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Contour interpolation by vector-field combination 
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We model the visual interpolation of missing contours by extending contour fragments under a smoothness constraint. 
Interpolated trajectories result from an algorithm that computes the vector sum of two fields corresponding to different 
unification factors: the good continuation (GC) field and the minimal path (MP) field. As the distance from terminators 
increases, the GC field decreases and the MP field increases. Viewer-independent and viewer-dependent variables 
modulate GC-MP contrast (i.e., the relative strength of GC and MP maximum vector magnitudes). Viewer-independent 
variables include the local geometry as well as more global properties such as contour support ratio and shape regularity. 
Viewer-dependent variables include the retinal gap between contour endpoints and the retinal orientation of their stems. 
GC-MP contrast is the only free parameter of our field model. In the case of partially occluded angles, interpolated 
trajectories become flatter as GC-MP contrast decreases. Once GC-MP contrast is set to a specific value, derived from 
empirical measures on a given configuration, the model predicts all interpolation trajectories corresponding to different 
types of occlusion of the same angle. Model predictions fit psychophysical data on the effects of viewer-independent and 
viewer-dependent variables. 
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 Introduction Virtual, amodal, and modal integrations share 
common geometric aspects, implicit in models such as the 
Boundary Contour System (Grossberg & Mingolla, 1985; 
Kelly & Grossberg, 2000) and made explicit in the 
identity hypothesis (Shipley & Kellman, 1992a). The 
shape of interpolated contours can reveal how contextual 
variables, such as scale, orientation, support ratio (the 
proportion of image-specified contours), and global shape, 
act when the local stimulation is weak or absent (Koffka, 
1935, pp. 140-147). 

Human observers can overcome the fragmentation of 
the optic input and perceive shapes partially specified by 
image contours. One can distinguish three cases of 
perceptual integration of optic fragments: 

• virtual lines perceived as the most natural chaining of 
isolated dots (Kanizsa, 1979) or oriented elements 
(Kovàcs & Julesz, 1993; Field, Hayes, & Hess, 1993; 
Kovàcs, 1996); Such ideas capture an important distinction between 

the shape of the trajectory that interpolates contour 
fragments and its phenomenal salience. In accordance 
with the identity hypothesis, we assume the shape of the 
trajectory is the output of a general-purpose visual 
interpolation (VI) process; i.e., of a shape integrator 
activated in all cases of missing local information (for 
instance, because of occlusion). The shape integrator is 
analogous to the 3D-shape modeler discussed by Adelson 
and Pentland (1996) in their “workshop metaphor” of 
visual processing. On the other hand, the degree of 
salience of interpolated parts might be explained in 
different ways, depending on the theoretical approach to 
VI. 

• amodal contours of partially occluded shapes, typically 
defined by T-junction stems (Bregman, 1981; Kanizsa 
& Gerbino, 1982; Nakayama, Shimojo & Silverman, 
1989); 

• modal contours perceived in Kanizsa’s illusory figures, as 
well as in two-dimensional (2D) (Gulick & Lawson, 
1976) and three-dimensional (3D) (Grimson, 1981) 
random-dot stereograms. 

These three cases involve increasing degrees of 
phenomenal presence of unitary shapes. In virtual 
groupings, implicit lines connect parts perceived as 
separate elements. In amodal completion, image-specified 
contours are not only perceptually grouped; they also 
continue behind occluders along trajectories that bound a 
partially occluded surface. Modal completions are 
characterized by the visibility of illusory contours that 
bound a perceptually integrated surface. 

According to a two-stage approach (Takeichi, 
Nakazawa, Murakami, & Shimojo, 1995; Kellman, 
Guttman, & Wickens, 2001), the decision to interpolate 
is taken at the end of a first stage in which the input is 
analyzed to evaluate its compatibility with geometric 
constraints. If the input is geometrically compatible, optic 
fragments are fed to the shape integrator that generates 
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the interpolated trajectory in the second stage. According 
to this approach, the trajectory is immaterial to the 
compatibility analysis performed in the first stage. 
However, the degree of salience might be the output of 
the first stage (reflecting the amount of compatibility 
between stimulus properties and geometric constraints), 
the second stage (reflecting metrical aspects of the 
interpolated shape such as curvature, length, and number 
of inflections), or both. 

According to a dynamic approach, optic fragments 
represent the stimulus conditions for a completion 
process whose final state can achieve a variable degree of 
stability. The degree of stability determines the 
phenomenal salience of the interpolated shape. Salience 
is correlated with (not caused by) compatibility and 
metrical aspects. In this case, both salience and 
compatibility derive from the dynamic constraints of the 
interpolation process. 

Most VI models adopt a two-stage approach and are 
focused on geometric compatibility constraints. Some 
interpolation solutions generated by such models do not 
appear adequately justified on theoretical grounds 
(Witkin & Tenenbaum, 1983). 

Our VI model is consistent with the dynamic 
approach and with the general idea that perceptual 
completions reflect organization according to the 
minimum principle (Koffka, 1935; Buffart, Leeuwenberg, 
& Restle, 1981; Kanizsa & Gerbino, 1982; Hatfield & 
Epstein, 1985). The minimum principle is embodied in 
both structural and metrical aspects of perceptual 
integration. 

(a) (b)

 

Figure 1. Two prototypical kinds of amodal completion behind 
black occluders. In a, a single concave region is amodally 
completed and perceived as a partially occluded convex form. 
In b, three convex regions are amodally unified and perceived 
as a single partially occluded form. 

Consider amodal completion of partially occluded 
angles. Amodally completed shapes perceived in Figure 1 
correspond to groupings that are structurally different 
from the mosaic of image regions. The superiority of 
completion over mosaic interpretations is consistent with 
a tendency to minimize form complexity (Figure 1a) or 
object numerosity (Figure 1b). Locally, completions are 
supported by the segregation of T-junction stems from T-

junction tops. Paired stems become the visible portions of 
the partially occluded contour, whereas tops belong to the 
contour of the occluding surface. 

However, the phenomenology of amodal completion 
indicates that image contours are not only grouped or 
chained. They are perceptually interpolated by a smooth 
curve, different from the sharp-vertex angle resulting from 
the simple extrapolation of T-junction stems. The smooth 
amodal trajectory is consistent with a tendency to 
minimize metrical parameters, such as curvature and 
length. The shape and salience of an interpolated 
trajectory can be evaluated in psychophysical experiments 
using procedures such as probe localization and 
magnitude estimation (Takeichi, 1995; Kellman, Shipley, 
& Kim, 1996; Fantoni, 2000; Gerbino & Fantoni, 2000; 
Kellman, Temesvary, Palmer, & Shipley, 2000; Fantoni & 
Gerbino, 2001). Similar methods have been used to 
evaluate virtual and modal contour integrations (Dumais 
& Bradley, 1976; Kellman & Shipley, 1991; Hon, 
Maloney, & Landy, 1997). 

Previous VI models did not explain how viewer-
independent and viewer-dependent variables interact and 
determine the shape of interpolated contours. Viewer-
independent variables include figural properties such as 
positions and relative orientations of fragments, shape 
regularity, and support ratio. Viewer-dependent variables 
include retinal size and orientation of the image. 

Following a dynamic, Gestalt-oriented approach, we 
modeled VI as the product of two context-sensitive forces 
corresponding to two classical factors of organization, 
good continuation (GC) and minimal path (MP). Given 
two contour fragments, GC predicts that extrapolations 
minimize the variation of curvature of each fragment, 
whereas MP predicts that endpoints are connected along 
the minimum-length trajectory. The effects of various 
contextual variables on interpolation trajectories are 
reduced to variations of a unique parameter, GC-MP 
contrast, that describes the relative strength of GC and 
MP vectors (Equation 1). 

GC - MP contrast =  
GC − MP
GC + MP

 (1) 

For any given GC-MP contrast, our model generates a 
unique interpolation solution that represents a 
compromise between GC and MP. In the workshop-
metaphor language, the interpolator finds a trajectory that 
connects the two input fragments by keeping the total 
cost of deviating from both GC and MP at a minimum 
(Adelson & Pentland, 1996).  

The currently implemented algorithm generates 
trajectories by iteratively computing a series of GC- and 
MP-vector sums associated to convergent rectilinear 
fragments. The algorithm provides solutions for the 
completion of partially specified angles (link to 
simulator). 

Angle completion is relevant for several reasons: 
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• The interpolated trajectory can be estimated by using a 
simple psychophysical task in which observers are 
required to locate differently oriented probes tangent to 
the partially specified contour. The application of the 
probe localization technique is straightforward in the 
angle completion case, when an interpolated trajectory 
without inflections is possible. It is less obvious when 
one or more inflections are necessary. 

Independent of the specific formulation, relatability 
is the fundamental component of a two-stage theory of 
contour interpolation, centered on T-junction stems as 
sources of local information about partial occlusion. 
However, the role of T-junctions and the choice of the 
most adequate level of analysis (contours, surfaces, or 
volumes) are controversial. 

Tse (1999a, 1999b) argued that when contextual 
information about occlusion is available, image fragments 
are amodally completed if they can merge into a single 
volume, irrespective of image-contour relatability. Volume 
mergeability does not rely on T-junctions. 

• The sharp vertex is a unique geometric solution that 
can be contrasted with data consistent with smooth 
monotonic interpolations (Takeichi, 1995; Fantoni & 
Gerbino, 2001). When one or more inflections are 
necessary, there is no unique geometric solution to be 
contrasted with model-based trajectories consistent with 
empirical estimates. 

Tse rejected the hypothesis that contour interpolation 
occurs if and only if two relatable T-junction stems are 
present in the image. However, this condition qualifies an 
extreme version of a contour-based VI theory. For 
instance, Figure 2 is compatible with a contour-based 
theory that tolerates the existence of implicit T-junctions. 
The presence of relatable T-junction stems should be 
considered as a facilitating, not a necessary, condition 
that usually cooperates with the similarity of surface 
properties (color, texture, orientation, and motion). 

