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Abstract Experimental investigations have definitely assessed that ultraviolet A (UVA) as well as ultraviolet B (UVB)

radiation induce mutagenic DNA photoproducts and other cell damages with a carcinogenic potential. Artificial tanning

increases significantly the lifetime risk for basal cell carcinoma, squamous cell carcinoma and melanoma particularly in

subjects with fair skin type, subjects with a history of skin cancer or frequent childhood sunburn or if exposures took

place at an age younger than 18 years. In addition, experimental and clinical evidence indicate that UVA exposure pro-

motes skin photoageing. Therefore we are dealing with a recreational activity (for customers) and a profitable business

(for the tanning industry) with human costs, i.e. an increase in morbidity and mortality by skin cancer, and health and

social costs leading to an increased expenditure by the European national health systems. In a few European countries,

legislation has recently prohibited the use of sunbeds for minors, pregnant women, people with skin cancer or a history

of skin cancer and individuals who do not tan or who burn easily from sun exposure. However, this legislation seems to

be insufficient from a photobiological perspective, and importantly, it is largely disregarded by consumers and tanning

industry. Therefore the Euromelanoma group proposes a new, more stringent regulation for the tanning industry and

restrictions for customers, particularly for those individuals with constitutional and anamnestic risk factors. Finally, we

ask for an enhanced commitment to increase the awareness of the general population on the risk of artificial tanning.
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Introduction
Since the early 1980s, tanning beds became more and more pop-

ular and the tanning industry accredited them of a ‘safe’ tan.1,2

However, it is now well established that ultraviolet A (UVA), as

well as ultraviolet B (UVB), have skin carcinogenic and pho-

toageing potentials. Furthermore, the use of sunbeds does not

meet other putative claims of positive health effects, e.g. the pro-

tection from damage of subsequent sun exposure3 and a signifi-

cant and persistent increase in vitamin D levels.4

The present paper aims to update the knowledge on the detri-

mental health effects of artificial tanning in order to improve the

general awareness of risks and to emphasize the need for a new,

more stringent European Union (EU) regulation.

Sunbeds
The most popular artificial UV sources belong to two distinctly

different types. The fluorescent lamps with a low-intensity

emission with an emission spectrum that is dependent by the

fluorescent phosphors coating the inner walls of the thin glass

tube and the high-pressure lamps with high-intensity broadband

UV emission that is confined in the wanted spectral interval by

cut-off glass filters placed in front of the lamp.

In 1995, the Commission Internationale de l’ Eclairage (CIE)5

classified UV lamps into four types according to the emission

spectrum weighted with the efficacy spectrum for erythema

(Table 1). Therefore, the CIE- EN 60335-2-27 regulation classi-

fies light sources according to the risk of sunburn of a single

exposure and not to the carcinogenic hazard of single or

repeated exposures at doses lower or above the erythema thresh-

old.

In both type 1 and type 2 light sources, the percentage of

UVA is usually 98.5–99% of the total output.6 Those sunbeds

are commonly used in suntan salons, and the overall UVA irra-

diance of some tanning beds can be 10–15 times greater than
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that provided by outdoor exposure to natural sunlight.7,8 These

lamps usually have mean unweighted UVB irradiances lower

than that provided from natural summer sun (at latitudes from

37 °S to 35 °N).8 However, the UVB content is often greater

than 0.8%, and therefore, the contribution of UVB to the overall

DNA damage and erythematogenic effect is biologically predom-

inant on that of UVA.9 In addition, when the fluorescent lamps

age through prolonged operation, their emission spectrum shifts

towards a higher UVB content. In order to limit the UVB irradi-

ance, the revised standard EN 60335-2-27:201310 established that

appliances should have a total effective irradiance not exceeding

0.003 W/m2 for wavelengths between 200 and 280 nm. UV type

3 sources are characterized by a low effective output in the UVA

and UVB range, and they are freely accessible in the mass market

for home tanning. However, it is clear that they could become

threatening if the consumer does not respect the suggested dura-

tion and number of exposures.11 Finally, the use of UV type 4

sources should be limited to medical administrations, e.g. UVB

phototherapy, under medical supervision. However, sunbeds

with higher (>1.5%) UVB levels have been manufactured to

speed up the tanning process, and they belong to the CIE type 4

as far as the effective UVB output is calculated.8

Photobiology of UV wavebands
Ultraviolet photons are absorbed by skin chromophores like

