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ABSTRACT The rapid diffusion of voice disorders and the lack of appropriate knowledge about the problem
have prompted the search for novel and reliable approaches to detect dysphonia, through easy and accessible
instruments such as mobile devices. These systems represent, in fact, valid instruments to improve the
patient care not only to facilitate the monitoring of symptoms of any diseases but also supporting the correct
diagnosis of pathology, such as the dysphonia. In this paper, we propose a newmarker, namely the dysphonia
detection index, able to support the evaluation of voice disorders, which can be embedded in a mobile health
solution. Four acoustic parameters are combined in a single marker to globally evaluate the state of the health
of the voice and to assess the presence or not of a voice disorder. A model tree regression algorithm has
been applied to define the relationship between these parameters, and the Youden analysis has been used to
define the threshold value to distinguish a pathological from a healthy voice. The reliability of the proposed
index has been tested in terms of correct classification of accuracy, sensitivity, and specificity. A dataset
of 2003 voices has been used to evaluate the performance of our proposed index, composed of samples
selected from three different databases: the Massachusetts Eye and Ear Infirmary, the Saarbruecken Voice,
and the VOice ICar fEDerico II databases. Our approach achieved the best performances in comparison
with other algorithms, and accuracy equals to 82.2%, while sensitivity and specificity are 82% and 82.6%,
respectively.

INDEX TERMS Voice diseases, signal processing, mobile health system, classification accuracy, voice
assessment.

I. INTRODUCTION
Mobile health (m-health) systems are currently assuming an
increasingly important role in the assessment of the state
of health. Several m-health systems can deliver healthcare
anytime and anywhere providing support for the monitoring,
treatment and diagnosis of a specific disease. These systems
constitute an helpful instrument to support clinical decisions
and conduct research to improve patient care, such as the

The associate editor coordinating the review of this manuscript and
approving it for publication was Huawei Chen.

solutions described in [1]–[3] A considerable amount of het-
erogeneous data can be acquired and collected by a patient
using her/his mobile device, such as a smartphone or tablet.
The variety and complexity of these data require the provision
of new models, technologies and tools able to process and
analyses them in a reliable and easy way. Artificial Intelli-
gence (AI) algorithms offer the opportunity to achieve this
objective [4]. There is a currently a wide interest in the
adoption of AI techniques in relation to healthcare applica-
tions just as has been demonstrated in various areas of sci-
ence and engineering. AI techniques are applied for medical
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imaging [5], [6] or signal processing [7]–[9]. These offer
an opportunity to improve the monitoring and detection of
specific diseases, such as dysphonia.

Dysphonia is an alteration of the voice quality due to mor-
phological and functional alterations of the pneumo-phono-
articulatory apparatus. The diagnosis of voice disorders
presently requires several medical examinations, as indicated
by the SIFEL (Societá Italiana di Foniatria e Logopedia -
the Italian Society of Logopedics and Phoniatrics) pro-
tocol [10]. Some of these examinations are invasive and
must necessarily be performed by medical expert specialists,
such as for example the laryngoscopy. Other examinations,
instead, are performed by using appropriate tools, such as the
acoustic analysis. This consists of the estimation and eval-
uation of several specific parameters extracted by sustained
vowel phonations.

The Fundamental Frequency (F0), jitter, shimmer and Har-
monic to Noise Ratio (HNR) constitute the main acoustic
parameters evaluated in clinical practice. Their estimations
are often performed by opportune tools, such as the Multi-
Dimensional Voice Program (MDVP) [11] or Praat [12]
(its name deriving from the imperative form of ‘‘praaten’’,
‘‘to speak’’ in Dutch), two software systems able to estimate
these parameters but not analyze them. These estimations,
in fact, can be interpreted only by a medical specialist who is
able to indicate the presence of possible laryngeal alterations.
Other systems, instead, such as those described in [13]–[15],
estimate the acoustic parameters and provide their interpreta-
tion, indicating to the user the presence or absence of possible
alterations. Unfortunately, these systems are limited to an
evaluation of the acoustic parameters individually and do
not offer a global measure of vocal quality. Additionally,
the presence of voice disorders is estimated comparing the
obtained value with a fixed healthy range. The voice is
healthy if the value of estimated parameter is included in
this healthy range, pathological otherwise. The choice of
appropriate healthy range is a crucial point, because there
is not a standard healthy range. This can, in fact, change
from laboratory to laboratory, influencing scale validity and
reliability.