• In the sharp-vertex case, the smoothness constraint 
embodied in our field model can be tested empirically. 
A smooth curve can be fitted to tangents positioned by 
observers and compared to the corresponding 
rectilinear angle. Tse (1999a, in particular his Figure 2b) emphasized 

that relatability is not a sufficient condition either. 
Collinear segments can become parts of different wholes 
if other factors, typically similarity and closure, prevail. 
However, this is true of all Gestalt-like factors, whose 
organizational effects depend on their relative strengths 
(Wertheimer, 1923). 

The discrepancy between the sharp-vertex solution 
and model-based predictions provides a compact 
parameter of the interpolation trajectory, which facilitates 
the comparison of contrasting models. 

Geometric Compatibility Criteria  
Most VI theories and models assume that 

compatibility of unconnected fragments with geometric 
constraints is a condition for the activation of the 
interpolation routine (Shipley & Kellman, 2001). A 
typical geometric constraint regards the amplitude of the 
interpolation angle bounded by GC extrapolations. 

T1

T2

L2

L1

(a) (b)

 

Kellman and Shipley (1991) hypothesized that the 
visual system interpolates image fragments only if they are 
relatable; i.e., if their linear extensions intersect and form 
an interpolation angle between 90° (minimal relatability) 
and 180° (collinearity or perfect relatability). Kellman and 
Shipley (1991, p. 180) also demonstrated that VI strength 
increases as the interpolation angle increases from 90° to 
180°. 

Singh and Hoffman (1999) suggested that the 
definition of relatability should be reformulated to make 
it consistent with two constraints: viewpoint genericity 
and extended gradedness. Viewpoint genericity implies 
the rejection of unstable interpolated paths that would be 
contradicted by minimal displacements of the viewpoint. 
Extended gradedness relates VI strength not only to the 
size of the interpolation angle (already considered by 
Kellman & Shipley, 1991) but also to the offset between 
parallel image segments. Singh and Hoffman's 
reformulation agrees with the hypothesis that the critical 
VI criterion is the number of inflections in the 
interpolated path (Takeichi et al., 1995). 

Figure 2. A Tse-like demonstration. In a,  two separated 
regions are amodally completed into a partially occluded worm 
despite the lack of corresponding T-junction stems. In b, the 
T1-junction stem is unified with a segment of L1 and the T2-
junction stem with a segment of L2. The juxtaposition of 
concave and convex solids can lead to image singularities in 
which T-junctions degenerate into L-junctions. 

Given that relatability can be generalized to the 3D 
domain (Kellman, 2000), its difference from Tse's 
mergeability is not one of geometric dimensionality. Such 
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notions differ because relatability rejects noncollinear 
parallel fragments, whereas mergeability allows their 
interpolation. In our view, Singh and Hoffman's 
reformulation of relatability is fully consistent with Tse's 
mergeability. 

Both relatability and mergeability are proposed as a 
priori geometric notions, used as decision criteria for 
entering the interpolation stage. On the contrary, 
dynamic models such as ours derive compatibility 
constraints from the properties of the interpolation 
process. Assumptions about the directions of completion 
forces and their decay functions determine the range of 
input fragments compatible with valid model-based 
solutions.  

To summarize, our model has two goals: to predict 
precise interpolation trajectories based on general 
principles of organization and to define dynamic 
compatibility criteria based on properties of the final 
configuration. The section on our field model will 
include the discussion of dynamic compatibility criteria 
for rectilinear and curvilinear fragment pairs. 

Weak and Strong VI Models 
We suggest a distinction between models that simply 

identify the necessary and sufficient conditions for 
relatability or mergeability without predicting the metrical 
aspect of the interpolated trajectory (weak VI models) and 
models that predict the shape of the interpolated 
trajectory (strong VI models). 

Strong VI models recommend themselves on two 
grounds: they generate quantitative predictions and can 
be easily falsified; and, they can account for subtle 
differences between amodal trajectories revealed by 
psychophysical measurements. 

Strong models of contour interpolation map input 
fragments into output lines that include amodal 
trajectories described by an interpolating function. An 
oriented minimal-length fragment is defined as an edgel, 
an edge element with only one endpoint. An edgel pair 
includes two edgels specified by endpoint positions and 
by their relative orientation. 

α β
P1 P2d x

y

e1

L

e2  

Figure 3. Two generic relatable edgels (P1, α) and (P2, β). The 
dotted line of length L is a perceptually plausible interpolation 
of the two edgels. 

Figure 3 illustrates the generic case of two nonparallel edgels, 
e1 and e2, with endpoints in P1 and P2 (P1, P2 ∈ R2), and 

orientations α≠β (α, β ∈ {0-360°})  relative to the straight 
connecting line through P1 and P2, such that their 
extrapolations converge toward an asymmetric vertex. The 
two edgels are separated by d = |P2-P1|. The dotted line 
represents a perceptually plausible interpolation of length L.  

Interpolation Models 
 Despite the amount of evidence on constraining 

factors, the shape of the visually interpolated trajectory 
remains controversial. Applied mathematics and 
computational theory provide several methods for 
connecting a set of fragments by good-looking curves. 
Other hypotheses derive from research in human vision. 

In this section, we review 10 models that propose 
specific VI processes. All models make predictions for 
nontrivial configurations in which fragments, pacman sides 
or T-junction stems, do not lie on a straight line and their 
linear extrapolations form an interpolation angle 
θ ≠ 0 (where θ = 180° −  α − β). Some models belong to a 
common framework, defined by the use of the elastica 
functional as a reference parameter for identifying the 
interpolation trajectory that minimizes the total curvature.  

Elastica Models 
The problem of finding the plane curve L, which 

minimizes the total squared curvature along a path that 
connects two oriented elements, was first introduced in 
the field of differential geometry by Euler in 1744 
(Mumford, 1994). Such curves have been named elastica. 
The problem of elasticity has been rediscovered by Love 
(1927) and other mathematicians (Birkhoff, Burchard, & 
Thomas, 1965; Bryant & Griffiths, 1986). 

In computer vision, Horn (1981) was the first to 
introduce the elastica functional Γel as the criterion for 
selecting a smooth curve connecting two edgels. Weiss 
(1988) proposed a scale-invariant version described by the 
following equation: 

Γel (ψ ) =
def

L k(s)2 ds
0

L
∫   (2) 

where 0<s<L is the arc length along the curve denoted by 
its orientation representation as ψ(s), and the curvature 
of the curve at s is given by 

k(s) =
dψ (s)

ds
 . (3) 

Mumford (1994) proposed to utilize the elastica for 
finding the best interpolating curve in amodal 
completion. Their elastica functional, slightly different 
from the one by Weiss, is: 

Γel (ψ ) =
def

(η1 k (s)2 + η2 ) ds
0

L
∫  (4) 

where η1 and η2 are constants. 
Mumford (1994) modeled elastica by implementing a 

stochastic process of Brownian diffusion from one edgel 
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toward the other, similar to the stochastic completion 
field by Williams and Jacobs (1997). Curvatures of 
diffusion path are normally distributed, so that once 
integrated the tangent direction is a Brownian motion 
(Mumford, 1994, p. 495). 

No analytic expression is known to calculate the 
shape of the curve that minimizes the elastica functional. 
Sharon, Brandt, and Basri (1997) proposed an 
approximation allowing them to derive specific 
trajectories as a function of angles α  and β. Figure 4 
shows the trajectory predicted by such an approximation 
when α = 80° and β = 20°. 

 0 0.5 1
0

0.5

0.8

θ

α β

Cubic Hermite Spline

Elastica Approximation

Circular arc plus 
a straight line

 

Figure 4. Different interpolations of the two edgels with 
orientations α = 80° and β = 20°. In the proximity of a large 
angle, the cubic Hermite spline (solid line) follows the tangent 
to the corresponding edgel, whereas the elastica (dotted line) 
accumulates a high curvature and behaves like the 
combination of circular arc plus a straight segment (dashed 
line). When the (α − β) difference is large, both the cubic 
Hermite spline and this elastica approximation lie outside the 
rectilinear angle defined by GC extrapolations. The trajectory 
of the elastica displayed here has been adapted from Sharon 
et al. (1997, Figure 2b).  

Spline Models 
Spline models interpolate at least two edgels by a 

smooth curve that minimizes the total bending energy by 
joining piecewise polynomials of low degree. Spline 
functions have been used to predict amodal and modal 
trajectories in 2D and 3D interpolations (Williams & 
Hanson 1996; Williams, 1997).  

Sharon et al. (1997) demonstrated that a cubic 
Hermite spline is a good approximation of elastica when 
the deviation of edgel orientations from the straight 
connecting line is small. However, for large (α , β) angles, 
the elastica accumulates a high curvature at each end 
whereas the spline continues to follow the tangent to the 

two elements at both ends. As shown in Figure 4, the 
spline that connects fragments with a large (α − β) 
difference is still a good-looking curve, but quite different 
from the elastica curve approximated by Sharon et al. 

Ullman’s Network Model 
Ullman (1976) was the first to apply a method that 

approximates a spline of least energy to 2D completion. 
He developed a network model to fill in gaps and to 
predict the trajectory of modal illusory contours. 
Ullman’s network generates pairs of circular arcs tangent 
to edgels and to each other; then it selects the arc pair 
that minimizes the total bending energy.  

Guy and Medioni Tensor Voting Model 
Guy and Medioni (1996) extended Ullman’s model 

to include the generation of trajectories with variable 
local curvature. The smooth joining of two circular arcs, 
proposed by Ullman, cannot generate elliptical 
trajectories. To account for the generation of elliptical 
trajectories, Guy and Medioni’s model utilizes the joining 
of an unlimited number of local circular arcs. Every site 
(i.e., a pixel or edgel located in an image gap) receives a 
set of votes from every fragment of the intensity image. 
Votes include information about the relative orientation 
and strength of the site. 