nucleic acids, lipids and proteins, and all of them have a

characteristic absorption spectrum that is the relative plot of

the sensitivity to absorb photons at specific wavelengths. UV

radiation is considered being a complete carcinogen, and the

first step is the mutagenic change in DNA.12 DNA pyrimidine

bases are primarily chromophores for UV radiation.13,14 Upon

DNA photoexcitation a direct anaerobic photochemical

change in two adjacent bases takes place leading to the for-

mation of cyclobutane pyrimidine dimers (CPD), mainly thy-

mine dimers and pyrimidine (6-4) pyrimidone photoproducts

(6-4 PP), which make up 65% and 35% of the DNA photo-

products, respectively.15 CPDs are responsible for a consider-

able fraction of the mutations induced by sunlight in

mammalian cells. If the nucleotide excision repair system fails

to restore genomic integrity, C (cytosine) ? T (thymine)

mutations and CC ? TT tandem mutations at di- or

multipyrimidine sites occur. These canonical mutations are

unique to the mutagenic UV activity, and therefore, their

detection permits inference backward from mutations to

mutagen.14 Once they were called UVB signatures or finger-

print mutations, but it became clear in the meantime that

they can also be generated by UVA, although with approxi-

mately 1000 times lower efficiency,13,14 through additional dif-

ferent mechanisms: directly, after the formation of oxidative

DNA damage or after the transfer of energy from oxidized

non-DNA endogenous chromophores such as porphyrins, fla-

vins and NADH/ NADPH.15,16

Furthermore, UVA enhances the mutagenic impact of DNA

photoproducts because it causes oxidative damages of the pro-

teome, including the DNA repair enzymes, thus impairing the

protective, anti-mutagenic and reparative responses of the dam-

aged cells.17 In addition, UVA-induced reactive oxygen species

(ROS), e.g. superoxide anion, hydroxyl anion and peroxide, pro-

duce 8-hydroxydeoxyguanosine (8-OHdG) that causes G (gua-

nosine)-T transversions18 and induce other types of DNA

damage with a mutagenic potential such as protein-DNA cross-

links, thymine glycols and single and double DNA strand breaks

leading to the loss of genetic material.19

The high in vivo biological danger of UVA is related also to its

deep skin penetration that increases the probability to damage

DNA of keratinocyte stem cells and biologically active melano-

cytes.20 Both UVA and UVB, even at suberythematogenic levels,

can also favour skin carcinogenesis via local and systemic

immune suppression21,22 through the production and release of

immunosuppressive cytokines, such as TNF-a or IL-10,23 the

emigration of Langerhans cells from the skin, the immigration

of Cd11b positive dendritic cells, the depletion of natural killer

cells24 and the production of regulatory T cells.25–27 For a long

time, UVB has been thought to be the major immunosuppres-

sive waveband, but, more recently, it has been demonstrated that

UVA accounts for approximately 75% of natural sunlight-

induced immune suppression.28

The molecular mechanisms, by which UV radiation leads to

immune suppression are abundant and include DNA damage,29

cell membrane damage (formation of PAF-like biolipids)30 and

trans-urocanic isomerization.31

Health hazard of sunbeds
The main detrimental effects of artificial tanning can be classi-

fied schematically into short-term, i.e. sunburn and tanning, and

long-term, i.e. solar ageing and skin carcinogenesis.

