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Abstract. We study the random walk of solitons and characteristic lines of
shock fronts in the presence of disorder for the one-dimensional nonlinear
Schrödinger equation in Kerr-like media. We analyze the interplay of nonlocality
and randomness, and the way their competition affects strongly coherent
nonlinear waves is theoretically and numerically investigated.
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1. Introduction

Nonlinear phenomena, as solitons [1, 2] and dissipative and dispersive shock waves
(SWs) [3–8], are largely affected by the presence of nonlocality [9–11] and disorder [12–14].
A nonlocal response is present when the light beam induces a refractive index change on a
spatial region greater than the beam waist; this effect is typically found in physical systems
displaying long-range correlation [15–20]. However, considering a nonlocal response also
implies accounting for disorder. Indeed, a large spatial region that interacts with the propagating
electromagnetic field in a nonlocal medium commonly also involves material fluctuations.
These are due to electronic and thermal effects and their interplay with nonlinearity produces
a complex scenario to be investigated. In fact, the way nonlinear coherent phenomena, as SWs
and solitons, are affected by randomness is one of the most active research areas in nonlinear
optics [21–24]. Disorder frustrates the coherent interaction between light and matter and delays
the formation of solitons or SWs. In these respects, the amount of disorder and nonlinearity can
be retained as control parameters in ‘phase-diagrams’ [14, 25, 26], identifying regimes in which
various phenomena can be observed.

In optics, one-dimensional (1D) propagation in a nonlinear medium is described by the
nonlinear Schrödinger equation (NLS) [1]

2ik∂z A + ∂2
x A + 2k21n

n0
A = 0, (1)

where A is the beam envelope normalized such that I = |A|
2 is the optical intensity, 1n(r)=

n2|A|
2 is the intensity-dependent component of the refractive index, n = n0 + n2|A|

2. z is the
propagation distance, x the transverse coordinate, k = 2πn0/λ is the wave vector and λ is the
wavelength.

In this paper, we introduce a disorder term in (1) by taking

1n(x, z)= n2|A|
2 +1nR, (2)

where 1nR =1n0
RV (x, z) and V (x, z) is a Gaussian potential such that 〈1nR(x)1nR(x ′)〉 =

(1n0
R)

2δ(x − x ′). The refractive index perturbation 1nR is associated to a length scale
competing with the scale of the nonlinear interaction between light and matter, as detailed below.
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Equation (1) with the disorder term (2) can be normalized by introducing spatial scales
weighting the relative roles of disorder, nonlinearity and diffraction. Nonlocality [9, 10, 14, 23]
also introduces a spatial scale. The nonlocal response of the medium can be written as a con-
volution integral of the wave field and a response function χ(x − x ′):

1n(x, z, I )=

∫ +∞

−∞

dx ′χ(x − x ′)[n2 I (x ′, z)+1nR(x
′, z)]. (3)

The response function typically depends on a length scale Lnloc which gives its spatial extension,
being the local limit recovered by χ(x − x ′)= δ(x − x ′). The typical response function has an
exponential form χ(x)= e−|x |/Lnloc/(2Lnloc). In the highly nonlocal limit, the response function
can be approximated by a constant, χ(x)= χ0, with χ0 = 1/2Lnloc in the exponential case.

1.1. The three length scales

When we add disorder and nonlocality in (1), the resulting equation is

2ik∂z A + ∂2
x A + 2k2 n2

n0
Aχ ∗ |A|

2 + 2k21n0
R

n0
Aχ ∗ V = 0, (4)

where we have introduced the convolution integral D ∗ B =
∫

dx ′D(x − x ′)B(x ′).
The diffraction (or Rayleigh) length Ld for a Gaussian beam, propagating along the z-axis

and with a beam waist w0, is defined as

Ld = kw2
0. (5)

The weight of nonlinearity is measured by the nonlinear length Lnl, which defines the length
over which the nonlinear phase shift 1φnl = 4πn2 I0z/λ is equal to 1:

Lnl =
n0

2kn2 I0
(6)

with I0 the peak intensity.
We define the randomness length LR as the length over which the phase shift of a beam

propagating in an homogeneous medium with refractive index1n0
R,1φR = 4π1n0

Rz/λ is equal
to 1:

LR =
n0

2k1n0
R

(7)

and it is determined by the strength of the random refractive index perturbation 1n0
R.

