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ABSTRACT The Turing pattern formation is modeled by reaction-diffusion (RD) type partial differential
equations (PDEs), and it plays a crucial role in ecological studies. Big data analytics and suitable
frameworks to manage and predict structures and configurations are mandatory. The processing and
resolution procedures of mathematical models relies upon numerical schemes, and concurrently upon
the related automated algorithms. Starting from a RD model for vegetation patterns, we propose a
semi-automatic algorithm based on a smart numerical criterion for observing ecological reliable results.
Numerical experiments are carried out in the case of spot’s formations.

INDEX TERMS Vegetation Turing patterns, finite difference methods, Internet of Things.

. INTRODUCTION more) chemicals. This is generally modelled by a system of
nonlinear PDEs.
The are many studies relating biological processes to Turing
patterns via RD models [6]. Due to the nonlinear nature
of the overall mathematical problem, it is generally very
hard getting an analytical solution. Thus, in the majority
of the real world situations, one must resort to numerical
methods. Nevertheless, there is a relatively limited number of
studies on the matter, the importance of the problem at stake,
d ed in biological 1 . 1 notwithstanding. The widely adopted numerical schemes for
ata acquired in biological as well as environmental contexts, RD models are the finite difference (FD) [7], and finite
one gains physical insights on the processes at stake, and p . p
: . . element methods [8]. More recently, discontinuous Galerkin
can forecast at different temporal/spatial scales. The basis . . .
finite element methods [9], [10] have become increasingly

of tl;es.e approac(liles 1 t?e au:lomatl.onlof tllle lprotfeszmg égd popular, as well. Finally, implicit-explicit schemes have been
resolution procedures of mathematical models that describe also used, especially in conjunction with spectral methods

the real world. The Turing pattern formation is mathemati- . . . . .
1 delled by RD PDEs. M £ th | di in Fluidmechanics [11]. One of the first example arising
cally modefied by -type s. Most of the early studies Turing instability is from the Brusselator model [12]. The

on Turing patterns dealt with chemical RD-systems. The ‘que feat f such blem is that it enabl "
fundamental concept introduced by Turing was that, in order LI TEdTTe oF SUET 8 pronieh 19 Fid” 1t Ehanies ore seUing
un p y g ’ analytical solutions which lend themselves as benchmark to

tﬁ be stable ésgad'y ), fs tates llllave to be dlfﬁgsmn—fi)ele. Tz validate more involved numerical schemes [13]-[16]. The
the contrary, ditfusion favors the emergence of unstable an same is for the Schnakenberg model [17], representing a

spatially heterogeneous patterns [5]. The pattern formation simplified version of the previous one [18], [19]. A detailed
dynamics generally occurs due to the interaction of two (or ’

He availability of modeling frameworks to investigate

biological [1], and environmental [2]-[4] phenomena is
of paramount importance for predicting purposes. The huge
amount of data from the real world also requires techniques
and tools to extract, manage and properly classify informa-
tion. The Internet of Things (IoT) system of connecting ma-
chines and sensors is a useful tool for reading the real world.
In fact, by extracting information from a large number of
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analysis about the time-integration schemes, and numerical
results can be found in [18]- [19]. Finally, a generalization of
the previous models, accounting for the spatial pattern’s dis-
tribution, was provided by Gray-Scott [20]. Implicit-explicit
schemes to describe pattern formation arising from such
a model can be found in [21]. Besides the numerical ap-
proaches, RD-type models related to Turing’s patterns have
been tackled by means of the cellular automata models [22].
Such an approach could be used to develop a counterpart
to simulate both the Brusselator’s model and that of Gray-
Scott [23].

In this paper we present a numerical (FD) approach for a RD
model describing the vegetation patterns’ formation as deter-
mined by the interactions between biomass evolution, water
availability and toxicity in plant-soil feedback [6], [24]. It is
shown that our algorithm leads to a simple stability criterion
avoiding numerical artifacts. In particular, such a criterion
serves as a tool to be (consciously) used in the integration
scheme in order to avoid meaningless results [25]. The paper
is organized as follows. In the section II we present the
RD model giving rise to the vegetation patterns formation;
in section III we focus on the numerical solution by a FD
scheme, and the accuracy vs stability of the numerical model.
Section IV exploits the algorithmic into details; conclusions
are outlined in the Section V.

Il. THE MATHEMATICAL MODEL AND THE
DISCRETIZED SCHEME

We consider the numerical solution of the following system
of nonlinear PDEs [24]:

%—f = DpAB + Gp(B,W,T), (1a)
%—Vf = Dy AW + Gy (B, W), (1b)
oT

i T[Bgs — (k + wp)] + ¢dB, (1c)

where B, W, T are the specific (per unit surface) biomass,
water, and toxic compounds. The coefficients Dg, Dy €
Rt accounts for the diffusion of the biomass and water,
respectively, whereas the nonlinear reaction terms G g and
Gy are defined as:

Gp(B,W,T) = ¢cB*W — (d + sT)B, )
Gw(B,W) = p— rB*W — IW.