In this study, we propose a new marker, the Dysphonia
Detection Index (DDI), that evaluates globally the voice qual-
ity through a multi-parametric approach. The main acous-
tic parameters have been considered, such as the F0, jitter,
shimmer and HNR. An opportune regression algorithm has
been used to automatically find a relationship between these
parameters, while the Youden analysis has been employed to
find the threshold value to estimate the presence or not of a
voice disorder. The performance of the DDI has been tested
on a wide dataset composed of voices selected from three
different databases.

This paper is organized as follows. In Section II, the main
studies relating to the search for a valid index able to
distinguish between healthy and pathological voices are
presented. Section III introduces the proposed approach,
while the experimental phase and the achieved results are

discussed in Section IV. Finally, our conclusions are pre-
sented in Section V.

II. RELATED WORK
Several rating scales and systems have been proposed in lit-
erature to assess voice disorders, as for example the GRBAS
and the Consensus Auditory-Perceptual Evaluation of Voice
(CAPE-V) scales [16]. The first includes five qualitative
characteristics: Grade of dysphony (G), Roughness (R),
Breathiness (B), Asthenia (A) and Strain (S). A value between
0 and 3 is assigned to each of these characteristics, where
0 corresponds to a healthy voice, and 1 to light, 2 to
moderate and 3 to severe disease. Like the GRBAS scale,
the CAPE-V consists in assigning a rating of severity
(i.e. the grade of the GRBAS scale), roughness, breathiness
and strain. The ranges of the four points of the GRBAS
scale are substituted by a visual analogue scale (VAS),
on which visual markers for mild, moderate and severe rat-
ings are placed. Although these scales are easy to use and
their reliability has been demonstrated in several works such
as [17], [18], it is important to note that these evaluations
must be performed by a specialist. They, in fact, represent a
subjective assessment based on the perception and expertise
of the evaluator.

These considerations have encouraged clinicians and
researchers to develop methods to evaluate objectively the
voice quality by using, in some cases, the parameters eval-
uated by the acoustic analysis, obtained by processing the
voice signal through opportune methodologies. The Dyspho-
nia Severity Index (DSI) [19] is an example. It evaluates
the vocal quality basing on a weighted combination of a set
of measurements, such as the highest frequency (F0-high),
lowest intensity (I-Low), maximum phonation time (MPT)
and jitter. Their linear combination, calculated by logistic
regression, reflects the degree of hoarseness, expressed by the
G of the GRBAS scale. The reliability of the DSI has been
estimated by evaluating the agreement between the observed
and predicted perceived voice quality expressed by G. Tested
on a private dataset composed of 387 subjects (319 pathologi-
cal and 68 healthy), a perfect agreement was obtained in 50%
of the cases. Additionally, a comparison between the DSI and
Voice Handicap Index (VHI) [20] was evaluated, obtaining a
high correlation between both measures.

A comparison between CAPE-V and a spectral/cepstral-
based acoustic index proposed by Awan et al., is presented
in [21]. This index was constructed by using a multiple
regression analysis of the Cepstral Peak Prominence (CPP),
the spectral ratio and their standard deviations. Tests, per-
formed on a private dataset composed of only 32 subjects
(24 pathological and 8 healthy) showed a high correlation
with CAPE-V, obtaining a Receiver Operating Characteristic
(ROC) area of 0.79, while the sensitivity and specificity were,
respectively, 72% and 80%.

Maryn et al. [22], instead, proposed the Acoustic Voice
Quality Index (AVQI) based on a multiple regression equa-
tion constructed by evaluating, as the coefficients, the CPP,
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FIGURE 1. Flowchart illustrating the procedure to determine DDI.

HNR, shimmer and spectral measures (slope and tilt). The
diagnostic accuracy of the AVQI and its ability to distin-
guish between healthy and pathological voices was tested by
using a private dataset of only 23 vocally normal cases and
228 dysphonic subjects. A ROC-curve was evaluated, which
proved to be equal to 0.895. To estimate the sensitivity and
specificity, two AVQI cut-off scores, equal to 2.36 and 2.95,
were considered. In the first case, the sensitivity and speci-
ficity were, respectively, 91% and 59%, while a sensitivity
of 74% and specificity of 96%were estimated by using the
other AVQI cut-off criteria.

III. THE PROPOSED APPROACH
TheDDImarker is able to classify a voice as healthy or patho-
logical by combining information relating to acoustic param-
eters extracted from voice signals and subjects data such as
gender and age.