Guy and Medioni’s model generates a distribution of 
interpolation trajectory (IT) with different strengths by 
superposing votes from all active sites (i.e., fragments or 
dots) and computing measures of orientation agreement. 
The IT uncertainty distribution is represented by “the 
best fit ellipse representing the moments of those votes” 
(Guy & Medioni, 1996, p. 13). 

Note that Guy and Medioni’s model does not predict 
any variation of IT’s shape as a function of proximity 
between edge elements. Each extension field (the 
“maximum likelihood directional vector field describing 
the contribution of a single unit-length edge element to 
its neighborhood in terms of length and direction,” p. 8) 
is invariant with respect to proximity; i.e., it is always 
circular.  

Kellman and Shipley’s Monotonic Curve Model 
Kellman and Shipley (1991) not only described 

geometric constraints for contour relatability. They 
proposed an interpolation model slightly different from 
the one embodied in Ullman’s network but always based 
on the circular arc as a geometric primitive. One circular 
arc is sufficient for connecting a pair of convergent 
symmetric fragments (i.e., mirror-oriented edgels, 
equidistant from the straight-line vertex). Convergent 
asymmetric fragments are interpolated by a circular arc 
plus a straight segment that connects such an arc with the 
far edgel (Figure 4). The straight segment compensates the 
figural asymmetry.  

Kellman and Shipley’s interpolation model combines 
smooth closure, represented by the circular path, and 

 

Downloaded From: https://jov.arvojournals.org/ on 07/23/2018



Fantoni & Gerbino 286 

good continuation, represented by the straight line, to 
form a good-looking monotonic connection. 

Stochastic Completion Field Model 
Suppose that edgels emit particles that follow 

Brownian trajectories and produce a stochastic 
completion field (Mumford, 1994; Williams & Jacobs, 
1997; Thornber & Williams, 1999). The most likely path 
taken by a particle in the stochastic field is similar to the 
curve of least energy, according to the elastica energy 
functional (Thornber & Williams, 1996; Williams & 
Jacobs, 1997).  

Thornber and Williams (1999) characterized the 
completion of angles using a mixture of stochastic 
processes. According to their model, the most likely 
trajectory results from the combination of random 
impulses drawn from a mixture of two limiting 
distributions: one consisting of weak but frequently acting 
impulses (Gaussian limit), the other of strong but 
infrequently acting impulses (Poisson limit). As an effect 
of a random combination, particles tend to travel in 
smooth, short paths characterized by occasional 
orientation discontinuities.  

Such an approach is limited by the different roles of 
the two endpoints (source vs. sink), the unidirectional 
computation of trajectories (from source to sink), and the 
computational cost of generating a population of 
trajectories. 

Snake Model 
The snake model is an active contour model using 

“an energy minimizing spline guided by external 
constraint forces and influenced by image forces that pull 
it toward features such as lines and edges” (Kass, Witkin, 
& Terzopolous, 1987). At the 3D level, the snake acts like 
a balloon. Its final shape results from the minimization of 
internal and external energies. The internal energy is 
defined by the equation: 

Eint =
1
2

α vxx (s)
2

+ β vx (s)
2

ds∫   (5) 

where vxx and vx are approximations of the first and 
second derivatives. 

The vxx(s)2 plays the role of k(s) 2 in the Mumford’s 
elastica functional (Equation 4). Therefore the snake 
energy and the elastica functional differ primarily in their 
second term: the snake minimizes vxx(s)2, whereas the 
elastica minimizes the arc length. However, the 
significance of such a difference is unclear. 

Grimson's Model 
Grimson (1981) proposed a model based on the 

application of the “no news is good news” principle to the 
interpolation of 2D contours and 3D surfaces. The 
principle states that the absence of local information on 
an abrupt change of curvature (because of partial 
occlusion or input fragmentation) specifies surface 

smoothness. In the 2D domain, the contour that 
minimizes the quadratic variation is the most consistent 
with such a principle. Grimson’s model has been 
embodied by Marr (1982) in his general approach to 
interpolation. 

Singh and Hoffman’s Model 
Singh and Hoffman (1999) proposed that 

interpolation depends on the minimization of of both 
curvature variability and total turning (integral of the 
absolute value of curvature along the IT). A spline of least 
energy and a strength measure based on inflections are 
the implications of their model. 

Heitger and von der Heydt’s Ortho-Para Model 
Heitger, von der Heydt, Peterhans, Rosenthaler, and 

Kübler (1998) developed a computational model of end-
stopped-cell extrapolations originally proposed by Heitger 
and von der Heydt (1993). The model accounts for the 
curvilinear shape of modal interpolations perceived in 
Ehrenstein and Kanizsa’s illusory figures. Contour 
trajectories depend on ortho and para grouping fields. 
Illusory contours in line-ending displays depend on the 
ortho grouping of activations transversal to line 
directions. Illusory contours in pacman displays depend 
on the para grouping of activations generated by the 
relatable sides of two pacman concavities. 

Notice that the activation of the two fields considered 
by Heitger et al. (1998) is qualitatively different from the 
combination of GC and MP fields used in our model to 
obtain a compromise trajectory. Ortho and para grouping 
fields do not interact, each completing a different part of 
the fragmented image. For instance, in pacman displays, 
the ortho field supports the completion of partially 
occluded circles, whereas the para field supports the 
completion of the illusory occluder. 

A Comparison of Previous Interpolation Models 
Taken together, the above-reviewed models represent 

a major attempt of providing specific solutions for the 
recovery of missing contours. Despite important 
differences, they share common features. They are all 
based on local information and embody a preference for 
the smoothest solution. However, as pointed out by 
Witkin and Tenenbaum (1983), measures of smoothness 
depend on the choice of parameters to be minimized. The 
arbitrariness of such a choice is consistent with the 
general notion that the minimum principle does not 
provide unique solutions (Gerbino, 2001) and with the 
possibility that, in a given situation, different and 
independent minimization processes interact. 

On a practical level, previous models, though 
formally different, often make similar predictions. For 
instance, they interpolate convergent symmetric 
fragments, both rectilinear (like those in Figure 1) and 
circular (like those in Figure 17), by a circular arc or by 
curves that closely approximate it. Though generated by 

 

Downloaded From: https://jov.arvojournals.org/ on 07/23/2018



Fantoni & Gerbino 287 

analytically different functions (circle, cubic spline) or by 
different algorithms, such trajectories are almost 
indistinguishable. To evaluate the differential predictive 
value of models, one should consider convergent 
asymmetric fragments (like those in Figure 10) and other 
patterns. 

Table 1 provides a synthetic comparison of 
predictions derived from various strong VI models. Cells 
contain information about sensitivity (S) or invariance (I) 
of trajectories predicted by specific models (column) with 
respect to given stimulus features (rows). All models 
considered in Table 1 generate interpolated trajectories 
sensitive to occlusion asymmetry (i.e., to the difference 
between the two angles defined by GC and MP lines), a 
feature not included in the table. 

As summarized in Table 1, trajectories predicted by 
previous models depend on local variables defining the 
interpolation angle (relative position and orientation of 
fragments), but not on contextual variations (changes of 
scale, orientation, contour polarity, and global shape 
regularity). The sensitivity to support ratio is a 
distinguishing feature of some models. The insensitivity 
to global properties and viewing conditions may be 
considered as a desirable feature of trajectories 
interpolated by an ideal mechanism focused on target 
properties.  

Table 1. A Synthetic Comparison of Predictions Derived From 
Various Strong VI Models     

 
 

Spline model 
Ullman (1976) 
Kellman & 
Shipley 
(1991) 

Stochastic model 
Snake model 
Guy & Medioni 
(1999) 

Field 
model 

Interpolation angle S S S 
Support ratio I S S 
Retinal gap, 
Orientation, 
Contour polarity, 
Shape regularity 

I I S 

Models can be evaluated by considering the sensitivity (S) or 
invariance (I) of predicted interpolation trajectories with respect 
to local and contextual variables. 

However, psychophysical evidence on human vision 
runs against interpolation invariance. Trajectories 
interpolated by human observers are sensitive to the 
following contextual variations: 
Scale. Take a diamond with vertices partially occluded by 

four disks and make it contract and expand rigidly, so 
that support ratio remains constant. As the retinal 
gap between line-endings decreases, amodally 
completed angles appear increasingly flattened, 
making the partially occluded diamond more and 
more similar to a disk. Fantoni and Gerbino (2002) 
compared different events in which the retinal gap 
subtended a 3.5° angle at the point of maximum 
expansion and a variable angle at the point of 
maximum contraction. Observers were required to 

estimate the perceived roundness of the occluded 
shape at the point of maximum contraction. Figure 5 
shows roundness estimates as a function of minimum 
retinal gap. 

0.17 0.52 0.86 1.21 1.56

Retinal gap (deg)

1

0

0.5

P
er

ce
iv

ed
 r

ou
nd

ne
ss

 

 

Figure 5. Roundness estimates as a function of retinal gap. 
Data refer to animated events in which a display with 3.5° 
retinal gaps shrank and reached each of the minimum values 
shown in abscissa. Observers estimated the roundness of the 
maximally contracted occluded shape on a subjective scale 
between 0 (perfectly rectilinear diamond) and 1 (circle). 

(a) (b)

 

Figure 6. The grey region is amodally completed as a 
truncated square in (b) and as a hexagon in (a). Data obtained 
in a probe localization task indicate that the interpolated 
trajectory is closer to good continuation in (b), where T-junction 
stems are vertical/horizontal, and closer to minimal path in (a), 
where T-junction stems are oblique and bilateral symmetry 
along a vertical axis runs against the perception of a truncated 
diamond. 

