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Abstract

There is increasing interest in, and use of, Optimal Matching techniques in sequence analysis. In recent years especially,
both the uses and the software tools that enable this type of analysis have multiplied. Taking up Abbott’s inheritance,
many scholars have continued with epistemological and methodological analysis of the application of OM to the social
sciences. Nevertheless, many criticisms and doubts have been raised concerning the capacity of the technique to capture
common patterns of sequences. Diverse epistemological, methodological and technical questions are awaiting answers.
Among the numerous problems one, which has not yet been noticed, concerns the interaction effects between OM
elementary operations. This article discusses the interaction effect between indel and substitution costs in Optimal
Matching Analysis (henceforth OMA). By means of a simulation based on the eight sequences obtained as element
permutation of a binary string of length 3, it will show that varying the substitution and indel costs produces inconsistent
results. The article will also show that the sequence patterns obtained from analysis of the distances matrix do not depend
on the real existence of common patterns of sequences; rather, they are the result of the interaction effects between the
elementary operations of substitution and indel.
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Introduction

The idea of sequence in the study of social processes is not new. As early as 1855, Herbert Spencer discussed
time and sequences at length in his The Principles of Psychology. Some years later, Durkheim (1912) spoke of
social rhythms, and finally, George Herbert Mead forcefully asserted: “We look for their antecedents in the
past and judge the future by the relation of this past to what is taking place” (Mead, 1932, p.45).

Nevertheless, it is only with the brilliant and persevering work of Andrew Abbott that the study of the social
process by sequences has attracted the attention of sociologists. In 1983 Abbott began publication of a series
of articles (Abbott, 1983, 1984, 1988, 1990, 1991a, 1991b, 1992, 1995, 2000; Abbott and Forrest, 1986;
Abbott and Hrycak, 1990; Abbott and DeViney, 1992; Abbott and Tsay, 2000; Maclndoe and Abbott 2004) in
which he laid the theoretical and methodological bases for Sequence Analysis. Abbott’s intent with sequence
analysis was not only to emphasize study of the social process in its becoming, instant after instant, searching
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for regularities, but also to find a new way to observe social reality which extended beyond the consolidated
tradition of the linear-regression family (Abbott, 1988).

The purpose of sequence analysis is to give answers to some simple questions. How do observed social
regularities come about? How does this pattern come about? How does the career process allocate people to
different positions in the class structure in a way that ultimately produces the observed mobility regime?
(Chan, 1999). In other words, sequence analysis is used to “fish for patterns” (Abbott, 2000, p.69) to account
for the complexity of processes.

Abbott’s problem was finding a rigorous way to give concrete application to sequence analysis: that is, to find
a method able to discriminate between events pertaining to different rhythms and events with close cadence,
thus identifying different sub-rhythms in social processes. Abbott found the solution in an algorithm used in
biology and other sciences (Sankoff and Kruskal, 1983, Waterman, 1995) known as the “optimal matching
method” (Abbott and Forrest, 1986). Optimal Matching is a family algorithm that takes account of the full
complexity of sequence data. It is based on a dissimilarity measure of distance between sequences which was
first proposed in the field of computer science by Vladimir Levenshtein (1966) and developed by, among
others, molecular biologists studying protein or DNA sequences.

Whereas on the one hand, adoption of this technique enabled Abbott to argue more forcefully for the validity
of his approach, on the other, the epistemological, methodological and technical implications connected with
the use of OM in the social sciences raised doubts and criticisms (Dijkstra and Taris, 1995; Wu, 2000; Levine,
2000; Eltzinga, 2003). A further effect was that sequence analysis was increasingly identified with the OM
algorithm, rather than adherence to the original idea. Studies therefore began to refer to sequence analysis as
‘optimal matching analysis’, and some scholars (e.g. Lesnard, 2006; Halpin, 2008) sought to develop a new
epistemological and methodological reasoning which started from the method that operates the OM algorithm.

