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Abstract 

Starting from a state of the art of CSP plants and the undergoing research in hybridization of Gas Turbine 
plants, the paper investigates alternative plant configurations particularly regarding the integration of CSP 
technology with mixed cycles because of their low water consumption and the possible use of current 
CSP components, assessed and compared with a through-life thermo-economic analysis.  
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1. Introduction 

CSP technology can be combined with any traditional energy system, including  unconventional cycles as 
researched by Jamel et al.[1], but the solar input collected by the concentrators is commercially used in 
steam power plants, with one or two pressure level steam turbine where the CSP system substitutes the 
traditional steam generator. However, Rankine cycles need a significant amount of make-up water, while 
the most suitable area for CSP plants (i.e. the worldwide area of the Sun Belt area where the DNI 
exploitable by solar receivers is high) are in desert areas. CSP Rankine cycles consume water for the 
continuous purge and make-up of cycle water, as well as for mirror cleaning (0.6 liters of wash water per 
m2 of solar field and 73 washes per year[2]). To mitigate these problems, increase the efficiency of CSP 
power plants, and provide cost-effective dispatchable power, significant can be gained creating a solar 
hybrid gas turbine and combined cycle [3] [4][5][6].  
Nowadays two solutions are under research: Integrated Solar Combined Cycle (ISCC) and Solar Hybrid 
Combined Cycle (SHCC). Even though SHCC plants have high efficiency and high solar share factor 
(SSF), unfortunately they have technological challenges related to the high temperature receiver, solar 
collector and the use of very hot compressed air (800°C-1000°C) in the combustion chamber. ISCC plants 
can exploit traditional Steam CSP technology, but they have lower SSF and efficiency. As an alternative 
route, steam-injection gas turbine power plants can be investigated [7]. This produces a solar hybrid 
mixed CSP cycle, with heat input from both solar collectors and fuel in the combustor. A thermodynamic 
analysis of this hybrid cycle, leading to high power augmentation compared to the simple cycle and to 
conventional STIG was made by Livshits and Kribus , even if in their research the steam produced by the 
solar field is inserted in the HRSG of the cycle [8][9].  
Basing on their experience on researching mixed cycles [10] and CSP plants [11] using a thermo-
economic approach and optimization tool, the Authors decided to introduce solar steam directly in the 
combustion chamber like in a traditional STIG cycle, they analyzed this hybrid mixed CSP cycle 
comparing its performance against a traditional STIG cycle focusing the attention on water consumption 
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and costs, a keynote for the installation of these plants in desert areas and Middle East-North Africa 
countries. 
Nomenclature 
CSP  Concentrated Solar Power 

DC  Direct Costs 

DNI  Direct Normal Irradiation 

FCI   Fixed Capital Investment 

ISCC  Integrated Solar Combined Cycle 

LCOE   Levelized Cost of Electricity 

PEC  Purchased Equipment Cost 

SHCC  Solar Hybrid Combined Cycle 

SSF  Solar Share Factor 

STIG  Steam Injection Gas 

TCI  Total Capital Investment 

WTEMP  Web Thermo-Economic Modular Program 

Symbols 
A Area [m2] 

 humidity rate 

 Steam Air mass flow rate ratio 

 Gas turbine pressure ratio 

p Pressure 

Subscripts 
h hour 

reint reintegration 

sol solar 

yr year 

2. THERMOECONOMIC OPTIMIZATION APPROACH 

The thermoeconomic investigation is carried out using a design point analysis optimization modular 
software (93 modules) named WTEMP (Web-based Thermoeconomic Modular Program) developed by 
the Thermochemical Power Group (TPG) at University of Genoa [12].In WTEMP each component is 
described by three subroutines, which define its thermodynamic, exergetic and thermo-economic 
performance at design point. The software is provided with cost/costing equations, which evaluate 
individual components capital costs on the basis of geometrical and manufacturing variables (cost 
equations) or on the basis of stream variables (costing equations). Cost functions allow for calculating the 
Purchased Equipment Cost (PEC) for each unit. From the PEC, the Total Capital Investment (TCI) of the 
plant can be evaluated: most of TCI items are calculated as a percentage of PEC [13]; the remaining ones  
are calculated as a function of Fixed Capital Investment (FCI) or Direct Costs (DC) of the plant.  
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In this study contingencies were assumed at the 24% of FCI for the CSP Mixed Air Cycle, while for the 
STIG plant was assumed at the 8% of the FCI. These different values are assumed to underline that CSP 
cycles are not yet a commercial technology, so a technologic risk factor was considered during the 
thermoeconomic analysis. 
 
In this research a CSP Solar Field model realized for previous research [11] was used. To realize this 
module, a Direct Normal Irradiation (DNI) solar curve has been implemented in the model referred to 
Sicily latitude referred to Sicily latitude, but any other solar curve can be implemented in the model[14]. 
The cost functions reported are considered for parabolic through technology exploited in commercial CSP 
Steam plants, they were furnished by a manufacturing partner (FERA srl). The model was validated both 
from the economic and thermodynamic point of view according to a real plant performances [11]. 