The positive parameters appearing into (2) are chosen either
in accordance with [26], [27] or selected from within an
order-of-magnitude feasibility range [28], [29]. More pre-
cisely, p is the rain intensitiy, k is the rate of decay of toxicity,
and s is the sensitivity of the plants to the toxicity (see Table
1 in [6], [24] for further details). Equations (la)-(Ic) are
defined on a bounded domain 2 C R2, and are subjected to
zero Neumann-type boundary conditions along the boundary
0 of the domain. The initial conditions are:

B(.’L’,y,O) = BO) W(.’E,y,O) = WO7 T(.’E,y,O) = 07 (3)

for (z,y) € Q. A FD scheme on a regular grid in Carte-
sian coordinates provides an approximation of the solution
over a finite number of grid points {z; ;}, s.t. z;; =

(iAz,jAy) i=0,...,Ny—1, j=0,...,N,—1, with
Az = {et and Ay = % the grid mesh-sizes. If a

temporal grid is defined as 7% := kAt, k = 0,..., M,
with temporal step-size At := thM , the scheme provides an
approximation, say uf ;, at z; ; and time step 7.

Let uf ; be the approximation of B, W and T at z; ; and
time step 7". For the eqs (1a)-(1b) we apply a FD scheme
forward in time and centered (second order) in the space,
whereas (1c) is solved by a first order accurate forward Euler
scheme. We then define a weight average scheme can be
defined for the two PDEs, that is based on a convex (6-type)
combination of the spatial terms of the forward/backward
difference methods. We set D = Dp = Dy in (1a)-(1b),
so that it yields

ufjl — ufj = Dpul61 (Ay2 . 5§ufj+1 +Az?. 5§ufj1) +
+ (1= 00)(AY? - S2uf,; + Az - 5wy )] +
+ At + (1 02)g"] 4)

V(i,5),i=1,...,Nz, j=1,...,N,, being

2.k _ .k k k
O3Ui j = Uipy j — 2Uj j + Uiy j,

Oy = i1 — 2 + g,
whereas g” is the non linear term at the time level 7%, and
At

NN

To investigate the Turing pattern formation, it is sufficient to
assume 65 = 0 (explicit scheme).

I &)

lll. A SEMI-AUTOMATIC ALGORITHM FOR VEGETATION
TURING PATTERNS

With 0 := 6, we re-write (4) into matrix form as AX =Y,
being A, X and Y a 3N, N, x 3N, N, matrix, and 3N, IV, x
N, N, matrices, respectively. Such matrices are defined as:

Ag 0 0
A = 0 Aw 0 ,

y = | vh |,

where Ap and Ay are square sparse, pentadiagonal,
non-symmetric, positive definite, diagonally dominant, and
banded (width N,) matrices of N, x Ny-order; Iy, x n, i8
the unit matrix of order N,, x N,. By setting

. 0AtDp . 0AtDgp
Vv R R v e
 (1-0)AtDy  (1-0)AtDg
(& = 7(AJZ)2 y ro = 7(Ay)2 s (6)
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and
g OAt Dy, o OAtDyy,
P Qe TP (ay?
o (1 —-0)AtDy o (1 —-0)AtDy
S1 = 7(A]})2 5 S9 = 7(Ay)2 . (7)

(k > 0), the (4, )-th elements of Ap and Ay are respec-
tively:
(142R; +2R)bETH — Ry (bFH, + 0510 ) +
— Ry (bfT +0TL) ®)

and

(]. + 251 + ZSQ)Mijl Sl ('ll)lﬁLl7 + U}kJrl ) +

41,5 1—1,7
k+1 k+1
= S (wijl +wify) )

(t=0,....,N; —1,j=0,...,N,—land k =0,..., M).
Likewise, the Y -bocks are

Yh= 0+ A [l — (d 4 st ek ] +

o (b — 208 b )
+ 2 (B8 oy — 267 + 0 ) (10)

2
wﬁj + At [pfrbi-‘ij wk] — lw” }

1 (2¥]
k k k
+ s (Wi — 2wl Fwily ) +

k k k
+ s (Wi — 2w i)

and
VE =t8 + At [q(d+ sth )by — (k + wp)t? ]

(¢t=0,...,N;, — 1,5 =0,...,N, — 1). The parameter 6§
allows to swap the numerical scheme, that is § = 0 provides
explicit (forward in time) FD, § = 1/2 corresponds to the
Crank-Nicolson scheme, whereas § = 1 a fully implicit
(backward in time) Euler scheme. The explicit scheme has
second-order convergence in the space, and a first order
accuracy in time. It is conditionally stable, and the Courant-
Friedrichs-Lewy (CFL) condition is:

Je>0: At < cAz>

For the numerical approximation (4), the CFL writes as

Je>0: At< S Azt Ay’

= 2D Az? + Ay?’ (i

Given this, we aim at:

(1) keeping low the truncation error;

(2) containing the round-off error propagation, and there-
fore the sneaky numerical artefacts which can arise
when Dp(Ax? + Ay?) — 0.