Despite the perplexities and criticisms, the OM technique progressively spread among researchers, also
because of the diffusion of software tools — Optimize!, TDA? (Rhower and Potter, 2009), Stata (Brzinsky-Fay
et al. 2006) — enabling the conduct of OM analysis. Many prestigious journals began to publish studies which
used the OM techniques (e.g. Chan, 1995; Stovel et al., 1996; Halpin and Chan, 1998; Han and Moen, 1999;
Blair-Loy, 1999; Scherer, 2001; McVicar and Anyadike-Danes, 2002; Clark et al., 2003; Malo and Mufioz-
Bullén, 2003; Stovel and Bolan, 2004; Anyadike-Danes and McVicar, 2005; Wilson, 2006; Levy et al. 2006;
Lesnard, 2006; Pollock, 2007; Wiggins et al., 2007; Aasave et al., 2007; Martin et al., 2008).

The current widespread use of OM in the academic world might suggest that many problems have been
resolved and that the technique has consolidated. But this is not the case. All studies, which use OMA, devote
at least a section to defending and justifying it. Yet the criticisms have indubitably played a role in inducing
researchers to find solutions to OMA problems. Not all the problems have been resolved, however, and doubts
still persist as to its validity.

This article will seek to answer the following simple questions. Is it possible that the OM sequence distances
do not represent the system under analysis? Is it possible that the generation of distances between different
sequences produces distortions in representation of the system? And is it possible that, with variance in
operations costs, the system configuration varies not according to the costs but according to the interaction
effects among OM operators, thus producing distortions in the representation of the reality under
examination?

! Optimize is freeware developed by Andrew Abbott: see http://home.uchicago.edu/~aabbott/om.html#optimize.
> TDA 6.4 is a freeware developed by Gtz Rohwer and Ulrich Potter: see http://steinhaus.stat.ruhr-uni-bochum.de/.
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A series of simulations were conducted in order to answer these questions. The aim was to verify how the
results of the analyses varied according to variation in substitution and indel costs: that is, whether the OM
distances between sequences reflected the system configuration under examination, or whether it was only the
result of the algorithm computation.

After briefly describing how OM operates, the principal criticisms and the OM operator cost definition, the
article presents the results of the simulations. The analyses reported focused both on the standard method,
which studies the entire configuration of the sequences in search of common patterns, and on the most recent
proposal named "Ideal Type" (Scherer, 2001; Wiggins et al., 2007; Martin et al., 2008), which focuses on the
deviations from a specific sequence (Abbott and Hrycak, 1990).

The Optimal Matching distance

In OM analysis, the distance between two sequences A and B is given by the number of elementary operations
that enable sequence A to be turned into the sequence B, or vice versa. Two types of elementary operation can
be performed to obtain this transformation. The first operation, named indel, inserts and deletes sequence
elements. For instance, in order to transform sequence A {111} into sequence B {110} we must: a) move the
1 in the third position of sequence A one position to the right {11_1}; b) insert a 0 in the third position of
sequence A, so as to get a new sequence A' {1101}; c) delete the 1 in the fourth position of A’ {1101}. The
result is sequence A" {110}, which is equal to sequence B. This operation is maximally useful when we have
sequences of different lengths. For instance, let A {111} and C {11} be two sequences respectively of length 3
and 2. We can transform one into the other either by deleting the last element of A or by inserting a 1 at the
end of C.

The second operation is substitution of the elements of one sequence with the elements of the other sequence.
Sequence A in the first example can be converted into sequence B by replacing the third element of sequence
A, the 1 with the 0; or sequence B can be converted into A by replacing the third element of B, the 0 with the
1. This operation is performed between elements occupying the same position in the two sequences. Its
optimal use is when both the sequences have the same length.

Both elementary operations may be necessary to transform one sequence in another. Let A {111} and D {10}
be two sequences with different lengths and elements. One will be transformed into the other through
substitution of the second element (of A or D) and through insertion/deletion of the third element (of A or D).

The situation becomes complicated when the indel and substitution operations can both be performed on the
same element of a sequence. For instance, to transform sequence A into B we can either insert/delete or
substitute the last element. What is to be done? Which of the two operators applies? The solution is to assign a
"cost" to each operator. In other words, to the operators are assigned a quantity that represents the energy
dissipated by the system in performing the operations of indel and substitution. In social terms, we can
conceive the cost as the effort (economic, social, cultural, physical) that a subject expends to pass from one
state to another: for instance, from being employed to unemployed, or from being married to being divorced.