Figure 1 shows a flowchart illustrating the process
employed to estimate the DDI and classify a voice sample
as healthy or pathological. Voice signals can be selected from
appropriate databases or acquired by using opportune mobile
devices, such as a smartphone or tablet. These signals are
processed to extract characteristic acoustic features, through
opportune techniques or specific m-health solutions, such
as [14]. Acoustic features are necessary to build the regres-
sion model used to define the DDI index. A Youden analy-
sis is conducted in order to select an appropriate threshold
value, necessary to classify a voice sample as healthy or
pathological.

A. DATASET
In this study, voice samples extracted by three different
databases, the Massachusetts Eye and Ear Infirmary (MEEI)
[23], Saarbruecken Voice Database (SVD) [24] and VOice
ICar fEDerico II (VOICED) [25] database, were considered.
The possibility of testing our approach on samples selected
from different databases has enabled us to obtain to have a
wider number of voice signals and to evaluate samples with
several characteristics and language.

The samples extracted by these databases come from
people suffering from several voice disorders and speak-
ing three different languages: American English (MEEI),
German (SVD) and Italian (VOICED). This contributes
to define the voice quality index independently by sub-
ject’s language. Some indeces, in fact, are influenced by
speech rate or linguistic factors and require a validation in

different languages. AVQI, for example, was validated in
English, Dutch, German [26], Korean [27] or French [28].
DDI, instead, is independent by language, and this influ-
ence is limited also thanks the adoption of sustained
vowel, the vocalization of vowel /a/, considered ‘‘language-
independent’’ and particularly used in clinical voice
assessment [29].
MEEI database was developed by the MEEI Voice and

Speech Laboratory. It contains several voice recordings of
subjects, both healthy and pathological. Pathological subjects
suffering from a wide variety of organic, neuralgic, traumatic
and psychogenic voice diseases. The sample frequency for
the healthy samples is 50 kHz, while that of the patholog-
ical samples is 25 kHz or 50 kHz with a 32-bit resolution.
In this study, we have selected 53 healthy voices (mean age,
36 ± 8.4 years) and 372 pathological ones (mean age,
47.8 ± 17.7 years). All the samples have a sample frequency
equal to 50 kHz and a resolution of 32-bit.

The samples contained in the SVDwere, instead, collected
by the Institute of Phonetics of the University of Saarland
in collaboration with the Department of Phoniatrics and Ear,
Nose and Throat (ENT) at the Caritas clinic St. There-
sia in Saarbruecken. It consists of recordings of sustained
/a/, /i/ and /u/ vowels, sampled at 50 kHz with a resolu-
tion of 16-bit. Samples of subjects suffering from several
voice disorders, including functional and organic pathologies,
are contained in this database, freely available online [30].
We selected 685 healthy voices (mean age, 27.6 ± 12 years)
and 685 pathological ones (mean age, 50.1 ± 15.2 years).

Finally, we have considered all 208 recordings from the
VOICED database, realized by the Institute of High Perfor-
mance Computing and Networking of the National Research
Council of Italy (ICAR- CNR) in collaboration with the
Hospital University of Naples Federico II, available on
the PhysioNet website [31]. 58 healthy voices (mean age,
37.2 ± 13.4 years) and 150 pathological ones (mean age,
46.7 ± 12.9 years) constitute this database and all of these
were added to our dataset. The pathologies are classified as
hyperkinetic or hypokinetic dysphonia, or reflux laryngitis.
All the samples have a sample frequency equal to 8 kHz and
a resolution of 16-bit.

The complete dataset includes 2003 recordings containing
the sustained phonation of the vowel sound /a/, as indicated in
the SIFEL protocol [10]. In particular, there are 796 healthy
voices (mean age, 28.7 ± 12.1 years) and 1207 pathologi-
cal ones (mean age, 48.7 ± 15.9 years). Further details are
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TABLE 1. Details of the voice signals used in this study.

provided in Table 1, where we have indicated, for each
database, the number (No) of the selected samples for
each category (healthy or pathological) and gender (female
or male), and the percentage (%) calculated on complete
dataset.

B. MODEL
DDI index evaluates globally and objectively the voice qual-
ity through the estimation of appropriate acoustic parameters.
A regression analysis was conducted to find the relationship
between these features. Finally, an opportune threshold value
to evaluate the presence of a voice disorder was selected. The
following sections described in detail the proposed model.