1n0
R is related to the localization length l, which scales as l ∝ 1/(1n0

R)
2/3 [12, 27], and

measures the spatial extension of the disorder induced transversal confinement.

1.2. Rescaled nonlinear Schrödinger equation

Scaling the coordinates as x → w0x , z → 2Lz with L ≡
√

LdLnl, and by introducing the
complex field ψ = A/

√
I0, we obtain from (4)

iε1∂zψ + ε2
1∂

2
xψ ±ψK ∗ |ψ |

2 + ε2
2ψK ∗ V = 0, (8)

where

ε1 =

√
Lnl

Ld
(9)
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and

ε2 =

√
Lnl

LR
(10)

are the only relevant quantities, evidencing the relative weight of nonlinearity, randomness
and diffraction. The rescaled response function in the exponential case takes the form K (x)=

1/(2σ) e−|x |/σ , with σ = Lnloc/w0.
In the next section, we show how different regimes can be obtained when varying the length

scales Ld, Lnl and LR, and correspondingly, ε1 and ε2.

2. Ordered case

In an homogeneous sample, the weight of the fluctuations of refractive index1n0
R is negligible,

hence the randomness length scale is infinite LR � Lnl, Ld or, equivalently, ε2 = 0. The rescaled
NLS equation becomes

iε1∂zψ + ε2
1∂

2
xψ ± |ψ |

2ψ = 0, (11)

where we consider the local case K (x)= δ(x).

2.1. Solitonic regime

The generation of solitary waves results from the balance between the diffraction and
nonlinearity, in this case Ld ' Łnl, ε1 ' 1.

Limiting ourselves to the focusing case, equation (8)

i∂zψ + ∂2
xψ + |ψ |

2ψ = 0 (12)

admits a localized solution, taking the form ψ(x, z)= u(x) eiβz with

u(x)= u0 sech(x/W0), (13)

W0 =
√

2/u0 and β = u2
0/2. The condition on the length scales Ld = Lnl gives ‘the existence

curve’, u0W0 = const that relates amplitude and waist of soliton. In the 1D case, the localized
solution is always stable and no catastrophic collapse events occur. In the nonlocal case, u(x) is
found numerically [14].

2.2. Shock waves regime

The SWs generation is a strongly nonlinear phenomenon and has also been studied in the
presence of nonlocality [9–11]. To investigate such a regime, we deal with the hydrodynamical
approximation [9, 28], when considering a weakly diffractive regime, Ld � Lnl and ε1 � 1. The
evolution of a Gaussian beam ψ(x)= u0(x) eiβz with u0(x)= e−x2/2 is obtained by the Wentzel,
Kramers and Brillouin (WKB) transformation

ψ(x, z)=

√
ρ(x, z) exp[iφ(x, z)/ε1], (14)

where ρ(x, z) is the slowly varying beam intensity and φ(x, z) its phase. By inserting
equation (14) in (11), the following Euler-like equations are obtained:

O(ε) : ρz + ∂x(ρv)= 0,

O(1) : φz + v2
∓ ρ = 0,

(15)
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where we have defined the velocity of the fluid v ≡ φx as the phase chirp and we neglect the
‘quantum’ pressure term, 1

2(
1

√
ρ
∂2

x
√
ρ). We derive the O(1) equation with respect to x , and obtain(

∂v

∂z
+ 2v

∂v

∂x

)
= ±

∂ρ

∂x
. (16)

At the beginning of the evolution, the strong nonlinearity lets the field intensity ρ to act as a
pressure distribution on the velocity of the ‘optical fluid’. In the focusing case, the pressure
profile induces the fluid (the flat phase distribution) to accumulate in the center causing the
shock to occur in correspondence of the peak intensity. In the defocusing case, this results in
an accumulation of the energy density on the beam sides with the formation of two symmetric
shocks, as described below.

3. Weakly disordered system

When the disorder is a perturbation, LR � Lnl, Ld and ε2 � ε1, it is interesting to analyze the
way it affects the evolution of solitary and SWs.