The choice of which of the two operations to perform is determined by the smaller of the two costs, i.e. we
choose the operation that minimizes the energy required to transform one sequence into another. If indel >
substitution, we will substitute the element; if indel < substitution, we will insert/delete the element.



Bison/Methodological Innovations Online (2009) 4(2) 53-67
56

In this scenario, the OM is an algorithm that finds, for each element in the sequence, the appropriate operation
which minimizes the cost of transformation into the corresponding element in the other sequence. The OM
distance is instead the amount of all the operations that minimize the transformation cost of the entire
sequence. That is, the OM distance is the least quantity of energy necessary to transform one sequence into
another.

Limitations and criticisms of Optimal Matching Analysis

Many doubts and criticisms have been expressed in regard to OMA (Dijkstra and Taris, 1995; Wu, 2000;
Levine, 2000; Eltzinga, 2003). The principal criticisms concern two separate aspects. The first is the
epistemological and methodological validity of the use of OM operations to treat events in time. The second,
more technical, aspect is the reliability of finding similarity between sequences.

Manipulating sequences by operators to assess their similarity is de facto to manipulate time. Inserting or
deleting an event is also to warp the timing of the processes, whereas substituting an event means that the
timing is preserved but that one event is approximated by another. As Lesnard writes: “... insertion and
deletion operations preserve the events but distort time while substitution operations just do the opposite, i.e.
they conserve time but alter events. As a result, OM with sequences of social events is a combination of
accelerations/decelerations to match identical subsequences of events and of events approximations when the
flow of time is normal” (Lesnard, 2006, p.7).

The second group of criticisms centre on four main problems. The first is the impossibility of defining a
distance between sequences according to their degree of similarity. Even if two sequences have some
elements in common but in different positions, they may be as dissimilar as a third sequence with no element
in common with the other two. For instance, consider the following three different sequences {01; 10; 22} and
a substitution and idel cost equal to one. The OM distance between all of these sequences will be equal to two.

OM distance: {01,10} = {10,22} = {01,22} =2

This problem is not solved with an appropriate substitution cost matrix. Instead, matters become more
complicated, and this is the second main problem. Serious doubts have been raised concerning the
arbitrariness of the definition of the substitution cost matrix (Wu, 2000). Apart from the choice of the costs, a
third problem concerns the assumption of symmetry of distance between two states (Wu, 2000). By definition,
the substitution cost matrix is symmetric: hence, for instance, the cost of passing from an employment to an
unemployment event is the same as the cost of moving from an unemployment to an employment event. This
may produce considerable logical contradictions when non-reversing and non-consecutive conditions (such as
never married, divorced) are to be replaced, or when the transition has very different social costs, as in the
above example of movement between employed and unemployed.

The fourth problem is the impossibility of capturing both the inner timing of each single sequence and the
general timing of the entire system. This depends on how the algorithm works. Comparison between two
sequences is from left to right, starting from the first pair until the last pair. The algorithm starts from the first
pair of elements to the left and decides what operations to apply. After finding the lowest cost operation, the
algorithm passes to the following pair of elements and repeats the operation until the end of the two sequence
elements. In this process, the algorithm does not consider the entire sequence but only the single pairs of
elements. The result of this way of proceeding is that the algorithm is blind to the arrow of time “[in
fact]...one obtains the same distance between trajectories if the trajectories move “forward” or “backward” in
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time” (Wu, 2000, p.52), because the choice of which operation to apply is independent of the temporal
position along the sequence. The result is also memory loss, since the choice of operation is independent from
the previous choice. Finally, “the substitution cost is blind to the environments of the pair of elements being
considered” (Halpin, 2008, p.6). Consequently, not considering the whole sequence is not to recognize the
possible presence of recursive structure.