The economic input file contains a section describing the economic scenario where the plant is operating. 
a) Natural gas cost is assumed equal to 0.40 €/m3, typical market value in Italy and in Europe[15]. 
b) Electricity selling price is assumed equal to 0.068 €/kWh, typical market price for the Italian and 
European scenario in 2014 as reported in [16]. 
c) Renewable solar energy selling price is assumed equal to 0.22 €/kWh, which is the feed-in-tariff set 
in Italy since 2011 for electricity produced by CSP solar plants [17]. 
 
3. DESIGN POINT OF THE HYBRID MIXED CSP CYCLE  

 
In such configuration, the steam produced by a parabolic through solar field is mixed with the steam 
produced by the Heat Recovery Steam Generator before being injected on the compressed stream (fig.1). 

 
Fig. 1 – Hybrid mixed CSP plant WTEMP plant layout  

 
In order to make feasible the new plant in desert areas and to reduce the variable costs of the plant, the 
focus was on closing the cycle thanks to a flue gas condenser (FGC), which can recover water from the 
flue gases, thus reducing as much as possible the make-up water (depending on the temperature of the 
cold sink, water net production is possible, in principle).   
The design point features of the FGC were studied, reducing the reintegration of deminaralized water 
from 0,3 kg/sMWe to 0,002 kg/sMWe and the yearly variable costs linked to demineralized water from 
10,2 M€ to 0,68 M€ (cost of demineralized water: 40 €/m3 – yearly operating hours: 5000 h). 
The operating parameters chosen for the gas turbine plant and for the solar field are described in tab.1 
 

Solar field surface 15000 m2 

Air mass flow in the GT 53 kg/s 
Steam pressure 1,25  

TIT 1300°C 
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Blade cooling efficiency 0,55 
Cooling flow/inlet flow ratio 0,1797 

Combustion chamber efficiency 0,985 
Turbine/Compressor adiabatic efficiency 0,92 – 0,87 

Solar Steam Generator Heat Transfer Coefficient [W/m2k] 85 
FGC Heat Transfer Coefficient [W/m2k] 100 

 
Tab. 1: CSP STIG Solar Field and GT parameters 

 
Hybrid mixed CSP cycles require smaller collector surface area, and the role of the storage is not so 
important, since the natural gas supply can compensate for reduced solar irradiation periods, despite 
affecting the solar share factor. These operating parameters will guarantee, varying the pressure ratio and 
the operating conditions, a net power of 47-53 MW, a SSF of 10% and a reintegration mass flow rate 
which can be evaluated in less than the 1% of the cycle water flow rate. After the definition of these 
parameters, a parametric analysis was made, varying the pressure ratio ( ), evaluating the performances 
of the plant and keeping always monitored the water consumption and the steam/air ratio. (tab.2) 
 

  Net power 
[MW] 

Specific 
work 

[kJ/kg] 

Steam 
pressure 

[bar] 

Tout 
FGC 
[°C] 

SSF 
[%]

 
[%]

Water 
reintegration 

[%] 

LCOE 
[c$/kWh]

Condenser 
cooling 

flow [kg/s]

AFGC 
[m2] 

Solar 
steam 
mvap 
[kg/s] 

% of 
Solar 
Steam 

5 0,388 47,67 899,5 7 54 8,42 43,4 0,85 19,09 483 34000 6,42 18,9 

10 0,497 50,09 945,0 13 51 9,25 38 0,92 15,41 387 21381 6,27 26,1 

15 0,542 48,62 917,3 19 48 9,78 30 0,039 14,35 349 14160 6,16 30,9 

20 0,563 47,51 896,5 25 47 9,96 27,8 0,16 13,98 327 11968 6,08 33,7 

25 0,578 45,87 865,5 32 46 10 26 0,21 13,84 310 10158 6,003 36,1 

30 0,586 44,14 832,8 38 46 10,1 24 1,64 13,88 293 8707 5,94 38,3 
  

Tab.2 - Parametric Analysis of an hybrid mixed CSP Plant Varying Pressure Ratio 
 

Looking at the performance reported in tab. 2 and analyzing the efficiency-specific work curve (fig.2) and 
the values of the water reintegration flow rate (fig.3), the optimum design point was evaluated choosing 
the best economic and operating performance. A pressure ratio of 20 was chosen, guaranteeing a 10% 
SSF and lower LCOE compared to the CSP steam plants one [1][2][11]. 
 