Orientation. Kanizsa (1971, 1979) noticed that the pattern 
in Figure 6b is amodally perceived as a partially 
occluded truncated square, although the grey region 
is compatible with the perception of a more 
symmetric hexagon. This demonstration runs against 
the general claim that perceptual organization 
(including amodal completion) tends to correspond 
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(a) (b)

 

to the maximum degree of global regularity, given the 
circumstances. However, Srebotnjak (1984) and 
others (Sgorbissa & Gerbino, 1999; Markovic, 1999) 
provided clear evidence that good continuation 
overcomes symmetry only when T-junction stems are 
vertical/horizontal. In Figure 6a where T-junction 
stems are oblique, most observers perceive a partially 
occluded hexagon. Gerbino, Sgorbissa, and Fantoni 
(2000) utilized a probe localization paradigm and 
estimated the difference between trajectories 
interpolated in the two cases illustrated. The 
interpolated trajectory was closer to good 
continuation in Figure 6b and closer to minimal path 
in Figure 6a. 

Contour polarity. Take two displays that include the same 
local pattern of T-junctions (Figure 7). Gerbino and 
Fantoni (2002) showed that the perceived separation 
between the two occluded vertices is larger when 
fragments belong to the contours of two convex 
diamondlike shapes (Figure 7a) than when they 
belong to the contour of a concave sand-glasslike 
shape (Figure 7b). 

Figure 8. The perceptually interpolated angle penetrates in the 
occluded space more in b, where the global solution is 
consistent with good continuation, than in a, where the global 
solution is consistent with minimal path. 

The field model described in the next section shares 
several features of previous models. However, its 
architecture, based on the weighting of local factors by 
global variables, makes it sensitive to scale, orientation, 
contour polarity, and global shape. 

(a) (b)

 

 The Field Model 
Since its early formulations (Wertheimer, 1923), 

Gestalt theory recognized that perception depends on 
several organizing factors and hypothesized integration 
mechanisms such as algebraic summation and winner-
take-all (Metzger, 1954, pp. 135-136). Perceived shapes 
can be modeled as products of the distribution of context-
sensitive forces (Koffka, 1935). Gestalt “laws” proposed 
for grouping and figure/ground articulation are candidate 
factors for explaining interpolation. 

Figure 7. Gerbino and Fantoni (2002) estimated the perceived 
separation of two occluded vertices, separated by a 
geometrical distance of 40 pixels. The vertices belonged to two 
convex shapes (a) and to a concave shape (b). Observers 
matched it to a horizontal segment of 52 pixels in (a) and 31 
pixels in (b). 

Global shape. The regularity of the global shape can affect 
interpolation, as suggested by the following 
demonstration. Compare two displays containing the 
same local pattern of T-junctions that are perceived as 
a partially occluded shape similar to a hexagonlike 
vertically elongated (Figure 8a) or a squarelike 
partially occluded shape (Figure 8b). The amodally 
completed vertex is flatter when global regularity 
cooperates with minimal path (T-junction stems 
belonging to the hexagonlike contour, Figure 8a) 
than when it cooperates with good continuation (T-
junction stems belonging to the squarelike contour, 
Figure 8b). 

The present version of our model applies to the 
interpolation of separate fragments by virtual lines, as well 
as to prototypical superpositions of flat laminas leading to 
90° T-junctions (amodal contours) or 90° L-junctions 
(modal contours). The effect of nonprototypical T- or L-
junctions on interpolation trajectories can be predicted by 
adding another local parameter. For the sake of 
simplicity, here we discuss a version of the model that 
does not include junction amplitude among the relevant 
parameters. 

Interpolation is modeled as the product of three 
factors: smooth closure (SC), good continuation (GC), 
and minimal path (MP). 
• SC: It is utilized as a superordinate principle that 

modulates the rivalry between GC and MP, forcing 
the trajectory to be close and continuous everywhere. 
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The GC-magnitude function reaches its maximum at 
endpoints. The point of decay to zero depends on the 
fragment-pair type (with/without intersecting 
extrapolations). The MP-magnitude function grows from 
zero at fragment endpoints to a maximum at the MP-line 
midpoint (Figure 9). Note that the minimum of the GC-
magnitude function is coincident with the maximum of 
the MP-magnitude function and vice versa. In accordance 
with previous results (Takeichi, 1995; Sgorbissa & 
Gerbino, 1999; Gerbino & Fantoni, 2000; Fantoni & 
Gerbino, 2001; Fantoni, Sgorbissa, & Gerbino, 2001) 
and with previous theoretical conceptualizations 
(Wertheimer, 1923; Metzger, 1954; Kanizsa, 1979), GC- 
and MP-magnitude functions are context-sensitive 
monotonic functions (Figure 29). 

• GC: It is specified by the function that describes the 
image contour between an endpoint and the first 
point of inflection, as originally proposed by 
Wertheimer (1923). Note that such a definition is not 
local. For instance, the GC interpolation of a partially 
specified circle is an arc of the same circle and not a 
sharp vertex made of two intersecting tangents at 
endpoints. 

• MP: It implements the law of proximity at the 
contour level (or the combination of convexity and 
minimal area at the surface level). 
In the case of partially specified angles (i.e., 

convergent fragments with intersecting GC 
extrapolations), GC alone would lead to a sharp vertex 
(GC-line solution); whereas MP alone would lead to 
closure by a straight segment with discontinuities at 
endpoints (MP-line solution). (a)

(b)

 

Elements of the Model 
Angles between GC and MP lines are called GC-MP 

angles. A fragment pair is defined by the following 
properties: 
• curvatures C1 and C2; 
• endpoints P1 and P2, corresponding to edgel 

positions in the plane; 
• edgel orientations α and β, corresponding to the two 

GC-MP angle sizes. 
Each fragment of a pair generates a GC field and a 

MP field. Every field is characterized by two functions 
that determine vector orientations and magnitudes at 
every point of the plane. The model applies to rectilinear 
and curvilinear fragments integrated by virtual, amodal, 
and modal trajectories. To simplify the description of the 
model, all examples in the following figures will refer to 
amodal completion in occlusion patterns. Figure 9 
illustrates GC and MP fields generated by a pair of 
convergent rectilinear fragments with intersecting GC 
extrapolations.   The GC-orientation function depends 
on the shape of specified contours. To embody the 
constancy of curvature of individual extrapolations, the 
local orientation of the GC vector is defined by the 
tangent to the curve that describes the relevant image 
fragment (i.e., the line between the endpoint and the first 
point of inflection or discontinuity, as proposed in the 
above definition of GC). When fragments are rectilinear, 
all GC vectors are parallel (as in Figure 9a). The MP-
orientation function depends on the relative position of 
the two endpoints. Convergent rectilinear fragments with 
intersecting GC extrapolations (as in Figure 10a) generate 
two opposite fields in which all MP-vector pairs are 
parallel to the MP line (as in Figure 9b). Convergent 
rectilinear fragments with nonintersecting GC 
extrapolations (as in Figure 11b) generate MP-vector pairs 
that rotate around the midpoint of the MP-line solution 
(as in Figure 15).  

Figure 9. Two convergent rectilinear fragments with 
intersecting GC extrapolations generate two GC fields and two 
MP fields. As shown in a, vectors of each GC field are parallel 
to the corresponding edgel orientation. The magnitude of GC 
vectors is maximum at endpoints and decays to zero at the 
median of the triangle bounded by GC and MP lines. As shown 
in b, all MP vectors are parallel to the MP line. MP-vector 
magnitudes are null at endpoints and grow to their maximum at 
the median of the triangle. 

The GC-magnitude function is modulated by: 
• the absolute quantity of image fragments (GC 

strength varies as a direct function of the retinal 
length of image fragments); 

• the proportion of specified-to-total contour or 
support ratio (GC strength varies as a direct function 
of the support ratio); 

• the absolute orientation of image fragments (GC 
strength varies as an inverse function of the departure 
from cardinal axes); 
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Rectilinear Fragments • the global shape of the fragmented configuration (for 
instance, the magnitude of GC vectors is larger if 
image fragments belong to the contour of a regular 
shape like a square with missing corners, Figure 8b). 

Consider a partially occluded shape with rectilinear 
sides (Figure 10a). The two GC-MP angles that share the 
MP line are opposite when the two GC extrapolations 
intersect (Figure 10b). When one GC extrapolation 
intersects the other fragment (including the limiting case 
of parallel fragments with an offset), alternate GC-MP 
angles are obtained (Figure 10b). 

• the convexity/concavity of the interpolated contour 
(for instance, the magnitude of GC vectors is larger if 
image fragments belong to the concave contour of a 
sand-glasslike shape, Figure 7b). 

The MP-magnitude function is modulated by:  Cases with opposite and alternate GC-MP angles 
constitute two subdomains of the FMAD for partially 
specified shapes with rectilinear sides: 

• the absolute size of the retinal gap between endpoints 
(MP strength varies as a direct function of endpoint 
separation); 

(a) rectilinear convergent fragments with intersecting GC 
extrapolations, as in partially occluded angles (Figure 
10), dotted intersecting lines, and the Koffka cross; 

• the absolute orientation of the two image fragments 
(MP strength varies as an inverse function of the 
departure from cardinal axes); 

(b) rectilinear convergent fragments with nonintersecting 
GC extrapolations (Figure 11), apart from limiting 
cases described in the next paragraph (Figure 16). 

• the global shape of the fragmented configuration (for 
instance, the magnitude of MP vectors is larger if 
image fragments belong to the contour of a regular 
shape like an elongated hexagon with a missing side, 
Figure 8a). 