Sunburn
Sunburns are not rare with artificial tanning because super ery-

thematogenic UVA doses are frequently sought by customers

aiming to achieve an immediate ‘burned’ appearance.32

The absorption spectrum of DNA and the action spectra of

sunburn and squamous cell carcinoma (SCC) are quite

Table 1 Limits of effective irradiance for UV type classification of
the Commission Internationale de l’ Eclairage (CIE)

UV type appliance Effective irradiance (W/m2)

250 nm < k <320 nm 320 nm < k <400 nm

1 <0.0005 ≥0.15

2 0.0005–0.15 ≥0.15

3 <0.15 <0.15

4 ≥0.15 <0.15

k is the wavelength of the radiation.5
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superimposable for wavelengths above 280 nm13 suggesting that

DNA damage is the main responsible for both.13 In these action

spectra, an UVB photon is approximately 1000 times more effi-

cient than an UVA photon at 330 nm33 but, in the action spec-

trum of sunburn, there is evidence for a distinct peak in the

UVA range at about 360 nm.33

Obviously, this peak becomes very relevant following the

exposure to high dosages of artificial UVA.

DNA damage is also responsible for tanning via the p53-

induced stimulation of the production of proopiomelanocortin

that, in turn, generates the release of melanocyte-stimulating

hormone.34 Therefore tanning is a form of stress response of the

skin, as well as erythema, and overall, it is induced more effi-

ciently by UVB than UVA.35 However, unlike fair skin, the

action spectra of erythema and tanning diverge in melano-com-

petent skin in the UVA range, and therefore, even suberythe-

matogenic UVA can tan these subjects.35

Squamous cell carcinoma (SCC)
At the molecular level, UVA, like UVB, can cause the same C?T

mutations that are the hallmarks of UV-induced SCC.14 In addi-

tion, human SCC samples have a high frequency of UVA-

induced DNA lesions, such as oxidative base damage and single-

strand breaks.36

Mutations affecting genes that encode proteins or enzymes

involved in cell cycle control, apoptosis, e.g. p53 and RAS onco-

genes, or DNA repair are particularly important for carcinogene-

sis because they persist with a clonal multiplication of

keratinocytes through subsequent cell divisions.37,38

Therefore, there is a progressively abnormal gene expression

from normal keratinocytes over sun-damaged skin to actinic

keratosis (AK), that is considered the biological precursor of

SCC and, finally, to invasive SCC.39 The biological basis of the

progression of only a minority of AKs to invasive SCC is still

unknown although a possible explanation is that focal UV inac-

tivation of NOTCH pathway in fibroblasts can lead them to

acquire a cancer-activated fibroblast (CAF)-like state with a

reduced production of elastin and collagen and increased secre-

tion of fibroblast growth factors, extracellular matrix proteins

and proteases. This in turn results in increased proliferation of

the overlying epidermal keratinocytes.40

Subjects who use tanning beds are 1.4–13.4 times more likely

to develop SCC after adjustment for confounding factors such as

age, sex, eye and hair colour, skin type, ethnicity and sun expo-

sure.32 A systematic review and meta-analysis32 has provided the

estimation that more than 6200 invasive SCCs per year could be

caused by indoor tanning in selected Western and Northern

countries.

Basal cell carcinoma (BCC)
In the pathogenesis of BCC, the key events are the mutational