The choice of cost system

The central point of the OM is the choice of a cost system that determines how sequences are matched. When
only indel operations are used, or when all substitution costs are strictly greater than the cost of indel, then the
distance between two sequences is equivalent to their longest common subsequence, whatever their location in
the two sequences (Kruskal, 1983, p. 30). “On the contrary, using only substitution operations or when their
cost is strictly lower than the cost of indel will focus the analysis on finding contemporaneous similarities”
(Lesnard, 2006, p.4). In some way, “indel costs should be defined as a function of the temporal proximity of
identically coded events, substitution costs should represent the closeness of two different events at a
particular position in their respective sequences” (Lesnard, 2006, p.9). Because the costs do not have a
measurable physical quantity, they are defined a priori on the quality/property of transition or transformation
that the researcher assumes to exist between the elementary states that make up the sequences being analyzed.
In effect, there is no clear or univocal way to derive the substitution costs matrix. Martin et al. (2008) report
three different strategies to determine substitution costs. Some analysts derive these costs from theory. For
example, Halpin and Chan (1998) derive the substitution cost from the EGP class strata, while McVicar and
Anyadike-Danes (2002) derive the costs between different employment states from the educational level
required to access them, and in another case from “the degree of attachment to the labor market of the
different activities” (Anyadike-Danes and McVicar 2005, p.515). Other scholars (Pollock et al., 2002;
Pollock, 2007; Stovel et al., 1996) derive the costs as the inverse of the transition probability between two
states. In this case, the cost-distance will be larger as smaller is the probability of observing transitions
between the two states. Yet other authors prefer to fix all the costs of the substitution costs matrix to a specific
value. For example, Martin et al. (2008) fix a substitution cost at one for all the states transitions.

As a rule, the indel operation has only one cost value, while the substitution operation has one or more costs
for all the n(n-1)/2 couples of elements defined in the state space. Studies in the literature have focused mainly
on the rules to define the substitution costs matrix. They have paid less attention to the rules to define the
value of indel. The most frequently cited study is that by Abbott and Hrycak (1990, p.155), who suggest
setting the value of indel “equaling or slightly exceeding the highest cost of substitution”. This means that
when sequences are of roughly equal length, most transformations will likely rely on substitution rather than
insertion or deletion. Although the literature comprises numerous proposals for rules and ways to define the
costs, de facto each article suggests and uses its own rules. There are studies which define the value of indel as
equal to the maximum value of substitution costs (Stovel et al., 1996). Others make the indel costs vary
according to the length of the sequences (Stovel and Bolan, 2004). Others set the indel costs below the
maximum value of the substitution costs (Halpin and Chan, 1998). Others define the indel costs as greater
than the maximum value of the substitution costs (McVicar and Anyadike-Danes, 2002). Others prefer to
leave the default software parameter used for the OM calculation: usually indel cost = 1 and substitution costs
=2.

Yet few researchers have addressed the problem of the effects of the interaction between substitution and
indel costs on the estimation of the distances between sequences. | believe that this is because costs have been
defined mainly as a distance among states rather than establishing which of the two elementary operations the
OM algorithm must use.
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The simulation

Now described are the results of a simulation which studied the interaction effects on the computation of
sequence distances when the substitution costs were made to vary and the indel cost was kept fixed. The
simulation was based on the set of eight sequences 22 obtained by permutation of a binary string of length 3.
Hence, the main characteristic of this dataset was that it contained the entire state space of all the possible
sequences that can be realized with a binary sequence of length 3. The 0 and the 1 of the sequence can be
interpreted as the coding of a realization of two mutually exclusive states, such as, for instance, being
employed and not employed; married and not married; student and non-student. The Needleman-Wunsch
Algorithm, implemented in the Stata program (Brzinsky-Fay et al., 2006), was used for the distance
matrixes/vectors calculations.

With the value of indel fixed at 1, the OM distances were computed for the following costs of substitution:
0.5, 0.6, 0.8, 1.0, 1.5, 2.0. Alternatively, these costs can be interpreted as proportions of the rate ‘SI” between
substitution and indel cost:

Substitution cost

Indel cost

For instance, substitution and indel costs of respectively {0.8; 1.0}, {1.2; 1.5}, {1.6; 2.0} have exactly the
same proportion rate SI = 0.8. This means that the cost value changes but the costs rate and the structure of the
distance matrix/vector remain the same.

Two results were expected from the simulation:

a) The first was that the distances between sequences would vary in an equal and/or proportional way
according to the variation in substitution costs.

b) The second was that varying substitution costs would not change the sequence groups with the same
distance. As well known, one shortcoming of the OM it is that it produces the same distances for
different sequences. The expectation was that groups of sequences with the same distance would
remain stable with variance in the substitution costs.