1) FEATURES EXTRACTION
The F0, jitter, shimmer and HNR was used to evaluate the
voice quality. These are the main parameters estimated in the
clinical acoustic analysis, able to assess objectively the voice
and conditions of pneumo-phono-articulatory apparatus [10].
Each parameter, in fact, represents a specific characteristic
of this apparatus. F0, for example, represents the rate of
vibration of vocal folds and information about the laryngeal
function. While the instabilities of the oscillating of the vocal
folds are evaluated by jitter and shimmer. Finally, the noise
due to incomplete vocal fold closure, a disorder typical of
voice pathologies, is indicated by HNR.

There are no standard algorithms available to estimate the
acoustic parameters. In this study, we used our personalized
methodology described in [32] to estimate the F0, whose
performances are comparedwith themain algorithms existing
in literature, such as the Sawtooth Waveform Inspired Pitch
Estimator (SWIPE) [33], Subharmonic-to-Harmonic Ratio
Procedure (SHRP) [34], YIN algorithm [35]. The cycle-to-
cycle instabilities in frequency and amplitude, respectively
the jitter and shimmer, instead, were calculated according
to the methods indicated in [36]. In detail, the jitter was
estimated as a percentage calculated as the average abso-
lute difference between consecutive periods, divided by the

average period. The shimmer, instead, was calculated as the
average absolute base-10 logarithm of the difference between
the amplitudes of consecutive periods multiplied by 20 and
expressed in decibels. Finally, the HNR was estimated with
the de Krom’s algorithm [37] and expressed in dB.

Additionally, physiological information about user have
been used, such as gender and age due to the influ-
ence of these characteristics and the progression of voice
pathologies [38].

2) REGRESSION ANALYSIS
The DDI index was constructed by using aM5-Pruned (M5P)
model tree algorithm [39]. The realization of a model tree is
based on a combination between a conventional decision tree
and linear regression functions at the leaves, creating a clear
decision structure. In detail, M5P is a system able to build
tree-based models where regression trees have multivariate
linear models at their leaves. Tree-based models are con-
structed by the divide-and-conquer method: the training set
is associated with a leaf or some test is chosen that splits the
training set into subsets corresponding to the test outcomes;
this process is then applied recursively to the subsets. Every
potential test is evaluated by determining the subset of cases
associated with each outcome.

It is important to note that the choice of the appropri-
ate algorithm can influence the definition of the DDI index
and consequent voice assessment. An experimental study
was conducted to select the more reliable model, presented
in Section IV-B.

3) IDENTIFICATION OF THRESHOLD VALUE
To evaluate if the obtained DDI value can indicate a possible
voice alteration, an appropriate threshold value was selected
by using the Youden index (J). This is one of the main sum-
mary statistics of the ROC curve, which is commonly used
to select the optimal threshold value for a marker, as reported
in [40], [41]. The Youden index identifies the optimal demar-
cation point able to achieve the best balance between sensi-
tivity and specificity.

To evaluate this point, the ROC curve was constructed: the
true positive rate (sensitivity) against the false positive rate
(1-specificity) were plotted over all possible threshold
values (c) of the marker. It is estimated in accordance with
the following equation:

JC = maxC {Sensitivity+ Specificity− 1} (1)

The DDI threshold value was equal to 0.753: a voice
sample with a DDI value higher than this threshold is con-
sidered pathological; otherwise, it is healthy. The analysis
was performed using the IBM SPSS Statistics version 25 for
Windows.

IV. EXPERIMENTAL PHASE
To evaluate the classification accuracy of the DDI marker
in distinguishing a healthy voice from a pathological one,
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we conducted an appropriate experimental procedure. A com-
parison was made between the classification accuracy
obtained by using our proposed DDI and that obtained from
the ordinary rule-based approach by means of the evaluation
of acoustic analysis, currently used in clinical practice. Addi-
tionally, the performances obtained by the adopted regres-
sion model and the main approaches used in literature were
compared.

Further details are reported in the following subsections,
where we have indicated the performance evaluation metrics
used to compare the results achieved by using the ordinary
approach used in clinical practice and the main regression
algorithms.

A. PERFORMANCE EVALUATION METRICS
To validate and estimate the ability to distinguish between
healthy and pathological voices, we evaluated its perfor-
mances in terms of accuracy, sensibility and specificity. The
accuracy, defined as the capability of classifying voice sam-
ples correctly, is expressed by Equation 2 as:

Accuracy(%) =
TP+ TN

TP+ TN + FP+ FN
(2)

The sensitivity and specificity indicate, instead, the abil-
ity of the model to classify correctly a voice, respec-
tively, as diseased or healthy, and are calculated with
Equations 3 and 4:

Sensitivity(%) =
TP

TP+ FN
(3)

Specificity(%) =
TN

TN + FP
(4)

where the TP, TN, FP and FN are defined as:

• True Positive (TP): the voice sample is pathological and
the marker recognizes this;

• True Negative (TN): the voice sample is healthy and the
marker recognizes this;

• False Positive (FP): the voice sample is healthy but the
marker recognizes it as pathological; and

• False Negative (FN): the voice sample is pathological
but the marker recognizes it as healthy.