inactivation of the PTCH1 gene or the activation of SMO gene

that thereby lose their control activity on the hedgehog signal

transduction pathway.41 UV fingerprints predominated in the

PTCH mutation spectra of 48% of BCC, and the rate was even

higher in early-onset BCC (first lesion at age <35 years) and

multiple BCC (>10 lesions) in comparison to regular BCC (first

lesion at age >35 years and <10 lesions).42 Unlike in SCC, muta-

tions at p53 or other pro-apoptotic genes are found only in a

smaller portion of BCC and their contribution to the develop-

ment of the later tumour is at present unclear.42

An increased BCC risk by 15% was detected for tanning bed

users with an exposure frequency of four times per year or more,

and the risk was 73% and 28% higher for sunbed use during

high school or college and in the age between 25 to 35 years,

respectively.43

Furthermore indoor tanning increases the risk for early-onset

BCC by 69% in subjects younger than 40 years of age44 and by

60% in subjects younger than 50 years of age.41 The hazard

moreover rose with the duration and frequency of tanning as

well as the use of high-pressure tanning beds.44 In addition, a

strong association for early-onset BCCs occurring on the trunk

and extremities, sites less likely to receive high doses of natural

UV radiation was reported in the sunbed users.44

Cutaneous malignant melanoma (CMM)
Pathogenesis of CMM of chronically exposed skin [lentigo

maligna melanoma (LMM)] and CMM of intermittently

exposed skin [superficial spreading melanoma (SSM) and nodu-

lar melanoma (NM)] appears to have divergent pathways.

Superficial spreading melanoma and NM have a high muta-

tional load with a very high number of mutations with UV sig-

natures.45 However, it still remains to be clarified why known

oncogenic mutations in melanoma, including BRAF, CDKN2A

and NRAS have frequent mutations that are unrelated to sun

exposure in a large proportion of lesions.45,46 A possible expla-

nation is that mechanisms other than the CPD mutation-driven

inactivation of tumour suppressor genes may be more relevant.47

It has been suggested that CPDs have the potential to elicit epi-

genetic responses that result in shifts from transient to perma-

nent changes in melanocyte gene expression patterns.48

Ultraviolet A can contribute to overall CPDs formation,14 and

furthermore, it can cause a delayed and reduced repair of this

damage thereby amplifying the mutagenic potential.49 Oxidative

DNA damages are particularly dangerous in melanocytes

because they have a high susceptibility to develop them via oxi-

dation of both eumelanin and phaeomelanin50,51 and, at the

same time, they have a reduced capacity to repair oxidative

DNA lesions.52 It is of great concern that the oxidative genotoxic

effect of chemiexcited melanin lasts for several hours after the

end of exposure.53

Lentigo maligna melanoma has a lower prevalence of

mutant BRAF than SSM and NM with 30–40% showing

mutations in KIT or NRAS, and a considerable proportion
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likely to have mutations in as yet undiscovered oncogenes.

Unlike NM and SSM, LMM primarily affects the chronically

sun-exposed skin and it is often associated with solar lentigi-

nes, actinic keratoses and non-melanoma skin cancers.54

Together, these findings suggest that LMM require high

cumulative doses of UV radiation to develop, and therefore,

subjects with a high cumulative number of sunbed exposures

seem particularly at risk. Beside DNA damages, UVA may

contribute to promotion of CMM via growth factor release,55

induction of matrix metalloproteinases, possibly via a War-

burg-like effect,56 the intracellular degradation of collagen by

cathepsin K57 and immunosuppressive effects.28

Meta-analyses of several epidemiological and case–control
studies have found that the usage of tanning salons leads to a

1.25-fold risk of CMM58 with a significant correlation with

parameters like ‘first exposure as a young adult’ (risk of 1.69)

and ‘longest duration or highest frequency of exposure’,58 a 1.34

risk with 10 tanning sessions,59 a 1.11 risk with at least four ses-

sions per year43 and a 1.59 risk with exposure before the age of

35 years with an increase in risk by a factor of 1.8 for each addi-

tional tanning session a year.60 Artificial tanning at home seems

even more dangerous than indoor tanning exclusively in suntan

parlours; the risks were 4.14 vs. 1.82, respectively, in comparison

to non-users.61

Photoageing
Ultraviolet A, and particularly UVA1 (340–400 nm), plays a

substantial role in photoageing because it can penetrate the

upper dermis targeting fibroblasts leading to ROS-induced dam-

age of lipids and amino acids, release of arachidonic acid, activa-

tion of secondary cytosolic and nuclear messengers (that activate

UV response genes) and upregulation of metalloproteinases

which directly break down collagen and elastic tissue and inhibit

repair.62

Ultraviolet A exposure, even at low doses, results also in an

accumulation of mutations in mitochondrial (mt) DNA, namely

the so-called 4977-bp common deletion and a 3895-bp deletion

in dermal fibroblasts.62,63 These deletions together with the dis-

ruption of the mitochondrial electron transport chain decrease

the generation of ATP from ADP leading to the distraction of

the mitochondrial function (the so-called ‘defective powerhouse’