Optimal Matching and Ideal Type

I begin with discussion of the OM distance calculated as deviation from a single reference sequence ideal
type. For brevity, | shall discuss only the results of two analyses. The first took the sequence {001} as
reference; and the second took the sequence {010} as reference. Graphically, the two sequences are similar;
both have only one event (1) and two events (0). In qualitative terms, they partly describe different careers.
For instance: a) the first sequence describes a work career where the subject is employed for the first two
months of observation and unemployed in the last month of observation; b) the second sequence describes a
work career where a subject is employed in the first and third month and unemployed in the second month of
observation.

Table 1. OM distance vectors by 001 and 010 reference sequences by substitution cost equal to 0.6, 0.8,
1.0, 1.5, 2.0 and indel equal to 1.
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Reference: {001} Reference: {010}

Sequences 06 08 10 15 20|06 08 1.0 15 20
000 06 08 10 15 20|06 08 10 15 20
001 - - - - - |12 16 20 20 20
010 12 16 20 20 20| - - - - -
100 06 08 10 15 20|06 08 10 15 20
011 12 16 20 20 20|12 16 20 20 20
101 06 08 10 15 20|18 20 20 20 20
110 18 24 30 35 40|06 08 10 15 20
111 12 16 20 30 40|12 16 20 30 4.0
N. of clusters | 3.0 30 30 40 20|30 30 20 30 20
Sl 06 08 10 15 20|06 08 10 15 20
min 06 08 10 15 20|06 08 10 15 20
max 18 24 30 35 40|18 20 20 30 40
Rate 30 30 30 23 20|30 25 20 20 20
(Max/Min)

The outcomes from the reference sequence {001} are substantially different from those expected (Table 1.).
Only the sequences {000, 100, 101, 111} have a variation of the distance from the reference sequence equal
and/or proportional to the variation of the substitution costs. The first three sequences {000, 100, 101}
increase (Table 1.) the distance from the reference sequence in the same way as raising the substitution costs
(0.6, 0.8, 1.0, 1.5, 2.0) does. The sequence {111} instead has a distance value double that of the substitution
costs from the reference sequence (1.2, 1.6, 2.0, 3.0, 4.0). The last three sequences the distance raise equal
and/or proportional with substitution costs less than 1.0 and not proportional for values greater than 1.0. The
sequence {110} has a distance three times greater than the substitution cost for values up to 1.0; 2.3 times
higher for a cost of 1.5; and double for a cost of 2.0. The sequences {010 and 011} have a distance value
which is double for substitution costs greater than 1.0, 1.3 times higher for a substitution cost of 1.5, and equal
to the substitution cost® for a value of 2.0.

The direct consequence of non-proportional variation in distances according to the variation in the substitution
cost is that both the sequences with the same distance and number of clusters change. In the example (Table
2.), for costs up to 1.0 three distinct sequence groups are produced with the same distance; for a cost of 1.5 the
groups increase to 4, and for a cost of 2.0 they decrease to 2.

Table 2. Groups sequences according to the distance from the reference sequence {001} by substitution cost.

0.6 = (000, 100, 101); (010, 011, 111); (110).
0.8 = (000, 100, 101); (010, 011, 111); (110).
1.0 = (000, 100, 101); (010, 011, 111); (110).
1.5 = (000, 100, 101); (010, 011); (111); (110).
2.0 = (000, 100, 101, 010, 011); (110, 111).

It is easy to imagine the effects of using these vectors of distance as input on the outcome of a cluster analysis:
as substitution costs vary so will the number of clusters. The consequence will be that it is not possible to
determine whether a specific solution is the result of a specific configuration of observed sequences or rather
the result of the choice of a specific substitution cost. However, what happens if we take the sequence {010}
as reference? The expectation is to find the same problems as previously arose with the sequence {001}. But,
unfortunately, this is not so (Table 1.). Only the sequences {000, 100, 110} have distances equal to the

* In this last case, the distance from the reference sequence is constant to 2 for values of the substitution costs greater than
1.0.
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substitution costs, while both the range of the distances and the numerousness of groups change for the other
sequences. The sequences {001, 011} have double distances for substitution costs less than 1.0 and decreasing
values for costs greater than or equal to 1.0. The sequence {101} has a three times greater distance for a
substitution cost of 0.6 and decreasing ones for higher substitution costs.