 
Fig. 2 - Performance Curve of an hybrid 
mixed CSP Plant varying Pressure Ratio 

Fig. 3 - Water Reintegration of an hybrid 
mixed CSP Plant varying Pressure Ratio
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3.1 Design Point of a traditional STIG Competitor Cycle 
Using the same approach reported in the previous paragraph, the performance of a traditional STIG cycle, 
with a steam pressure of 1,25* , is  particularly interesting to be compared with the hybrid cycle (tab.3). 
 

  
Net 

Power 
P [kW] 

Specific 
Work 

Ls [kJ/kg] 

Steam 
Pressure 

[bar] 
TFGC 
[°C] 

 
[%] 

Water 
reintegration

[%] 

Water 
reintegration
mreint [kg/s]

LCOE 
[c$/kWh] 

Condenser 
mass flow rate 

msea  [kg/s] 
AFGC 
[m2] 

5 0,364 51389 685,2 7 50 32,6 0,087 0,026 18,39 500 33371 

10 0,457 52274 697 13 46,5 23,1 0,38 0,073 15,21 395 17116 

15 0,49 50145 668,6 19 45 19,2 1,46 0,22 14,22 351 11005 

16 0,493 49719 602,9 20 44,6 18,4 1,93 0,29 14,17 347 10118 

20 0,501 48037 640,5 25 43 15,8 4,66 0,55 14,02 337 8674 

25 0,51 45402 605,4 32 42 13,5 8,6 0,86 14,16 290 6900 

30 0,514 42777 570,4 38 41 12,5 12,5 1,13 14,38 267 5735  
Tab. 3 - Parametric Analysis of a conventional STIG Plant Varying the Pressure Ratio 

 
So a lower pressure ratio of 16 was chosen as design operating, It is worth underlining that a traditional 
STIG cycle has to work a higher air mass flow rate in the cycle in order to have the same power output of 
the hybrid mixed CSP. The steam-air ratio  are significantly lower as the solar steam is not present, and 
water reintegration becomes higher, while the FGC has lower heat exchanging area, particularly at high .  
 

               
Fig. 4 - Water make-up in the analyzed STIG 
Cycle Varying the Pressure Ratio 

Fig. 5 - Water costs Comparison between 
STIG and hybrid mixed CSP cycle

 
Comparing the water consumption of traditional STIG and the hybrid mixed CSP cycles, the new cycle 
water , thanks to the steam contribution of the solar field (from 14,47 kg/s to 17,75 kg/s for the defined 
optimum design point), can be easier recovered in the FGC, reducing water integration and costs due to 
the lower oxygen content in the exhausts (combustion closer to stoichiometric conditions). 
 
The previous results are related to a humidity tax of 20%,typical of Sun Belt and desert areas. 
Nevertheless a comparative analysis evaluating LCOE, water reintegration and its impact on plant 
variable costs varying humidity tax ( ) was made (from 0% to 60%) , in order to evaluate the installation 
of these cycles also in the borders area of the Sun Belt (fig.6) and how the presence of water in the air 
influences the water recovery.  In a traditional STIG water reintegration increases at low , particularly at 
high  because as the outlet turbine temperature decreases, steam production is lower and less water is 
recoverable: this effect, that increases LCOE of 0,5 c€/kWh is less sensitive in temperate and more humid 
areas where it is possible to choose flexibly the pressure ratio. This effect is less sensitive in CSP hybrid 
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mixed cycles too thanks to the additional solar steam that guarantees a constant water supply also at 
higher  and humidity doesn’t affect so much water recovery (and the relative variable costs and LCOE). 

         
Fig. 6 - Water make-up in the traditional 

STIG Cycle Varying  and  
Fig. 7 - Water make-up in the hybrid mixed 

CSP Cycle Varying  and 
 
4. CONCLUSIONS 
In this paper an innovative plant layout of an hybrid mixed CSP cycle has been proposed, in order to 
couple the current CSP technology (mirrors, receiver) with state of the art steam injected gas turbines. 
The main advantage would be low technical risk, higher efficiency, high specific work (close to 900 kJ/kg 
thanks to the additional solar steam) and high water recovery potential thanks to the quasi-stochiometric 
combustion. The plant would retain competitive LCOE (14 – 15 c€) according to present feed-in policies, 
by reducing variable costs for natural gas and demineralised water consumption.  
A special focus on water consumption of these plants is reported. In hybrid mixed CSP cycles, thanks to 
the solar steam, water can be easier recovered in the FGC, reducing water integration and costs due to the 
lower oxygen content in the exhausts (combustion closer to stoichiometric conditions). 
The humidity effect is less sensitive in CSP hybrid mixed cycles too thanks to the additional solar steam 
that guarantees a constant water supply also at higher  and so humidity rate doesn’t affect so much water 
recovery (and the relative variable costs and LCOE), making CSP hybrid mixed cycles a suitable and 
sustainable solution for solar gas turbine hybridization and CSP production in all the Sun Belt countries 
particularly for middle size power plant (~50 MW) and CHP-trigenerative solutions. 
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