GC-line G
C

-line MP-line α β

(a) (b)

 

• the convexity/concavity of the interpolated contour 
(for instance, the magnitude of MP vectors is larger if 
image fragments belong to convex contours of the 
two partially occluded diamonds, Figure 7a).  

The trajectory is determined by the bilateral 
concatenation of GC- and MP-vector sums, starting from 
each edgel. The two branches of the interpolated 
trajectory grow out of edgels and smoothly join each other 
(see Figure 13 for angle completions, and Figure 18 for 
circular-arc completions). Figure 10. The generic occlusion of a convex vertex in a 

illustrates the case of convergent rectilinear fragments with 
intersecting GC extrapolations and opposite GC-MP angles, 
described in b. 

The only free parameter of the model is GC-MP 
contrast, the relative difference between the maximum 
strengths of GC and MP vectors. The internal consistency 
of the model is evaluated in the following way: GC-MP 
contrast is set to a particular value to fit empirical data 
obtained in specific conditions; then, the model is tested 
by generating predictions consistent with values of GC-
MP contrast modulated by figural and viewer-dependent 
variables and matching them to new empirical data. 

(a) (b)

α

β

GC-line 

M
P-line GC-line 

 

Domain of the Model and Properties 
of Component Fields 

Taking into account the local properties of the retinal 
input and the dynamic structure of the VI process, we can 
identify a field model applicability domain (FMAD), 
corresponding to the spatial domain in which closed and 
smooth interpolating trajectories are generated to connect a 
fragment pair without uncertainty. A fragment pair 
belonging to the FMAD is associated to a specific 
interpolation region (IR) where interpolation trajectories can 
be generated. In our model, GC and MP fields are null 
outside the IR. 

Figure 11. The occlusion of convex and concave adjacent 
portions in a illustrates the case of convergent rectilinear 
fragments with nonintersecting GC extrapolations and alternate 
GC-MP angles. 

Opposite GC-MP angles (rectilinear case). All 
types of angle completions belong to the subdomain 
defined by opposite GC-MP angles. Their IR is a GC-MP 
triangle, conveniently conceived as the juxtaposition of 
two triangles, each defined by the MP line, the relevant 
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GC lines, and the IR median (Figure 12). The IR median 
is the line that connects the MP-line midpoint with the 
GC vertex (i.e., the intersection of GC extrapolations). 

The asymmetric occlusion of a rectilinear angle 
corresponds to the generic case of angle completion, in 
which the left GC-MP angle α is different from the right 
GC-MP angle β. The symmetric occlusion of a rectilinear 
angle corresponds to the specific case in which α=β.         

GC-magnitude functions have a maximum at 
endpoints and decay to zero at the intersection of the two 
GC lines. The maxima of GC-magnitude functions are 
proportional to the GC sides of the IR. Therefore, GC-
magnitude maxima differ when the IR is asymmetric 
(Figure 9a). Independent of IR symmetry, MP-magnitude 
functions grow from 0 at endpoints to a maximum at the 
MP-line midpoint. Left and right MP functions (one for 
each portion of the IR, Figure 9b) are always identical. 

GC-vertex

θ

α β

Midpoint

 IR
-m

ed
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n

 

Figure 12. The IR in the generic case of angle completion 
illustrated in Figure 10. The relevant portion of amodal space is 
the GC-MP triangle bounded by the two GC extrapolations 
meeting at the GC vertex and by the MP line. The interpolation 
angle defined by the two GC extrapolations isθ . As in Figure 
10b,  α  and β  are the angles between GC extrapolations and 
the MP line. Keeping θ constant, the difference between α  and 
β determines the amount of occlusion asymmetry in each 
specific case. 

Consider GC and MP vectors in the left and right IR 
portions. As regards vector orientations, all GC vectors 
are parallel to the relevant GC line (either left or right) 
and point away from the endpoints, whereas all MP 
vectors are parallel to the MP line and point toward its 
midpoint. As regards magnitudes, the reference line for 
both GC and MP vectors is the IR median. All GC 
vectors along a parallel to the IR median are equal to the 
length of the GC vector at the intersection between the 
parallel to the IR median and the relevant GC line. Such 
a length depends on the GC-magnitude function (see 
Equation 11. All MP vectors along a parallel to the IR 
median are equal to the length of the MP vector at the 
intersection between the parallel to the IR median and 
the MP line. Such a length depends on the MP-magnitude 
function (see Equation 12). 

Starting from each endpoint, the model computes the 
sum of GC and MP vectors at successive locations and 
generates a monotonic interpolation trajectory with a 
maximum at the cross-point with the IR median. The 
tangent at such a maximum is parallel to the MP line 

(Figure 13). As GC-MP contrast increases, the 
interpolation trajectory approximates the GC-line 
solution. 

 

Figure 13. A step-by step trajectory generated by the vector 
sum procedure in the generic case of angle completion. 
Starting from each endpoint, the chaining of GC- and MP-
vector sums at successive locations generates an ordinate set 
of local tangents to a monotonic interpolation trajectory with a 
maximum at the cross-point with the IR median. 

Alternate GC-MP angles (rectilinear case). 
Contrary to opposite GC-MP angles with intersecting GC 
extrapolations, alternate GC-MP angles define two open 
regions, one for each of the half-planes defined by the MP 
line. According to constraints described in the next 
section, patterns with alternate GC-MP angles include 
fragment pairs with an offset. 

To determine a closed IR, we assume that its final 
shape is a GC-MP bow tie (Figure 14) composed by two 
triangles with vertical angles at the MP-line midpoint (i.e., 
the knot of the tie). Like the GC-MP triangle, the GC-MP 
bow tie is composed by two triangles bounded by the MP 
line, the two relevant GC lines, and a central IR line. 
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Figure 14. The IR for the generic case of convergent rectilinear 
fragments with nonintersecting GC extrapolations (see Figure 
11). The reference fragment bounding the larger GC-MP angle 
is horizontal. The central IR line is the normal to the reference 
fragment through the MP-line midpoint. All interpolation 
trajectories generated by our field model are included in the 
GC-MP bow tie bounded by the two GC lines, the MP line, and 
the central IR line. 
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A compatibility criterion for rectilinear 
fragments. Compatibility criteria are inferred from 
properties of our field model. A basic compatibility 
criterion for the interpolation of rectilinear fragments is 
the following: the sum of the two GC-MP angles must be 
less than 180°. When α + β ≥ 180°, no trajectory can be 
found because of the structural indeterminacy of the 
decay points of GC-magnitude functions. There are two 
limiting cases, one for each subdomain of the FMAD for 
rectilinear fragments (Figure 16). 

The bow tie is obtained in the following way. First, 
the fragment with the larger GC-MP angle is chosen as a 
reference. Then the normal to the GC extrapolation of 
the reference fragment through the MP-line midpoint is 
defined as the central IR line, analogous to the IR 
median. Given two candidate GC normals, the rationale 
for selecting the normal to the extrapolation of the 
reference fragment is the minimization of the global 
perimeter of the bow tie. Such a normal is the shorter of 
the two and minimizes the relevant GC lines. 

Patterns with alternate GC-MP angles include generic 
cases with α ≠ β  and specific cases with α = β  (i.e., 
parallel fragments with an offset). Generic and specific 
cases are solved using the procedure valid in the opposite 
GC-MP angle subdomain. 

• Limiting case for opposite GC-MP angles. It occurs if one 
GC-MP angle is null. Both angles can be null but 
only one cannot: if α ≠ β, then α > 0 and β > 0. 
Gerbino’s illusion (Figure 16a) demonstrates that 
partially occluded polygons with one null GC-MP 
angle are visually intriguing (Gerbino, 1978; Da Pos 
& Zambianchi, 1996). 

Each GC-magnitude function has a maximum at the 
endpoint and decays to zero at the corresponding 
intersection of the GC line with the central IR line. All 
MP vectors point toward the MP-line midpoint. Starting 
from each endpoint, the model computes the sum of GC 
and MP vectors at successive locations and generates an 
interpolation trajectory with an inflection at the MP-line 
midpoint. Tangents in the neighborhood of the inflection 
are nearly parallel to the central IR line (Figure 15). As 
GC-MP contrast increases, the interpolation trajectory 
approximates the composite path with abrupt changes of 
curvature defined by the two GC lines and the central IR 
line. 

• Limiting case for alternate GC-MP angles. It occurs if one 
GC-MP angle is larger than 90°. If α ≠ β, then α < 
90° and β < 90°. Amodal completion of polygons 
with one GC-MP angle larger than 90° is 
phenomenally undefined (Figure 16b). 

(a) (b)

 

 

Figure 16. Limiting cases of the FMAD for rectilinear 
fragments. In a (opposite GC-MP angles), a distorted hexagon 
is perceived (Gerbino, 1978). In b (alternate GC-MP angles), 
the partially occluded shape is perceptually undefined. 

Curvilinear Fragments 
In accordance with the theory of curvature-constraint 

line (Takeichi et al., 1995), our model interpolates 
curvilinear fragments by means of trajectories with a 
maximum of three inflections. 

Also the FMAD for curvilinear fragments can be 
articulated into two subdomains, one for opposite and 
one for alternate GC-MP angles. Both subdomains are 
complex and depend on the shapes and relative positions 
of arcs to be interpolated. Let us analyze them with 
reference to some prototypical cases with circular-shaped 
fragments. 