In the previous analysis for costs up to 1.0, the clusters of sequences were the same. This may suggest that
defining substitution costs less than or equal to 1.0 can be expected to yield a certain stability (at least for
simple systems) in the number of sequence clusters. Unfortunately, this conclusion is refuted on changing the
reference sequence (Table 3.). Now, the three clusters appear, but for different substitution costs: 0.6, 0.8 and
1.5. The four cluster configurations disappear, and two new cluster configurations appear. The first, for a
substitution cost of 1.0, is made up of the sequences {000, 100, 110} and the sequences {001, 011, 101, 111}.
The second configuration, for a substitution cost of 2.0, which has the same distance (2.0) for all the
sequences except the sequence {111}.

Table 3. Groups sequences according to the distance from the reference sequence {010} by substitution
cost

0.6= (000, 100, 110); (001, 011, 111); (101).
0.8= (000, 100, 110); (001, 011, 111); (101).
1.0= (000, 100, 110); (001, 011, 101, 111).
1.5= (000, 100, 110); (001, 011, 101); (111).
2.0= (000, 100, 110, 001, 011, 101); (111).

The problem is further complicated when the system’s complexity increases to comprise several states and
costs simultaneously. For instance, let us suppose that we have a sequence of length 3 with three states
{employed, unemployed, not working} coded with {0, 1, 2}. Let us also suppose that we use the substitution
matrix costs of Table 4. What happens when we take the sequence {001} or the sequence {002} as reference?
In theory nothing should change. All substitution costs being equal (Table 4.), the distances from the reference
sequence should be the same.

Table 4. Substitution costs matrix

0o 1 2
000

1|06 00
2108 00 00

This invariance is also desired. In fact, in qualitative terms the two reference sequences are very similar.
Both have two consecutive employment events (t1 and t2) in common, and they differ only in the last state t3:
one to unemployment and one to not working. Nevertheless, this difference is very small. The distance
between the two states of exit from work is zero (Table 4.), while that between work and unemployment and
non-work events is respectively 0.6 and 0.8. Unfortunately, the result (Tables 5a. and 5b.) is different from
expected.

Table 5a. Groups sequences according to the distance from the sequence {001}

Distance | 0.0 | 0.6 | 08 | 1.2 | 14 | 16 | 18] 22 |
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Ref.Seq. 000, 011, 022, 020,
{001} 001, 002 101 202 010, 100, 111 200 222 | 110 | 220
Table 5b. Groups sequences according to the distance from the sequence {002}
Distance 0.0 0.6 0.8 1.2 1.4 1.6 20 | 24
Ref.Seq. 011, 000, 022, 010, 020, 200,
ooy | 901002 gy 202 111 100 23p | 110 220

Although the number of groups distance does not change, there is nevertheless a change in the composition of
clusters according to the reference sequence used. The sequences {000, 111, 222} jump from one group to the
other. This is due to the different substitution cost linked to the specific state defined in the reference
sequence. That is, with different states in the same position, the results groups of sequences vary with variance
in the substitution costs linked to the states defined in the reference sequence.

Optimal Matching and standard sequence analysis

The next step is to evaluate the effects of variations in costs on a standard OM sequence analysis. Here the
distances calculation is not a single distance/vector from a specific reference sequence but a distance matrix
between all the sequences under analysis. Table 6. shows two triangular distance matrixes: the first (lower
triangle) obtained for a substitution cost of 2.0, the second (upper triangle) for a substitution cost of 0.8. The
two matrixes are clearly different. For a substitution cost of 2.0 we can count only three distinct values of
distance: one 6, eight 4s and nineteen 2s, while for a cost of 0.8 we can count four different values of distance:
three 2.4s, one 2, twelve 1.6s and twelve 0.8s. What has happened? The problems previously found for the
ideal types now concern all the sequences that are taken one by one as references.