model). In a vicious cycle, this leads to an increased production

of ROS, thereby initiating retrograde signalling responses that

are directed from the mitochondria to the nucleus activating

nuclear transcription of genes, such as MMP-1 and COL1A1.64

In comparison to natural sunlight, it has been calculated that

the photoageing effect of 1 MED from UVA sunbeds is 2–4 times

larger than that of the same physical solar dose.8,9 In addition,

UVA1 tanning does not prevent further collagenolytic changes

from environmental exposures in lightly pigmented

individuals.65

Governmental actions and conclusions
Together, the recent experimental, clinical and epidemiological

findings have provided stronger and stronger evidence to sup-

port more intense warning against use of tanning beds. Beside

damage to human health, the deleterious effects of the suntan

industry cause an increment of the total expenditure for diagno-

sis and treatment of skin tumours and photoageing for con-

sumers and national health systems.

Both the National Institutes of Health (NIH), in 2005,66 and

the International Agency for Research on Cancer (IARC), in

200767 and 200968 have classified UVA tanning devices as car-

cinogens for humans In 2014, the Food and Drug Administra-

tion (FDA) officially reclassified sunlamps from a class I (low

risk) to a class II (moderate risk) devices.68

The growing awareness of health authorities enacted govern-

ments of several countries to promote current restrictions on cus-

tomers and regulations on the indoor tanning industry.43,69,70

Nowadays, legislation bans sunbeds entirely in Brazil and

Australia and prohibits the use for minors, pregnant women,

people with skin cancer or a history of skin cancer and individu-

als who do not tan or who burn easily from sun exposure in sev-

eral European countries, including UK, Italy, Spain, Portugal,

Denmark, France and Germany, nine of the 10 provinces of

Canada and 41 US states.71–78 In addition, adequate information

for users and technical preparations for workers are recom-

mended.

However, the present regulations show main limitations from

a photobiological perspective. Indeed, in spite of the suggestions

of the World Health Organization,9 the use of tanning is discour-

aged but it is not banned for individuals with many (>25) nevi,
freckles or a history of frequent sunburns during childhood and

adolescence or individuals under treatment with photosensitive

drugs or with clinical signs of photoageing.72 Furthermore, there

is no regulation of the maximal dose of a single exposure and the

personal maximal cumulative dose during a year or a longer per-

iod of time.

However, we emphasize with great concern that there is not a

careful application of the present, albeit insufficient, legislation

and the regulations are widely disregarded by consumers and the

tanning industry pointing out that controls by health authorities

are often poor.76,79,80

Two recent surveys from Italy79 and Germany80 have found

that consumer guidance in tanning studios is not properly given,

the labelling of the sunbeds fails to comply in at least 20% of the

cases, and the maximum EWI values for sunbeds are frequently

violated.76

However, we must take into account that even if careful and

regular controls are needed, some controls, such as the limita-

tions on the emission spectrum and irradiance of lamps, are

impossible to control without expensive equipment that is not

usually available for peripheral control facilities.
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In 2017, the World Health Organization published a catalogue

of interventions that have should be used to reduce risks associ-

ated with artificial cosmetic tanning and to guide policy makers

that are considering the development or revision of regulations

relating to sunbed use.81,82

However, it is clear that health surveillance is easier and more

efficient in those countries such as Brazil and Australia that have

simply completely banned the use of sun beds.

Therefore, on behalf of the Euromelanoma Group, we

strongly recommend that better controls and more restrictions

are put into action.
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