 

Figure 15. A step-by-step trajectory generated by the vector 
sum procedure in the generic case of convergent rectilinear 
fragments with nonintersecting GC extrapolations (see Figure 
11 and Figure 14). Starting from each endpoint, the chaining of 
GC-  and MP-vector sums at successive locations generates 
an ordinate set of local tangents to an interpolation trajectory 
with an inflection at the MP-line midpoint. 
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(a) (b)

 

All co-circular arcs are compatible. Non-co-circular 
arcs with opposite GC-MP angles and intersecting GC 
extrapolations are also compatible. In such a case, the IR 
is bounded by the MP line and by two curved GC 
extrapolations whose intersection can be either 
continuous or discontinuous. Just as in the rectilinear 
case, the interpolated trajectory is always included in the 
asymmetric (α ≠ β) convex hull bounded by the two GC 
extrapolations, and the MP line and its tangent at the 
point of intersection with the IR median is parallel to the 
MP line. Figure 17. Our field model predicts the perceived flattening of 

the partially occluded circle in a. The predicted trajectory that 
interpolates two co-circular fragments (continuous line in b) is a 
flattened arc included between the pure GC solution and the 
MP line. 

Non-co-circular arcs with opposite GC-MP angles but 
nonintersecting GC extrapolations are not compatible 
with the field model. 

 

Opposite GC-MP angles (curvilinear case). The 
occlusion of a circle illustrates the case of opposite GC-
MP angles generated by co-circular arcs (Figure 17). The 
corresponding IR is identified by the same procedure 
utilized for rectilinear fragments with opposite GC-MP 
angles. It is the region included between the rectilinear 
MP line (green dotted line in Figure 17b) and the 
curvilinear GC extrapolations (red dotted line in Figure 
17b). By analogy with the rectilinear case, the central IR 
line connects the junction of the two symmetric GC  
extrapolations with the MP-line midpoint. 

Contrary to predictions from circular-arc models 
(Ullman, 1976; Kellman & Shipley, 1991) and spline 
models, our field model generates a flattened arc, as a 
function of GC-MP contrast (Figure 18). The flattening 
observed in static configurations is consistent with a 
dynamic effect we observed using a special kind of 
apparent rest display (Metelli, 1940). 

Figure 18. A step-by-step interpolation generated by the 
constrained extrapolation of co-circular arcs, according to the 
vector sum procedure. Starting from each endpoint, the 
chaining of sums of GC vectors (red) and MP vectors (green) 
at successive locations generates an ordinate set of local 
tangents to the interpolation trajectory (pink). Such a solution is 
flatter than the circular arc solution (red dotted line) and has a 
maximum at the cross-point with the IR median (black dotted 
line). GC vector magnitude functions refer to a curved 
abscissa, consistent with the assumption that each GC 
extrapolation preserves the global curvature of the 
corresponding image fragment. 

When an asymmetric 3-sector fan rotates on top of a 
partially occluded concentric disk, the disk looks nonrigid 
(Movie 1) and the amodal contour is perceptually 
flattened. The lack of rigidity depends on the tendency of 
shapes to keep a stable orientation (Musatti, 1924, 1975) 
and to the flattening of amodally interpolated contours. 

Alternate GC-MP angles (curvilinear case).  
Patterns with alternate GC-MP angles can be obtained by 
either homogeneous or heterogeneous non-co-circular 
arcs. Two non-co-circular arcs are homogeneous if their 
concavities are on the same side. This is an intentionally 
loose definition that can be clarified only by the following 
examples. 

 

A typical pattern with alternate GC-MP angles and 
homogeneous non-co-circular arcs is shown in Figure 19a. 
Such arcs belong to different circles, one eccentrically 
included within the other. The corresponding IR is 
identified by the same procedure utilized for rectilinear 
fragments with alternate GC-MP angles (Figure 19b). The 
interpolation of homogeneous non-co-circular arcs generates 
a trajectory with two points of inflections, supporting the 
perception of a partially occluded snail-like shape. 

Movie 1. Demonstration of the rotating fan illusion. 
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(a) (b)

 

(a) (b)

 Figure 19. The partially occluded snaillike shape perceived in a 
illustrates the interpolation of two homogeneous non-co-
circular arcs. The field model predicts that the two arcs are 
interpolated by the continuous trajectory in b, characterized by 
two inflections (black dots on the pink trajectory). 

Figure 21. In a, the arcs define a pattern of external alternate 
GC-MP angles. As shown in b, the field model generates a 
trajectory with three inflections, which represents a complex 
compromise between GC extrapolations and the MP line. 

Heterogeneous non-co-circular arcs always define a 
pair of alternate GC-MP angles. Figure 20 and Figure 21 
illustrate two typical cases, in which the corresponding 
IRs can be identified by the same procedure used for 
rectilinear fragments with alternate GC-MP angles. 
Instead of using parameters proposed by Takeichi et al. 
(1995, pp. 381-382), we distinguish the following two 
cases of alternate GC-MP angles: 

A compatibility criterion for circular fragments. 
Arcs with opposite GC-MP angles and intersecting GC 
extrapolations are always compatible. Other non-co-
circular arcs are compatible if a closed bow tie IR can be 
defined. This is the case if the following compatibility 
criterion is satisfied: 

• one straight line through the MP-line midpoint must 
be normal to the GC extrapolation that bounds the 
larger GC-MP angle and must intersect the other. 

• internal alternate GC-MP angles, located inside the 
convex regions bounded by the GC extrapolations, 
the central IR line and the MP line, in which our 
model generates a trajectory with one inflection 
(Figure 20b); 

Dynamic Compatibility Criteria 
Dynamic compatibility criteria are more general than 

geometric compatibility criteria. They allow for the 
interpolation of various types of fragments incompatible 
with relatability constraints: for instance, rectilinear 
fragments with opposite GC-MP angles whose sum is 
higher than 90° and lower than 180°; rectilinear 
fragments with alternate GC-MP angles; circular 
fragments with intersecting GC extrapolations and 
opposite GC-MP angles whose sum is higher than 90°; 
and circular fragments with alternate GC-MP angles. 

• external alternate GC-MP angles, located outside the 
convex regions bounded by the GC extrapolations 
the central IR line and the MP line, in which our 
model generates a trajectory with three inflections 
(Figure 21b). 

(a) (b)

 

Dynamic compatibility criteria are a consequence of 
the tendency to minimize inflections of interpolated 
contours embodied in our field model and explicitly 
considered by the curvature-constraint-line theory. 
However, they are more precise than the curvature-
constraint-line theory and other geometric approaches 
(including relatability), given that one criterion and two 
limiting cases are specific to rectilinear fragments. 

To measure the degree of compatibility of two 
fragments, we suggest the following candidate parameters: 
stability of model’s output; number of inflections of the 
generated trajectory; and, total amount of bending energy 
(Equation 2). The validity of such parameters should be 
tested psychophysically. 

Figure 20. The wave pattern in a derives from the interpolation 
of heterogeneous arcs with internal alternate GC-MP angles. 
The interpolated trajectory in b has one inflection and 
represents a compromise between GC extrapolations and the 
MP line. 
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AR= 2 d sin(α)/sin(β+α) .  An Algorithm for Angle  
 Completion The (x, y) points of the IR median {M} through V 

and O satisfy the following equation: 
In the “Introduction,” we mentioned several reasons 

for studying the completion of partially specified angles. 
Here we provide formal definitions appropriate for the 
interpolation of partially specified rectilinear angles, 
including cases of symmetric (Figure 1a) and asymmetric 
(Figure 10a) occlusion. Readers who are not interested in 
the details of the algorithm can skip this section and jump 
to “Properties of Trajectories for Angle Interpolation.” 

y =
2sin α( )sin β( )

sin β −α( ) x   (6) 

The GC vectors VGC(r) are directed along ÎLx in the 
left portion of the GC-MP triangle (called RL), relative to 
{M}, and along ÎRx in the right portion (called RR). The 
MP vectors VMP(r) are directed along the versor of the x-
axis ÂLx= (1, 0) in RL and in the opposite direction, ÂRx= 
(-1, 0), in RR. The portion of 2D space included within GC and 

MP lines is the GC-MP triangle. Given two T-junctions 
(TLx and TRx) and a set of contextual conditions, the 
model generates GC and MP fields that fill the IR (Figure 
9). For each GC-MP contrast value, the chaining of GC- 
and MP-vector sums determines a unique trajectory. The 
interpolation trajectory is characterized by a penetration 
value corresponding to the relative location of the cross-
point along the IR median. The penetration value 
identifies the maximum of the trajectory. 

 and TRx) and a set of contextual conditions, the 
model generates GC and MP fields that fill the IR (Figure 
9). For each GC-MP contrast value, the chaining of GC- 
and MP-vector sums determines a unique trajectory. The 
interpolation trajectory is characterized by a penetration 
value corresponding to the relative location of the cross-
point along the IR median. The penetration value 
identifies the maximum of the trajectory. 

Therefore the generic GC vector and the generic MP 
vector are represented by: 

VGC(r) = VGC(r)ÎLx; VMP(r) = VMP (r)ÂLx  

for x < y (sin(β−α)/2sin(α)sin(β)) and r ∈ RL 

VGC (r) = VGC(r)ÎRx; VMP(r) = VMP (r)ÂRx 

for x > y (sin(β−α)/2sin(α)sin(β)) and (r ∈ RR) Figure 22 provides the definitions used in subsequent 
demonstrations. To obtain a convenient Cartesian 
representation of the GC-MP triangle, the middle point 
of the MP line is located at the origin O= (0, 0). The MP 
line connecting the left terminator TLx and the right 
terminator TRx is made to coincide with the x-axis. The 
median of the GC-MP triangle is {M}, the line that 
connects O with the GC vertex V. The left and right sides 
of the GC-MP triangle (corresponding to TLxV and TRxV 
lines) are AL and AR. For TLx and TRx stems, respectively, 
we define the two versors (oriented segments of unitary 
length): ÎLx = (cosα, sinα) and ÎRx =(-cosβ, sinβ). 