Table 6. Optimal Matching distance matrix with indel = 1.0 and substitution cost matrix = 2 (lower
triangle) and Optimal Matching distance matrix with indel = 1.0 and substitution cost matrix = 0.8
(upper triangle)

000 001 010 100 011 101 110 111

000 | - 08 08 16 08 16 16 24
001 |20 - 16 08 16 08 24 16
010 |20 20 - 08 16 20 08 16
100 (40 20 20 - 24 16 16 08
011 |20 20 20 40 - 08 08 16
101 (40 20 20 20 20 16 038

110 |40 40 20 20 20 20 - 0.8
111 | 6.0 40 40 20 40 20 20 -

If we analyze the opposite diagonal (Table 7.) of the distance matrix with variance in substitution costs — in
other words, if we analyze the couples of sequences with maximum distances between them, that is, those
sequences that do not have common elements and are complementary {000 — 111; 001 — 110; etc.} — we find
that the values of the distances change with variance in substitution costs.

Table 7. Opposite diagonal of OM distance matrix by substitution costs

06 08 10 15 20
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000 -111 18 24 30 45 6.0
001 -110 18 24 30 35 40
010-101 18 20 20 20 20
100 - 011 18 24 30 35 40
011-100 18 24 30 35 40
101 -010 18 20 20 20 20
110-001 18 24 30 35 40
111 -000 18 24 30 45 6.0

For a cost of 0.6, all the couples have the same distance and values three times higher than the substitution
costs. For values of 0.8 and 1.0, the distance is three times higher than the substitution costs, except for the
couple {010 — 101}, which is 2.5 and 2.0 times the substitution cost. The costs of 1.5 and 2.0 have three
values of distance. The first is three times higher than the substitution cost for the couple {000 — 111}. The
second is 2.3 and 2.0 times the substitution cost for the couples {001 — 110 and 100 — 011}. Finally, the
couple {010 — 101} has a distance equal to the substitution cost when the value is 2.0 and 1.3 times higher for
a substitution cost of 1.5.

The empirical evidence clearly shows that the distance matrix changes with variance in substitution costs.
However, it may be objected that these differences are irrelevant, and that the analyses on each single distance
matrix can give exactly the same results. In other words, even if the distances changes, the configuration and
the relationship between sequences do not change.

Following the literature, | analyzed the distance matrixes first with a multidimensional scaling (MDS)
and then with a hierarchical cluster. “This matrix itself must then be analyzed, typically with some form of
dual-data reduction scheme such as cluster analysis or multidimensional scaling.” (Abbott and Tsay, 2000,
p.6). | began with the MDS. Given the small number of points, | considered it sufficient to produce a two-
dimensional solution. | performed four separate analyses for the following four substitution costs distance
matrixes: 0.5, 0.6, 1.0 and 2.0.

@011
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Fig.1. MDS INDEL=1.0; SUB=0.5; Fit(1)=0.50; Fig.2. MDS INDEL=1.0; SUB=0.6; Fit(1)=0.50;

Fit(2)=0.60 Fit(2)=0.60



Bison/Methodological Innovations Online (2009) 4(2) 53-67

63
e B S
Fig.3. MDS INDEL=1.0; SUB=1.0; Fit(1)=0.56; Fig.4. MDS INDEL=1.0; SUB=2.0; Fit(1)=0.70;
Fit(2)=0.72 Fit(2)=0.93
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Fig.5. Hierarchical Cluster Indel=1.0; SUB=1.0 Fig.6. Hierarchical Cluster INDEL=1.0; SUB=2.0

I believe that Figures 1., 2., 3. and 4. do not require comment. For values less than 1.0, the analyses did not
find an acceptable bi-dimensional solution of the eight sequences. The fit of the model was below the
acceptability threshold. However, if we want to interpret the configuration of the points, we may observe that
for a substitution cost of 0.5 the MDS arrange the sequences (Figure 1.) in a circle with the sequences {000
and 111} at its centre. For a value of 0.6, therefore, for a cost little higher than the previous one, the graph
(Figure 2.) changes completely and draws two clusters of complementary sequences. The first, at upper right,
consists of the sequences {011, 110, 000, 010} and the second, at bottom left, consists of the sequences {100,
001, 111, 101}.