To evaluate the classification accuracy of our proposed
index, the healthy and pathological samples were ran-
domly divided into training and testing sets. Two differ-
ent types of tests were performed. Initially, we considered,
in fact, a dataset composed of voices selected from all
three databases. Subsequently, we adopted an intra-database
approach, considering separately the voices selected from the
three databases. In this case, both the training and testing
sets were composed of samples from the same database. For
each database, 70% of the samples constituted the training
set, while remaining 30% constituted the testing set. Table 2
shows the distribution of the samples for the training and
testing sets considered for each approach.

TABLE 2. The distribution of the samples for training and testing sets.

B. COMPARISON WITH THE MAIN REGRESSION
ALGORITHMS
A comparison between the adopted regression model and the
methods most commonly used in literature was performed to
select the more reliable regression model, able to find the best
relationship between the considered acoustic parameters in
terms of correct classification accuracy. For all the regres-
sion models, the Youden index was employed to select the
opportune threshold that offered the best balance between
sensitivity and specificity and most accurately classified a
voice sample as pathological or healthy. The regression mod-
els analyzed were:
• Linear regression (LR) [42]: this is the most commonly
used type of predictive analysis. A linear approach is
applied to define the relationships between the data. The
threshold value for this model is 0.608;

• Gaussian Process (GP) [43]: this computed an weighted
average of the noisy observations to reduce them.
The regression function is inferred from the given
data, reconstructing the underlying signal by removing
the contaminating noise. The threshold value is fixed
at 0.574;

• Multi-Layer Perceptron (MLP) [44]: this is a type of
artificial neural network. The general framework of a
neural network consists of a three layer architecture
constituted by an input layer, one or more hidden layers
and the output layer. For our tests, the MLP architecture
was composed of 4 hidden layers, with a threshold value
equal to 0.649;

• Simple Linear Regression (SLR) [45]: this is simple
linear regression model, where the attribute that results
in the lowest squared error is selected. A result higher
than the threshold value equal to 0.565 is an indication
of a possible alteration to the vocal tract;

• Sequential Minimum Optimization for Regression (SMO
Reg) [46]: this implements support vector machine
(SVM) for the regression. The improved version was
used for the regression, it employs two threshold param-
eters obtained by evaluating the Karush-Kuhn-Tucker
(KKT) conditions. The threshold used to classify a voice
as healthy or pathological is fixed at 0.599;

• Instance-based Learning [47]: this uses specific
instances to achieve the classification predictions.
In detail, we used K* that predicts data through an
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TABLE 3. Performances of the compared regression algorithms considering the combined databases dataset.

TABLE 4. Performance of the compared regression algorithms considering the dataset obtained using intra-database approach.

TABLE 5. Healthy range for the acoustic parameters considered.

entropy-based distance function, with a threshold value
equal to 1;

• Decision Table (DT) [48]: this is constituted by two
components, a schema, which is a set of features, and
a body, consisting of a multiset of labeled instances.
An induction algorithm is used to decide the features
to include in the schema and the instances to store in
the body. The value that offers the best balance between
sensitivity and specificity is 0.637.

Table 3 reports a comparison between the results obtained
by the regression methods adopted by using the other regres-
sion methods existing in literature, considering the com-
bined databases dataset. This table shows that our approach

TABLE 6. Performances of our approach and each individual acoustic
parameter considering the combined databases dataset.

achieved the best performance in terms of accuracy and speci-
ficity, respectively equal to 82.2% and 82.6%. The best sen-
sitivity, instead, was achieved by the Decision Table method
(97.8%), although its specificity (62.1 %)is lower.

The results obtained considering the samples selected from
the different databases individually are reported in Table 4.
Considering the voice samples extracted from the MEEI
database, our approach achieved high values of classification
accuracy, equal to 98.4%, sensitivity, 98.2% and specificity,
100%. Although the other methods achieved good results in
terms of sensitivity, the specificity of our proposed method-
ology (100%) is higher.