VOLUME 4, 2016

TABLE 1: Semi-automatic algorithm for Turing pattern

Require: Set input values
1: for kK =1:tmax do
2: Computation of Yg* by Dg, ¢, d, s, At,ry,ro
3 Computation of Yk by Dw,p,r, At, s1, S2
4: Computation of Y7* by At, q,d, s, w, k,p

5. Solve Ag[XF 1] = yg* {call GMRES)

6~

7

8

9

{under hypothesis (11)}

Solve AW[X%V“] =Yk {call GMRES}
: SolveIn, x N, [X;“JH] =Yp* {T updating}
: end for
: return

TABLE 2: Numerical results.

case (11) At | Az [ |B — Breglloo
num. | satisfied Ay
1) yes 0.05 | 0.5 | 0.079 -
2) no 0.05 | 0.38 | 0.046 GMRES tol.
not satisfied
3) no 0.08 | 05 | 0.079 4.8115e+01
4) no 0.09 0.5 0.079 | numerically singular
matrices
5) no 0.1 0.5 | 0.079 | numerically singular
matrices
IV. RESULTS

Due to the block diagonal form and the constant coefficients
of Ag, Aw and Iy, x n,, We solve wrt. B,W and T
independently at each time level. Each system is solved (see
Table 1) by the generalized minimal residual iterative method
(GMRES). With the parameter values listed in the Table
1 of [24], simulations were performed on a N, x N, =
100 x 100 square lattice with 2,4, = 50, and Y0 = 50.
The initial conditions are By = 0.2 kg/m2 in Ny = 5000 ran-
domly selected elements, and By = 0 in the remaining nodes,
Wy = 40kg/m? and T = 0 at all points. Moreover we fix
p = 0.8 and we run the simulations along t¢,,,, = 20000
days. We set = 0 and

_c Ax2Ay?
2D Az? + Ay?
in the (11), with ¢ = 1 and

1 (1 1

D "\ DB DW/"
Table 2 summarizes the results obtained for different values
of At, Az = Ay and ®; a brief description follows.

Test case condition satisfied: At < ®

case 1) Let be At = 0.05, Az = Ay = 0.5, = 0.0797.
The condition (11) is satisfied and we assume the
computed solution B,.; as a reference. The last
column of Table 2 refers to the maximum error
in the solution, w.r.t. By.s. In the Fig.1 (up row)
we have depicted the temporal evolution of the
biomass-density, whereas the temporal evolution of
biomass density, averaged over the lattice is repre-
sented in the Fig. 2 (left). The response of plants
to toxicity negative feedback (s = 0.2) combined
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with a high toxicity decay rate (k = 0.2), gives rise
(after about 12 minutes) to stable patterns.

Test cases condition not satisfied: At > ©

In the Table 2 we have summarized also the results obtained
on failing the condition (11), both by increasing At and
decreasing ®:

case 2) Let be At = 0.05, Az = Ay = 0.38, & =
0.0469. A reduction of Ax = Ay, does not let @ to
overcome At, and concurrently the condition (11))
is violated. With the parameters values listed in
the first line of the Table 2, GMRES (without
restart and in the default number equal to 10 it-
erations) doesn’t satisfy the prescribed tolerances
€ € {107%,107*,1072}; the execution is interrupt
since the solver GMRES doesn’t converge.

case 3) Let At = 0.08, Ax = Ay = 0.5, ® = 0.0797. By
increasing At w.r.t. &, the computed values move
away from the reference values, according to the
absolute error in the last column. In Fig.1 (down)
some spots represent the biomass evolution when
the condition (11) is violated. The disappearance
of the pattern formation after about 10 seconds,
is due to the amplification of the round-off errors
through the time stepping, and it demonstrates that
also a small perturbation in the amplification factor
can lead to an unreliable solution. The Fig.2 (right)
shows how the mean value of the biomass vanishes
(in about 7000 time steps).

case 4),5) Let us assume that At = 0.09 and At = 0.1,
with Az = Ay = 0.5 and & = 0.0797. An in-
crease of At renders the iteration matrices (quasi)-
singular, such that no solution can be achieved.

V. CONCLUSIONS

The IoT systems can be viewed as a glass for reading the real
world, granting the process and producing a huge amount
of data. The automation of the processing and resolution
procedures of mathematical models describing the real world
is mandatory to get insights on the physics underlying the
biological/environmental processes.

In the present paper we have developed a numerical scheme
for a particular RD model describing the formation and
evolution of the vegetation pattern. The numerical scheme
relies upon a semi-automatic algorithm based on a stability
criterion, that limits the amplification error in the computed
solution. Simulations show that, when the criterion is sat-
isfied, the numerical scheme converges towards a reliable
solution.
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FIGURE 1: The temporal evolution of biomass density: case 1) in Table 2, with At = 0.05, Az = Ay = 0.5, & = 0.0797
(up); case 3) in Table 2, with A¢ = 0.08, Az = Ay = 0.5, & = 0.0797 (down).
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FIGURE 2: The temporal evolution of mean biomass density in case 1) (left) and case 3) (right). In this last case, the mean
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