depicted in 
Error! Reference source not found.. The remaining three to i

dentify the orientation changes of the hand in terms of the roll, 
pitch and yaw angles. 
 

 
Smartphones. Nowadays, in many consumer-grade and 

industrial applications, smartphones represent the first device 
choice on IoT applications design. On the one hand, modern 
smartphones are equipped with growing computing, storage 
and networking capabilities. On the other, they include 
cameras, microphones and a great number of motion and 
gesture sensors that can be used to implement NHMI. The 
Android platform provides a large set of standard motions 
sensors: gravity, linear acceleration, rotation vector, significant 
motion, step counter, step detector, accelerometer and 
gyroscope. The last two are always hardware-based, while the 
others depending on the specific device can be either software 
or hardware-based. Since the estimation of linear displacement 
from accelerometers measurements is heavily subject to drift 
[36], in our demonstrator we consider only measurements taken 
from orientation sensors. Orientation measurements are usually 
obtained from micro electro-mechanical systems (MEMS) 
gyroscopes, vibrating mechanical elements able to sense 
angular velocities based on the transfer of energy between two 
vibration modes caused by the Coriolis acceleration that 
undergoes the smartphone [37]. Based on the smartphone's 
sensor measurements we define three different type of gestures 
to identify orientation changes of the device in terms of the roll, 
pitch and yaw angles, as depicted in Fig. 4. 
 

The human-in-the-loop mechanism is thus defined in terms 
of the visual feedback provided by the enhanced reality 
visualization environment. The operator will guide the robot 
motion based on the video streams generated by the cameras 
mounted on the end-effectors. Also, the robot states and 
mapped gestures in workspace can be observed inside the 
visualization environment. This visual feedback allows a more 
robust control of the robot since self-collisions or singular 
configurations can be easily predicted and avoided. The 
interface is based on the RViz visualization tool of ROS. 
 

Fig. 3. Illustrative outcomes of the motion control of the UR3 robot using the 
leap motion controller (top row: UR3 camera frames; middle row: hand 
gesture; bottom row: robot motion). The relative motions are applied to the of 
the end-effector with respect to its corresponding camera frame:  
forward/backward gestures of the hand are mapped along the approaching 
direction (z-axis); up/down gestures along the vertical direction (y-axis); 
left/right gestures along the horizontal direction (x-axis). 
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4.2.  Motion controller 

The motion control of the UR3 and UR10 robots is defined 
in terms of a first order inverse differential kinematics 
controller. The implementation exploits the robotics 
programming libraries offered by the ROS framework to 
automatically generate a kinematic model of the robot from 
publicly available robots’ descriptions in unified robot 
description format (URDF). We extract the geometrical 
description of the kinematic chain of the robot using the URDF 
parser of ROS to build a computational kinematic model with 
the kinematics and dynamics library (KDL). The kinematics 
inversion is based on a custom implementation of a damped 
pseudo-inverse of the Jacobian matrix. The controller as well 
as the rest of the framework was implemented in the C++ 
programming language. 

The controller first maps the operators gestures into a set of 
primitive motions in the workspace of the robot with respect to 
the camera frame, then such motions are mapped in joint space 
through the inverse differential kinematics. Gestures are 
defined in terms of relative poses measured with respect to an 
initial measured sensor pose, that need to be defined through 
the initialization procedure before the start of the control loop 
(see Fig. 5). All control parameters, including gain, thresholds, 
control rate, etc., can be set in real-time through the 
configuration panel of the GUI described in Section4.1 (see 
Fig. 2). 

4.3.  Distributed communication network 

ROS is based on a peer-to-peer network of processes called 
nodes, that process and share data together. Data is exchanged 
through a set of data structures with typed fields called 
messages. The ROS network relies on a master node to provide 
name registration and lookup services to the other nodes. This 
node also is responsibly to provide a centralized data storage 
mechanism available to all other nodes of the network. 
Messages can be exchanged either in terms of a many-to-many 
one-way communication transport layer (publish/subscribe 
model) or a request/reply based service transport layer. The 
ROS protocol is built on top of the stateless XMLRPC HTTP-
based protocol. Peer-to-peer data connections between nodes 
are also negotiated through XMLRPC. Such data connections 
can be established through TCP/IP or UDP, depending on the 
applicative context.  
 

 

4.4.  Realization 

The entire system is composed by a consumer grade laptop 
with 8GB RAM and an Intel Core i5-5200U CPU, the UR3 
robot and the UR10 robot sharing a common workspace. Since 
each input sensor can be used to control either robot, one 
fundamental issue to be addressed is the mapping of gestures 
into control inputs for the robots. In this regard, we found that 
many natural gestures (e.g., closing the hand) notably reduce 
the accuracy of the Leap Motion Controller. Also, the hand 
tracking was often lost when only small portions of the hand go 
beyond the measuring range. 

Moreover, mapping gestures (i.e., relative poses measured 
by the sensors) into relative poses of the robot implies limiting 
the dexterity of the robot to the set of feasible relative motions 
that the human hand may reach inside the measuring range of 
the sensors. To increase the robot’s range of operation an 
incremental gestures composition was adopted: gestures are not 
mapped as relative poses but as relative velocities. 

With this new control modality, the smartphone’s sensor 
presented the lowest orientation drift. This is due the high 
sensibility of the Leap Motion Controller measurements to the 
hand pose and gesture. However, by implementing a custom 
tracking mechanism on top of the sensor measurements (e.g., a 
Kalman or similar filter) improved levels of accuracy can be 
achieved with both sensors. 

5.  Discussion and future work 

The main feature of our framework is that it doesn't need 
real physical interaction to program the robots and the 
implementation allows a remote control. This confirms that in 
contrast to classical remote interfaces, direct physical 
interaction is no longer required to control, collaborate, 
cooperate and coordinate CPS. 

We tested two different gesture recognition approaches in 
our NHMI and the results are promising. One the one hand, the 
Leap Motion Controller allows to perform natural hand 
gestures without any physical or ergonomic constraint with 
sub-millimeter accuracy. On the other hand, we are used to 
manipulate smartphones every day and -most important- very 
accurate orientation measurements can be obtained from their 
motion sensors, allowing a fine-grained control on the end-
effectors orientation.  

Fig. 4. Illustrative outcomes of the orientation tracking of the operator's 
smartphone orientation using the UR10 robot. As can be observed, the 
orientation of the end-effector mirrors the orientations of the smartphone. 

Fig. 5. Sensors initialization. Motions applied to the robots are the computed 
in terms of relative gestures between the initial sensor pose and successive 
poses after initialization. Left: initialization of hand poses based on Leap 
Motion measurements. Right: initialization of the smartphone orientation 
based on the filtered measurements provided by the Android SDK. 
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It is worth noticing that our framework can be more efficient 
if information of the robot’s environment is included inside the 
virtual scene. This will be accounted in a future work. 
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