For substitution costs greater than or equal to 1.0, acceptable solutions are found, but they are very different;
with a cost of 1.0 (Figure 3.) the graph is almost the same as the graph obtained with a substitution cost of 0.5
(Figure 1.). The sequences are arranged in a circle with the complementary sequences {010, 101} perfectly
overlapped at its centre. Nevertheless, the best solution (Figure 4.) is that for a substitution cost of 2.0.
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It is therefore clear that varying the substitution costs produces radically different MDS models. Obviously,
this may induce the researcher to draw very different conclusions according to the substitution cost adopted.
The situation does not improve when changing the type of analysis. The second analysis reported here was a
classic hierarchical clusters analysis (Figures 5. and 6.). For brevity, | analyzed the distance matrix obtained
for a substitution cost of 1.0 and 2.0 with a “Wards Linkage method”. In this case, too, the solutions depicted
in the dendogram of Figures 5. and 6. do not require comment. For a value of 1.0, four clusters of distinct
sequences are found; while for a value of 2.0 there is no cluster of sequences.

Conclusion

This article has investigated the interaction effects exerted by substitution and indel costs on OM results. It
has sought to answer a simple question: is it possible that the choice of the substitution and indel costs made
by the researcher modifies the reality under examination? The conclusion is ‘yes’. It has been shown that
variation of substitution and insert/delete costs yields different solutions that lead to very different
conclusions. The first group of analyses on the ‘Ideal Type’ showed that, all indel costs being equal, radically
different solutions are obtained, both when (1) maintaining the reference sequence unchanged and varying the
substitution costs, and (2) maintaining the substitution cost constant and making the reference sequence vary.
It has therefore not been possible to find any regularity, or more simply any general rule, that guarantees the
stability of the results. This raises several problems during the analysis phase, because is impossible to
distinguish the real clusters occurring in reality from those that only result from distortions introduced into the
analysis by the OM distances calculation. What is the consequence? It is that nothing tells us that the outcome
obtained by analysis with 'ideal types', even approximately, is the ‘real’ configuration of the observed reality,
and not the distortion effect introduced into the analysis by using one indel or substitution cost rather than
another.

The situation does not improve with the standard OMA. In this case, too, the distance between sequences does
not vary proportionally to the variation of costs. The result is that fixing the indel costs and varying the
substitution costs yields very different distances matrixes not reducible to a common structure. Nor does the
use of data reduction algorithms like Multidimensional Scaling and Hierarchical Cluster provide a solution. It
is evident from the simulation that varying costs changes the solutions and radically alters the conclusions that
the researcher can derive from the results.

Detailed analysis shows that, between the two statistical methods, the MDS is more sensitive to the variation
of substitution costs. Whereas the Wards Linkage method finds the same clusters (for the eight sequences)
independently of the value of the substitution costs, provided that costs are less than or equal to the indel cost,
the results are totally different for a substitution cost double the indel cost. Nevertheless, we do not know what
happens if hierarchical cluster methods other than the Wards method are used.

To conclude, the analyses reported here were very simple and based only on binary strings with a single
substitution cost. But reality is much more complex: consider when several states and substitution costs are
defined in the same analysis. What happens when, in the same analysis, the value of indel is fixed but
different substitution costs are defined for the different states, or when the substitution cost is fixed and the
indel varies, or when both costs vary? What solutions do we obtain?

* The only regularity found is with identical S rates. This is, for instance, the solution obtained for a value of indel=1.0
and substitution=0.5 is the same as had with a cost of indel=10 and a substitution cost=5.0. In fact both these costs have
exactly the same Sl rate.
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I believe that I have shown clearly the problems, risks and instability attendant on the use of OM techniques in
sequence analysis. It is evident that only a simple small variation in substitution costs produces very different
solutions. Moreover, these solutions are not comparable with each other; nor are they reducible through
techniques of analysis to stable solutions.

What is the risk? It is the impossibility of clearly separating the observed reality from the artificial reality
created by varying substitution and indel costs. What conclusions will a researcher draw if s/he obtains
different solutions on varying costs? Which reality will return us these analyses? Will it be that we want to
capture by sequences analysis or will it be that “artificial” obtained from the OM technique?
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