Figure 22 provides the definitions used in subsequent 
demonstrations. To obtain a convenient Cartesian 
representation of the GC-MP triangle, the middle point 
of the MP line is located at the origin O= (0, 0). The MP 
line connecting the left terminator TLx and the right 
terminator TRx is made to coincide with the x-axis. The 
median of the GC-MP triangle is {M}, the line that 
connects O with the GC vertex V. The left and right sides 
of the GC-MP triangle (corresponding to TLxV and TRxV 
lines) are AL and AR. For TLx and TRx stems, respectively, 
we define the two versors (oriented segments of unitary 
length): ÎLx = (cosα, sinα) and ÎRx =(-cosβ, sinβ). 

where VGC(r) and VMP (r) indicate, respectively, GC-  and 
MP-vector lengths at the point r of the plane R. 

To implement smooth closure, GC- and MP-vector 
magnitudes are such that at T-junctions VGC(r)= VGC_max 
and VMP(r)= 0, and on the median VGC(r)= 0 and VMP(r) 
= VMP_max. 

As regards vector magnitude functions, given a point 
in the left portion of the field r= (x0, y0) ∈ RL, the GC-
vector magnitude depends on the TLxP length, where P is 
the intersection between the GC line and the parallel to 
the median through r (Figure 23). The TLxP length is 
defined by: 

T
Lx

T
Rx

O x

y

d

A L A
R

M

V

 

zL (x0, y0 ) =
2 d + x0( )sin β( )

sin β + α( ) −
y0 sin β −α( )

sin α( )sin β + α( )  (7) 

The MP-vector magnitude at r depends on the TLxQ 
length, where Q is the intercept of the parallel to the 
median with the x-axis. TLxQ is defined by: 

kL (x0 , y0) = d + x0 −
y0 sin β −α( )

2sin α( )sin β( )  (8) 

Analogously, given a point in the right portion of the field, 
r = (x0, y0) ∈ RR, GC-  and MP-vector magnitudes depend 
on TRxP and TRxQ lengths, defined, respectively, by: 

Figure 22. Cartesian representation of the GC-MP triangle for a 
generic case of vertex occlusion. 

Taking d as the half base of the GC-MP triangle, the 
coordinates of its vertices are: 

TLx= (-d, 0); TRx= (d, 0);  
zR (x0 , y0 ) =

2 d − x0( )sin α( )
sin β + α( ) +

y0 sin β − α( )
sin β( )sin β + α( )  (9) 

V= (d sin(β-α)/sin(β+α), 2 d sin(α) sin(β)/sin(β+α)) 

kR (x0,y0 ) = d − x0 +
y0 sin β − α( )
2sin α( )sin β( )  (10) The lengths of the relevant GC extrapolations are: 

AL= 2 d sin(β)/sin(β+α);  
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Figure 23. Given a point r = (x0, y0) ∈ RL on the left of {M}, the 
GC vector magnitude depends on the point ZL(x0,y0), where the 
parallel to {M} intersects the left GC line. The MP-vector 
magnitude depends on the point KL(x0,y0), where the parallel to 
{M} intersects the left half of the MP line. 

VGC(r) is a function of z, whereas VMP(r) is a 
function of k. Assuming that each function is a quadratic 
(because of its formal simplicity) VGC(z) and VMP(k) take 
the following form (Figure 24): 

VGC z( ) = VGC _ max 1 −
z
A

 
  

 
  

2 

 
 
 

 

 
 
 
 (11) 

VMP k( ) = VMP _ max
k
d

 
  

 
  

2

  (12) 

where A corresponds to the length of the relevant GC 
line (left or right). 

One can see that VGC({M})= 0; VMP(TLx)= 
VMP(TRx)= 0; VMP({M}) = VMP_max. In symmetric cases, 
VGC(TLx)= VGC(TRx)= VGC_max; in asymmetric cases, 
VGC(TLx) and VGC(TRx) are proportionally increased or 
decreased, relative to VGC_max, as a function of the 
difference between the two GC-MP angles. 

V
MP_max

V GC_max

 

Figure 24. GC-  and  MP-vector magnitudes depend on the 
GC-decay function and the MP-growth function. Left and right 
GC magnitudes have their maxima at T-junctions. One GC-
magnitude function is a compressed analogue of the other. 
The degree of compression is proportional to the difference 
between the two GC-MP angles. Left and right MP-vector 
magnitudes grow from 0 at T-junctions to the maximum VMP_max 
at {M}. Independent of the symmetry of the GC-MP triangle, 
MP-magnitude functions are always identical. 

Given such quadratic functions for VGC(z) and 
VMP(k), the only free parameter of the model is the GC-

MP contrast. The definition of GC-MP contrast given in 
(Equation 1) can be rewritten as: 

GC - MP contrast =  
VGC _ max − VMP_ max

VGC_ max + VMP_ max
  (13) 

The GC-MP contrast value varies between –1, when 
VGC_max is null (minimum IT penetration) and 1, when 
VMP_max, is null (maximum IT penetration). The amount 
of penetration increases as GC-MP contrast increases 
(Figure 25). 

 -0.91
0.51

GC-MP 
contrast

 
0.91

1

-1

 

Figure 25. The GC-MP contrast modulates the amount of 
penetration of the trajectory generated by our field model. As 
GC-MP contrast approaches 1, the interpolated trajectory 
approximates the GC solution. 

Obviously, one can choose other functions for VGC(z) 
and VMP(k). However, as it will become clear in the 
following, left and right trajectories join by preserving 
continuity if two fundamental conditions, both derived 
from the smooth closure, are satisfied: 

VGC(T)= VGC_max and VGC({M})= 0; 

VMP(T)= 0 and VMP({M})= VMP_max 

Our model generates a smooth interpolating curve under 
the requirement that the resulting sum vector VRS(r)= 
VGC(r) + VMP(r) is tangent to the curve in every point. 
For any given point (x0, y0) of the interpolation 
trajectory, the Cartesian components of the resulting 
vector VRS(r )= (RSx, RSy) are: 

RSx (x0, y0) = VGC(z) cos(α) + VMP (k)  for r ∈ RL  (14) 

RSy (x0, y0) = VGC(z) sin(α) 

RSx (x0, y0) = -VGC(z) cos(α) - VMP(k) for r ∈ RR  (15) 

RSy (x0, y0) = VGC(z) sin(α) 
The model requires that the first derivative of the 
interpolating curve, in the left and right portions of the 
GC-MP triangle, is given by the tangent of the slope of 
VRS(r): 

y' =
RSy (x, y)
RSx (x, y)

  (16) 

Obviously, the interpolated path and its first derivative 
are continuous. Notice that in TLx and TRx the following 
holds: y'(TLx)= tan(α) and y'(TRx)= -tan(β), respectively; 
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whereas y'({M})= 0, for both solutions on left and right 
sides. 

 Properties of Trajectories for  
 Angle Interpolation 

In symmetric occlusion, where α = β, the geometry of 
the model is simplified. As a consequence of the mirror 
symmetry of left and right vector fields, the generated 
trajectories are symmetric with respect to the GC-MP 
triangle median, which lies on the y-axis. The Vx 
coordinate becomes 0. Equations zL (Equation 7) and zR 

(Equation 9) as well as kL (Equation 8) and kR (Equation 
10) become equal. Therefore, the symmetric left and right 
trajectories meet on the y-axis at the cross-point with the 
GC-MP triangle median. Such a property holds also in 
asymmetric occlusion, where α  ≠ β.   

The location of the IT maximum on the GC-MP 
triangle median is an important general property of field-
model trajectories, consistent with empirical data 
obtained by Fantoni and Gerbino (2001), who used a 
multiple probe procedure to study amodally perceived 
trajectories in the symmetric occlusion case (α = β= 45°) 
and in two asymmetric occlusion cases (α = 35°, β=  55°; 
α = 25°, β=  65°). In each case, observers adjusted three 
differently oriented probes tangent to the amodal 
trajectory.  The orientations of the three probes (relative 
to the MP line) were as follows: 0° (i.e., parallel to the MP 
line), −α/2 (i.e., the bisector of the α angle); β/2 (i.e., the 
bisector of the β angle).  Two conditions of retinal size 
were studied. We used long thin lines as probes to 
prevent a risk that is present with short probes (or dots). 
If a short probe were treated as a fragment belonging to 
the same contour defined by T-junction stems, the 
interpolated trajectory would be perturbed. Predictions of 
various models were evaluated by comparing the average 
intersections of tangent probes with the GC-MP triangle 
median. Independent of symmetry, probes intersected the 
median in the following order of closeness to MP: first, 
the MP-parallel probe; second, the −α/2 probe; third, the 
β/2 probe. Figure 26 illustrates that such an ordering is 
predicted by our field model but not by the circular-arc 
model and by the Hermite spline, which, for small 
asymmetry, is a good approximation of elastica (as 
suggested by Sharon et al., 1997). 

Fantoni and Gerbino (2001, slide 18) compared the 
distribution of 18 average localizations of tangent probes 
(3 probe orientations x 3 occlusion cases x 2 retinal gaps) 
to predictions of the field model, the circular-arc model 
and the Hermite spline. Other models that generate 
approximations to elastica curves do not make obvious 
predictions and were not considered. A small percentage 
of variance was explained by the Hermite spline (3%) and 
the circular-arc model (9%). Instead, more than 75% of 
the variance was explained by our field model, depending 
on the specific value of GC-MP contrast (see slide 17 to 

evaluate the model’s robustness). To be fair with 
competing models, we set GC-MP contrast to different 
values: 0.95 for the comparison with the Hermite spline 
and 0.45 for the comparison with the circular arc. The 
corresponding percentages of variance explained by our 
field model were 85% and 76%, respectively.  
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Figure 26. Different models make different predictions about the 
relative locations of the three tangents. Given a GC-MP triangle 
with α< β and three tangents with slopes 0°, -α/2, and β/2 
(relative to the MP line), our field model makes the following 
ordinal predictions: P(MP) (the intersection between the MP-
parallel probe and the GC-MP triangle median) is lower than    
P(–α/2), which in turn is lower than P(β/2). Different orderings are 
predicted by circular-arc models and the cubic Hermite spline. 
For the IR shown in this figure (α = 25°), Fantoni and Gerbino 
(2001, slide 16) found that the three intersections for 0°, -α/2, β/2 
probes were 86, 90, and 96% with a 3° retinal gap, and 68, 77, 
and 83% with a 1.5° retinal gap. Tangent intersection values 
were percentages of the GC-MP triangle median. 