3.1. Solitonic regime

We consider a nonlocal nonlinear medium in the presence of disorder. We assume that LR �

Lnl, Ld and the diffraction and nonlinearity satisfy the condition for soliton existence: Lnl ' Ld.
As a consequence, equation (8) becomes

i∂zψ + ∂2
xψ ±ψK ∗ |ψ |

2 +ψK ∗ η = 0, (17)

where we introduced the variable η = ε2
2V (x, z)= (1n0

R/|n2|I0)V (x, z) as a small perturbation.
We use a perturbational approach and show that an increasing degree of nonlocality hampers
the Brownian motion of self-trapped wave-packets [14]. In fact, the nonlocality acts as a spatial
filter on the wave propagation, canceling fluctuations.

Letting ψ = φ exp(iβz), equation (17) is written as

i∂zφ + ∂2
xφ−βφ +φK ∗ |φ|

2
= is(x, ψ,ψx , ψxx , . . . , z), (18)

where s is taken as a perturbation term, depending on ψ and its transverse derivative at any
order, and β is the nonlinear wave-vector. For s = 0, the unperturbed solitary wave (SW) is
written as

φ0 = u(x − X + 2�z, β) exp(iθ − i�x − i�2z), (19)

where X is the center of the self-trapped wave, θ is the phase and 2� is the velocity.
In the following, we derive dynamical equations for the first order perturbation of these

parameters. By letting φ = φ0 +φ1, the linearized evolution equation is

∂zφ1 = L(φ1)+ s (20)

with

L(φ1)= −iβφ1 + iφ1,xx + iφ0 K ∗ (φ0φ
∗

1 +φ∗

0φ1)+ iφ1 K ∗ |φ0|
2. (21)

The analysis can be limited to SW with �= 0. The first order perturbation φ1 is represented by
a small variation of X , �, θ and β:

φ1 = fXδX + fθδθ + fβδβ + ( f� − X fθ)δ�, (22)
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where the auxiliary functions are defined as fθ = iφ0, fβ = ∂βφ0, fX = ∂Xφ0 and f� =

−i(x − X)φ0, and being δX (z), δθ(z), δβ(z) and δ�(z) the z-dependent perturbations to SW
parameters. We introduce the adjoint functions f̂ given by f̂ θ = i fβ , f̂ β = −i fθ , f̂ � = −i fX ,
f̂ X = i f� and such that ( f̂ a, fb)=Naδa,b with a and b two SW parameters (X , �, θ or β) and
introducing the scalar product ( f̂ , f )= <

∫
( f̂ )∗ f dx . It is Nθ =Nβ = (1/2)(dP/dβ)= P ′/2

and NX =N� = (1/2)P , with P = (φ0, φ0) the SW power.
Being L̂(i f )= −iL( f ), the projection over the adjoint functions of equation (20) gives

δθ̇ − Xδ�̇= δβ +
2Sθ
P ′
, δβ̇ =

2Sβ
P ′
,

δ Ẋ = −2δ�+
2SX

P
, δ�̇=

2S�
P
,

(23)

where Sα = ( f̂ α, s), and the dot is the derivative with respect to z.
Equations (23) hold for any s; for the random perturbation in (17), we have

s = iηu eiθ , (24)

where 〈η(x)η(x ′)〉 = η2
Nδ(x − x ′) and ηN = 〈(1n0

R)
2
〉

1/2/|n2|I0. Equations (23) become

δθ̇ = Xδ�+ δβ +
1

P ′

d

dβ

∫
u2(x − X)(K ∗ f ) dx,

δβ̇ = 0, δ Ẋ = −2�,

δ�̇= −
2

P

∫
u(x − X)ux(x − X)(K ∗ f ) dx,

(25)

from which

δ�(z)= −
2

P

∫ t

0

∫ ∫
u(x − X)ux(x − X)K (x − x ′) f (x ′, z′) dx ′ dx dz′ (26)

and averaging over disorder,

〈δ�(z)δ�(z′)〉 =
4〈 f 〉

P2
C min(z, z′), (27)

where

C =

∫ ∫ ∫
u(x1 − X)u(x2 − X)u(x3 − X)ux(x3 − X)K (x1 − x2)K (x3 − x2) dx1 dx2 dx3. (28)

From (23), we obtain the mean position

δX (z)= −2
∫ z

0
δ�(z′) dz′ (29)

from which 〈δX〉 = 0 and

〈δX (z)2〉 = 4
∫ z

0

∫ z

0
〈�(z1)�(z2)〉 dz1 dz2 =

16η2
N C

3P2
z3. (30)