Considering the samples extracted from the SVD
database, our approach achieves performances similar to GP,
DT or SLR, as shown in Table 3. The accuracy is about 80%,
while the sensitivity is 70.6% and specificity 90.2%.
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TABLE 7. Performances of our approach and each individual acoustic parameter considering the dataset obtained using intra-database approach.

Finally, considering the tests performed on the samples
selected from the VOICED database, the best values of
accuracy, sensitivity and specificity were not achieved by
our approach, but, in comparison with the other regression
models, the DDI index offers the best balance between these
measurements. K*, for example, achieves the best specificity
(100%) but the sensitivity is very low.

C. COMPARISON WITH THE ORDINARY APPROACH
As previously mentioned, currently in clinical practice,
the state of health of the voice is evaluated by analyzing and
interpreting the acoustic parameters individually, comparing
the obtained estimations with a determined healthy ranges,
using if/else rules, namely:

if (estimated value of acoustic parameter is
within the healthy range){
Voice classified as healthy

} else {
Voice classified as pathological

}
The difficulty to define an appropriate healthy range can

influence the correct estimation of pathology of pneumo-
phono-articulatory apparatus. In this study, the healthy ranges
considered for the female and male voice samples are indi-
cated in Table 5. The considered ranges to evaluate the jitter,
shimmer and HNR are those indicated in [12], [49], [50].
While, the F0 healthy range was calculated by considering
the mean and standard deviation values of the F0 indicated in
these studies [51]–[53].

Table 6 shows a comparison between the results achieved
by using our proposed marker and the estimations of each
parameter established by the acoustic analysis. The results
obtained indicate that, generally, the best performances were
achieved using our proposed approach. The classification
accuracy achieved, equal to 82.2%, is in fact higher than that
obtained by evaluating each individual acoustic parameter.
Moreover, although the shimmer obtained a good result in
terms of sensitivity (92.6%), the specificity of our approach
is higher (82.6% vs 11.5%).

Considering, instead, the tests performed on each database
separately, the DDI marker achieved the best performance,
in terms of accuracy, in relation to the analyzed samples
extracted from the MEEI database, equal to 98.4%, and the
best balance between sensitivity and specificity, equal to,

respectively, 98.2% and 100%. In this case also, the shimmer
achieved a good performance in terms of accuracy, sensitivity
and specificity, although these results are lower than those
obtained by the DDI, as indicated in Table 7.

Additionally, this table reports the results obtained in
evaluating samples selected from the SVD and VOICED
databases. In the first case, considering samples extracted
from the SVD database, the DDI discriminates between
pathological and healthy voices better than each acous-
tic parameter considered individually. The accuracy is
about 80%, sensitivity is about 71% and the speci-
ficity 90.2%.

Considering, instead, the performances achieved using
voice samples selected from the VOICED database, our
approach did not achieve the best classification accuracy, but
provided a good balance between sensitivity and specificity.
The jitter and shimmer, in fact, achieved a high sensitivity
(respectively, 97.9% and 85.4%) but the specificity is low
(respectively 14.3% and 7.1%).

V. CONCLUSIONS
The increased use of mobile multimedia services and applica-
tions in healthcare offers the opportunity to improve consider-
ably the patient care. These systems, in fact, can help patients
to manage their treatments or support better clinical decision
making through the integration of opportune techniques of
analysis.

In this paper we propose a new multi-parametric acoustic
marker able to evaluate globally the voice quality and detect
possible disorders, that can be embedded in a mobile health
solution, to monitor and support the correct diagnosis of
voice disorders. This marker combines, in fact, data provided
by each acoustic parameter considered, such as information
about the laryngeal function provided by Fundamental Fre-
quency, cycle-to-cycle instabilities in frequency and ampli-
tude by jitter and shimmer, and the presence of noise due
to a voice disorder by HNR, to detect any alterations of
voice quality due to a possible disorder of the pneumophono-
articulatory apparatus.

The proposed approach detects carefully voice disorders.
It identifies with a better accuracy (about 82%) the pres-
ence of a voice disorder than the approaches required by the
standard medical protocols. Additionally, a comparison with
other regression algorithms has been performed, which has
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confirmed the greater accuracy of our approach in detect-
ing a voice disorder than that achieved by using the other
algorithms.

As future work, the proposed multi-parametric marker can
be embedded into an easy and portable tool able tomonitoring
the state of voice health. The aim is integrated this marker
in a mobile solution, able to evaluate, in real time, globally
voice quality by using an easy mobile device, such as a
smartphone or tablet.
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