Like circular-arc models, the Bézier spline, and 
possibly some elastica-based models (but differently from 
the Hermite spline), the field model predicts that in all 
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occlusion cases the whole family of interpolated 
trajectories corresponding to different GC-MP contrast 
values lies inside the GC-MP triangle. It is easy to 
demonstrate that when (α − β) is large, the Hermite 
spline goes outside the GC-MP triangle.  

Another important property of our model is that the 
penetration of the trajectory decreases as the sum of the 
two GC-MP angles increases (Figure 27). This is 
consistent with a quantitative formalization of relatability 
and with empirical data by Gerbino and Fantoni (2000). 
We found that the amount of penetration into the GC-
MP triangle, estimated by the probe localization 
procedure, increases as the interpolation angle θ 
increases. Such a feature is shared by circular-arc models 
but not by spline models that maintain a constant 
penetration across different sizes of the interpolation 
angle.  
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Figure 27. Our field model predicts that the amount of 
penetration into the GC-MP triangle increases as the size of 
the interpolation angle increases. The penetration value is a 
percentage corresponding to the position of the cross-point 
along the median from the MP-line midpoint to the GC vertex. 

Our algorithm generalizes from symmetric to 
asymmetric occlusion cases by approximating a shearing 
transformation, very common in nature (Thompson 
D’Arcy, 1917/1942). The simple shear of a given 
symmetric trajectory determines a whole set of asymmetric 
trajectories referred to xnew, ynew coordinates obtained by 
tilting the y-axis of original rectangular coordinates by a 
variable angle w (Figure 28). The algorithm does not 
implement a perfect simple shear, although the 

approximation is high at small asymmetries. In the present 
version of the algorithm, an increasing asymmetry produces 
an increase of the GC-MP contrast value, which makes the 
interpolated angle sharper. This feature is desirable given 
that extreme asymmetric cases correspond to the reduction 
of the IR and to short distances between a fragment 
endpoint and the GC vertex. 

p (x, y)

ww

p (xnew, ynew)

 

Figure 28. The asymmetric trajectory on the right approximates 
the simple shear of the symmetric trajectory on the left. 

Context Sensitivity of the 
Interpolated Trajectory 

Our field model of VI includes structural and 
metrical aspects. Under constant structural constraints, 
the relative strength of GC and MP vectors depends on 
metrical information. Every resultant that locally defines 
the interpolated trajectory depends on the strengths of 
the two component vectors at the relevant location of the 
GC-MP triangle. This is an original aspect of the model, 
which generates a VI trajectory by combining two 
independent factors whose relative strength is affected by 
contextual variations, depending on the configuration 
and on viewing conditions. Figure 29 illustrates how 
different contextual variables interact and determine 
VGC_max and VMP_max. 

At least two viewer-dependent variables (retinal gap 
and orientation) and one viewer-independent variable are 
known to affect the interpolation of angles. 
(a) Retinal gap between T-junctions. We found that the 

amodal trajectory becomes flatter as the retinal gap 
between the two T-junctions decreases, keeping other 
conditions constant. When retinal size was small, 
observers placed probes closer to the MP line 
(Gerbino & Fantoni, 2000; Fantoni & Gerbino, 
2001, slide 16). According to our field model, as the 
retinal gap decreases, the MP strength increases faster 
than the corresponding decrease of the GC vector, 
that is simply scaled with size. This implies that the 
penetration of the interpolated trajectory decreases as 
the observer distance increases (Figure 30). The 
retinal-gap effect on VI is consistent with data on the 
salience of illusory contours by Dumais and Bradley 
(1976). 

(b) Orientation. Sgorbissa and Gerbino (1999) 
demonstrated that orientation affects the shape of 
VI. The orientation effect can be attributed to the 
combination of direct and mediated effects, which 
increase the penetration of the interpolated 
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trajectory when T-junction stems are oriented along 
cardinal axes (Gerbino, Sgorbissa, & Fantoni, 2000; 
Fantoni et al., 2001). The direct effect depends on 
the strengthening of GC along such axes. The 
mediated effect depends on orientation and form 
interactions. 
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Figure 29. The diagram represents the modulation of 
unification factors by metrical variables and their interaction. 
Given an input pattern (top), the model generates GC and MP 
fields under the SC constraint. Support ratio modulates the 
GC-magnitude function. Other metrical variables (retinal gap 
and orientation) modulate both GC- and MP-magnitude 
functions.  GC- and MP-magnitude functions are also 
modulated by form regularity that mediates a global effect of 
orientation.  The interpolation trajectory (bottom) derives from 
the chaining of resultants (VRES= VGC + VMP). 

(c) Support ratio. The ratio principle (Shipley & Kellman, 
1992b) states that the GC absolute strength depends 
on the ratio between lengths of the image-specified 
portion and the total side (including the amodal 
portion predicted by GC alone). GC becomes 
stronger as the specified length increases relative to 
the total length (i.e., when the support ratio is large). 
However, the MP strength is not influenced by such a 
ratio, being affected only by the retinal gap between 
T-junctions. As a consequence, as the image-specified 
portion increases, the trajectory penetrates more into 
the GC-MP triangle, making the amodal trajectory 
more similar to a rectilinear vertex. 
We hypothesize that the effects of retinal gap, 

orientation, and support ratio are not specific to 

rectilinear fragments with opposite GC-MP angles. 
Analogous effects should characterize the interpolation of 
rectilinear fragments with alternate GC-MP angles, as well 
as the interpolation of curvilinear arcs. 

As stated in the introduction, the interpolation of 
rectilinear fragments with alternate GC-MP angles is 
partially undetermined because GC extrapolations do not 
intersect. However, consistent with the context sensitivity 
of GC and MP fields, we suggest some conjectures. 

• As the retinal size of the MP line becomes shorter, 
the trajectory approximates the MP-line solution. 

• As the orientation of T-junction stems approximates 
vertical or horizontal axes, the trajectory approximates 
a composite path with abrupt changes of curvature, 
defined by the two GC lines and the central IR line. 

• The same effect is expected when the support ratio 
increases. 
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Figure 30. Field model predictions when the retinal gap (RG) 
between endpoints increases from 1.5 to 3.0 deg and produces 
a monotonic increase of the amount of penetration. The retinal-
gap effect is mediated by a change of the GC-MP contrast 
value. 

 Conclusions 
We offered a general account of visual interpolation 

(VI) processes involved in several phenomena. Our field 
model is new, in the context of other models in the 
current literature. However, it represents a quantitative 
implementation of classical unification factors. The 
interaction of good continuation (GC) and minimal path 
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(MP) has been modeled according to classical vector field 
theory. 

Birkhoff, G., Burchard, H., & Thomas, D. (1965). 
Nonlinear interpolation by splines, pseudosplines, 
and elastica. General Motors Research Publication No. 
468.  

The field model allowed us to interpolate a broad 
class of fragment pairs by the chaining of GC- and MP-
vector sums. The chaining of resultant vectors gives rise to 
interpolation trajectories with the following properties: 
continuity, minimization of inflection points, extended 
relatability, and context sensitivity. The dynamic VI 
process implemented in our model is flexible and shows a 
high predictive power. Furthermore, it provides an 
explicit formulation of the interaction of classical factors 
of organization (closure, good continuation, and 
proximity). 

Bregman, A. S. (1981). Asking the “what for” question in 
auditory perception. In M. Kubovy & J. R. 
Pomerantz (Eds.), Perceptual Organization (pp. 99-
118). Hillsdale, NJ: Erlbaum. 

Bryant, R., & Griffit, P. (1986). Reduction for 
constrained varational problems of ∫(K2/2)ds. 
American Journal of Mathematics, 108, 525-550. 

Our field model can embody other organizing factors. 
For instance, also shape regularity and symmetry might be 
formalized as weights that modulate GC-MP contrast. 
However, to account for the effect of nonorthogonal T- 
and L-junctions, we should add another local factor 
(different from GC and MP factors). Nonorthogonal T-
junctions give rise to Poggendorff-like illusions, consistent 
with a tendency to normalize angles between occluding 
and occluded contours. Such a tendency might be 
implemented in our model as an additional vector 
oriented along the normal to the T-junction top (TN). In 
this case, the trajectory should result from the chaining of 
resultants of three vectors (GC, MP, and TN). 

Buffart, H., Leeuwenberg, E., & Restle, F. (1981). Coding 
theory of visual pattern completion. Journal of 
Experimental Psychology: Human Perception and 
Performance, 7, 241-274. [PubMed] 

da Pos, O., & Zambianchi, E. (1996). Visual Illusions and 
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strength of subjective contours. Perception & 
Psychophysics, 19, 339-345. 
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leneas curva maximi minimive proprietate gaudentes, sive 
solutio problematis isoperimetrici lattisimo sensu accepti 
Lausannae, E65A. O. O. Ser.I. Vol 24. 

The dynamic approach used in developing our field 
model provides an alternative way of deriving 
compatibility criteria. Contrary to geometric criteria 
typical of the two-stage approach to interpolation, 
dynamic compatibility criteria are not a priori constraints 
to the application of an interpolating function. 
Compatibility measures depend on the distribution of 
vector fields that model unification factors. 

Fantoni, C. (2000). Invarianza di scala e interpolazione 
visiva. (Scale-invariance and Visual Interpolation). 
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