Equation (30) is the nonlocal expression of the Gordon–Haus effect, that describes the Brownian
motion of coherently amplified solitons [13]. In equation (30), the quantity C measures the effect
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Figure 1. (a) Typical dynamics of a solitary wave from the numerical solutions
of (17) in the presence of randomness and exponential low nonlocality (P = 6,
σ 2

= 0.4, ηN = 0.01) and (b) exponential high nonlocality (P = 6, σ 2
= 10,

ηN = 0.01); center of mass trajectories of the same bound-state (P = 6) for
20 disorder realizations (ηN = 0.01) for (c) small nonlocality (σ 2

= 0.4) and,
(d), high nonlocality (σ 2

= 10). (e) Comparison of the numerical (continuous
line, P = 6, ηN = 0.01) and theoretical results (circles for σ 2

= 0.4 and crosses
for σ 2

= 10 standard deviation of the SW position versus z for 20 disorder
realizations).

on locality on the soliton fluctuations. In particular, in the highly nonlocal limit K (x)→ K0, for
a bell-shaped soliton profile [u(x)= u(−x)], we have

C = K 2
0

[∫
u(x1 − X)ux(x1 − X) dx1

]2

= 0. (31)

In the highly nonlocal regime, the random fluctuations of the fundamental soliton vanish.
Physically, when we increase the degree of nonlocality, the spectral content of the nonlocal

response shrinks, and, as a consequence, averages out the randomness [15]. This result is valid
for every kind of nonlocality.

To verify this theoretical analysis, we have numerically integrated the stochastic partial
differential equation (17) for a 1D exponential nonlocality, using a pseudo-spectral stochastic
Runge–Kutta algorithm [29, 30]. Panels (a) and (b) of figure 1 show a typical evolution starting
from a bound state and displaying the random deviation of the SW for two different degrees of
nonlocality σ . We stress that the high nonlocality degree for the case in panel (b) considerably
dampens the random walk of the soliton with respect to the quasi-local case in panel (a). In
panels (c) and (d) of figure 1, we report various trajectories for a fixed SW power for σ 2

= 0.4
(c) and σ 2

= 10 (d). Panel (e) shows the calculated standard deviation for the two degrees of

New Journal of Physics 15 (2013) 085026 (http://www.njp.org/)

http://www.njp.org/


8

nonlocality above: the analytical prediction of equation (30) is well reproduced by the numerical
simulations.

3.2. Shock waves regime

Due to their strongly nonlinear and coherent origin, the SWs will be heavily affected by disorder
during focusing and defocusing propagation. By the hydrodynamical approach, we investigate
the competition between strong nonlinearity and disorder and we find that an increasing amount
of disorder delays the shock point up to the inhibition of the wave breaking.

To enter the shock regime, we consider a weak diffraction regime with Ld � LR � Lnl,
and the local case, K = δ(x):

iε1∂zψ + ε2
1∂

2
xψ ± |ψ |

2ψ + ηψ = 0, (32)

letting ψ(x, z)=
√
ρ(x, z) eiφ(x,z)/ε1 , and retaining only leading orders in ε1, we have

O(ε1) : ρz + ∇x(ρv)= 0,

O(1) : φz + v2
∓ ρ = η,

(33)

where v ≡ φx is the phase chirp. We derive the first order equation with respect to x :

∂v

∂z
+ 2v

∂v

∂x
= −

dU

dx
, (34)

where the potential function U is Ufoc = η− ρ in the focusing case and Udef = η + ρ in the
defocusing case. We assume a Gaussian profile for the input beam ρ = exp(−x2/2), and we
apply the method of characteristics [31]. Equation (34) is reduced to

dx

dz
= 2v,

dv

dz
= −

dU

dx
,

(35)

and by deriving the first equation with respect to z (hereafter, we make the ansatz z → z/
√

2 to
simplify the notation), we have

d2x

dz2
= −

dU

dx
= −

dUnl

dx
−

dη

dx
, (36)

which is equation of motion of a unitary mass particle in the potential U = Unl + η with
Unl = e−x2/2 the deterministic contribution deriving from nonlinearity. The stochastic term
f = −dη/dx is taken as a Langevin force with Gaussian distribution, 〈 f (z) f (z′)〉 = f 2

Nδ(z − z′)

with fN ≈ ηN . Numerical simulations, obtained by a stochastic Runge–Kutta algorithm [32],
provide solutions of equation (36) for several initial conditions x(0), v(0) and noise realizations
η(x). For each pair of initial conditions, we change the noise configuration in order to account
for the dependence of ηN on x . The shock position corresponds to the singularity of the phase
chirp |dv/dx | → ∞ and can be directly measured as the point of large steepness of the beam
intensity [10]. In this unitary mass particle approach and in the absence of disorder, the shock
point can be extrapolated by the coalescence of multiple trajectories, as shown in figure 2(a)
(defocusing case) and in figure 3(a) (focusing case). In fact, the characteristic lines give the
direction of energy flow and the shock formation corresponds to the accumulation of light
density in specific regions of the transverse dimension x : at the edges of the laser beam for
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Figure 2. Trajectories from initial uniformly distributed conditions versus z. The
collisions among particles give the shock position: in the defocusing case, the
shock event occurs at the edges of the beam profile, (a) without disorder (ηN = 0)
and (b), for ηN = 0.1.

defocusing nonlinearity, and at the center of the laser beam for focusing nonlinearity. When
we analyze the phase space of x and v (figure 2(c) for defocusing nonlinearity and figure 3(c)
for focusing nonlinearity), the shock can be observed as a folding of particle velocities into a
multivalued function. Physically, being that the light field is a single-value function, it happens
that diffraction regularizes the wavefront, breaking the wave and causing the so-called undular
bore [8, 16, 33]. This phenomenon corresponds to coherent fast oscillations both of the field
intensity and the phase chirp, which smoothly join the singularity region with the rest of the
wave front.

In the presence of disorder, the light scattering lowers the field intensity and moves the
shock threshold away along the propagation distance. In the particle analogy, the characteristic
lines are randomized (figures 2(b) and 3(b)) and the particles collide along greater distances,
undergoing a Brownian motion and delaying the trajectory accumulation that determines the
shock event.

In figures 4 and 5, we show, respectively, the numerical histograms of the particle positions
in the defocusing and focusing cases. Panel (a) reports the accumulation point of the caustics in
the ordered systems; it has a fixed position, corresponding to the singularity of the phase chirp,
dv/dx → ∞. In the disordered cases, panel (b), the trajectories are randomized and intersect at
different points. We choose as the shock position zs(ηN ), the mean value among the positions in
which the histograms in figures 4 and 5 (panels (b)) are above the 90% of its maximum. It is an
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Figure 3. Trajectories from initial uniformly distributed conditions versus z. The
collision points between particles signal the shock position: in the focusing case,
the shock event happens in the center of the beam profile, (a) without disorder
(ηN = 0) and (b), for ηN = 0.1.

arbitrary criterion, which allows us to assess the probability that the shock event can be found
in a specific spatial region.

In panels (c) of figures 4 and 5, the shock position is reported as a function of normalized
strength of disorder ηN . As ηN increases, the shock process is delayed with respect to the
ordered case. When the amount of disorder exceeds a critical value, the shock generation is
inhibited. This threshold can be analytically determined as that corresponding to a random
index perturbation 1nR comparable with the nonlinear term: 〈(1n0

R)
2
〉

1/2 ∼= |n2|I0, which gives
ηN

∼= 1. In equation (32), the stochastic term related to η becomes greater than the nonlinear
contribution. When this happens, the hydrodynamical limit in (36) is no longer valid. In fact,
the stochastic fluctuations of the material become so large as to mask the nonlinear effect.

In the hydrodynamical regime, the shock position zs scales as 1/
√

P . When disorder
is added, we found that the shock position becomes like zs(ηN )/

√
P with zS(ηN ) given in

figures 4(c) and 5(c). Hence, nonlinearity and disorder act as opposite effects: on the one hand,
the shock formation is favored (zS decreases) when nonlinearity grows, but on the other hand,
by introducing disorder, light is scattered and the phenomenon is hampered (zs increases).

3.2.1. Nonlocal case. Here we consider the way nonlocality affects the formation of SWs
in the presence of disorder. Similarly to disorder, nonlocality delays the shock generation.
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Figure 4. Histograms of particle positions in the defocusing case (a) for ηN = 0
and (b) ηN = 0.1; (c) normalized shock position versus the degree of disorder
ηN . The shock position is delayed by the presence of disorder.

Furthermore, nonlocality also allows the shock to form in focusing media whereas filamentation
or modulation instability prevail on the shock formation in local media [9].

We start by considering the nonlocal version of equation (32)

iε1∂zψ + ε2
1∂

2
xψ ± θψ = 0,

−σ 2∂2
x θ + θ = |ψ |

2 + η,
(37)

where θ = 2kLnl1n/n0 = K ∗ (±|ψ |
2 + η) and 1n is the nonlocal nonlinear disordered

refractive index perturbation (3) with a degree of nonlocality given by σ .
We make a WKB transformation of the field ψ(x, z)=

√
ρ(x, z) eiφ(x,z)ε1 and substituting

in (37), we obtain for the leading orders in ε1:

O(ε1) : ρz + ∇x(ρv)= 0,

O(1) : vz + 2vxv∓ ∂xθ = 0,

O(1) : −σ 2∂2
x θ + θ = ρ + η,

(38)

where v = ∂xφ is the phase chirp. The intensity ρ adiabatically changes in z with respect to
the phase chirp and the refractive index modulation θ . Hence, we take ρ constant versus z,
ρ(x)= e−x2/2. As a consequence, the exact solution θ(x) can be obtained from the third equation
in (38). By using the method of characteristics, the second equation of (38) can be reduced to

dx

dz
= 2v,

dv

dz
= −

dU

dx
,

(39)
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Figure 5. Histograms of particle positions in the focusing case for (a) ηN = 0 and
(b) ηN = 0.1; (c) normalized shock position versus the degree of disorder ηN .

where the potential U is Ufoc = K ∗ (η− ρ) in the focusing case and Udef = K ∗ (η + ρ) in the
defocusing case. The nonlocal nonlinear response K ∗ ρ is the counterpart of the deterministic
potential represented by the field intensity ρ in the local case (see (36)).

In the nonlocal case, the potential well (focusing case) and the potential barrier (defocusing
case) are much more flat with respect to the local case. As a consequence, the intersection of
characteristic lines leading to the shock generation is slowed down and the shock position is
delayed along z. The potential profiles are randomized by the presence of K ∗ η in (39) that
further act as a SW damper, corrugating the surface over which the effective particles evolve.

Being the SWs generated in correspondence of the chirp singularity |dφ/dx | → ∞ and,
approximating the phase as φ ≈ θ , we have

dφ

dx
≈

∫
dK (x − x ′)

dx
(|ψ(x ′)|2 + η(x ′)) dx ′

=

∫
K (x − x ′)

d[|ψ(x ′)|2 + η(x ′)]

dx ′
dx ′. (40)

In the highly nonlocal limit K (x − x ′)= K0, and the integral (40) vanishes. As a result, by
increasing the nonlocality degree, the shock position is gradually delayed, up to its inhibition in
the highly nonlocal limit.

Hence, both nonlocality and disorder tend to destroy the shock formation. The phenomena
dampen the effective pressure gradient that causes the thickening of the ‘optical fluid’ resulting
in the shock generation. On the one hand, nonlocality flattens the pressure profile over the spatial
region of the nonlocal response (given by σ ). On the other hand, disorder scatters the light field,
reducing the field intensity accumulation on the shock points.
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4. Conclusions

We have investigated the interplay between nonlinearity and disorder in the nonlocal NLS.
Three main length scales, namely diffraction, randomness and nonlinear lengths, control the
excitation of solitary and SWs in weakly disordered media. When solitons are considered,
the nonlocality limits the scattering action of disorder on the soliton trajectory, averaging out
the randomness and stabilizing the solitary waves. In the SW regime, a nonlocal nonlinearity
delays shock formation with respect to the local case. The presence of disorder further delays
the shock generation while nonlocality on the random potential does not significantly change the
scenario. Given that disorder is inextricably linked to nonlocality, we believe that these results
can be relevant when considering thermal and thermodiffusive media [7, 9, 34], photorefractive
systems [17], Bose–Einstein condensate [18, 19], liquid crystals [20] or plasma [35, 36].
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