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Abstract

In this article we study hardware-oriented versions of the recently appeared Layered ORthogonal lattice Detector
(LORD) and Turbo LORD (T-LORD). LORD and T-LORD are attractive Multiple-Input Multiple-Output (MIMO)
detection algorithms, that aim to approach the optimal Maximum-Likelihood (ML) and Maximum-A-Posteriori
(MAP) performance, respectively, yet allowing a complexity quadratic in the number of transmitting antennas
rather than exponential. LORD and T-LORD are also well suited to a hardware (e.g., ASIC or FPGA) implementation
because of their regularity, parallelism, deterministic latency, and complexity. Nevertheless, their complexity is still
high in case of high cardinality constellations, such as the 64-QAM foreseen by the 802.11n standard. We show
that, when only global latency constraints exist, e.g., a fixed time to detect the whole OFDM symbol, the LORD and
T-LORD complexity can be remarkably reduced, still approaching the ML and MAP performance, respectively.
Notwithstanding the suboptimal low-complexity and hardware-oriented implementation, LORD and T-LORD
approach the EXtrinsic Information Transfer of the ML and MAP detectors, respectively. To focus on a specific
setting, we consider the indoor MIMO wireless LAN 802.11n standard, taking into account errors in channel
estimation and a frequency selective, spatially correlated channel model.
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1 Introduction
Because of the increasing demand of data rate and link
robustness in wireless transmissions, Multiple-Input
Multiple-Output (MIMO) technologies are nowadays an
indispensable option in the wireless communications
standards recently released or under definition, such as
IEEE 802.11n [1], WiMax [2], and mobile long term
evolution (LTE) [3]. In fact, the capacity of the wireless
link grows linearly with the number of transmitting or
receiving antennas [4,5], when spatial diversity is avail-
able. In practice, MIMO is often combined with space-
frequency bit interleaved coded modulation (BICM) and
orthogonal frequency-division multiplexing (OFDM)
[1,2], which ensure that almost uncorrelated channels
are experienced by different tones within an OFDM
symbol.
To increase the spectral efficiency of the link, the

transmitting antennas can be used in layered mode, i.e.,

each antenna transmits a different symbol in the same
bandwidth at the same time. On one side, a sophisti-
cated receiver is needed to solve spatial inter-symbol
interference and effectively exploit the theoretical advan-
tages. On the other side, mobile devices must be low
power consuming and moderately expensive.
The ideal receiver should consider the likelihood of

the received vectors for each possible codeword, jointly
performing detection and decoding. This has prohibitive
complexity, except for simple space-time codes. In prac-
tice, detection and decoding are decoupled, and Soft-
Input Soft-Output (SISO) detectors are used in conjunc-
tion with SISO decoders in iterative schemes [6], to
approximate the ideal receiver through disjoint stages,
according to the turbo principle [7]. Turbo detectors
exploit the information fed back by the channel decoder
as a priori information about the transmitted vectors of
symbols. If needed, detector and decoder can be simply
applied in cascade, as a special case of turbo detection
and decoding without iterations. In the former case, the
optimal detector to be used is the Maximum-A-Poster-
iori (MAP) detector, while in the latter case the MAP
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detector degenerates into the symbol-by-symbol Maxi-
mum-Likelihood (ML) detector, since there is no avail-
able a-priori information.
Despite these simplifications, the complexity of the

optimal MAP and ML detectors still increases exponen-
tially with NtNb, where Nt is the number of transmitting
antennas and Nb the modulation order [bits/dimension].
This is why many researchers have sought suboptimal
detection strategies, trying to approach the ideal detec-
tor with limited complexity, e.g., via (Turbo) MMSE
detection [8,9] or sphere detection [10-14]. The former
strategy combines “soft decision” subtraction (soft-DFE)
and linear minimum mean square error (MMSE) spatial
equalization [8,9,15]. This method, although computa-
tionally affordable, can lead to largely sub-optimal
results, especially when very high spectral efficiencies
are sought with large Nb and Nt and high rate codes.
Conversely, sphere decoding (SD) detectors [16] reduce
the MAP and ML complexity restricting the search to a
subset of the whole hyper-symbol constellation. The SD
family can be roughly divided in two groups: the depth-
first [10] and the breadth-first [11-14,17-19] SDs. The
second family has several advantages, such as fixed
latency and lower complexity. However, for a small
number of candidates, breadth-first SD leads to a per-
formance degradation. Recently, to improve its behavior
in iterative receivers, SD has been combined with
MMSE [20]: the linear detector assists the SD, finding a
good center of the search sphere and thus improving
the performance of the iterative receiver.
One of the most promising proposals is the Layered

ORthogonal lattice Detector (LORD) [21,22], and its
iterative version, namely Turbo LORD (T-LORD) [23].
A proposal similar to LORD has been published few
years later [24]. LORD detects the ML hyper-symbol, or
close, depending on the number of antennas involved.
In a similar way, the T-LORD approaches the MAP per-
formance, combining the low-complexity spatial DFE
principles of LORD with a simple yet accurate method
to handle a priori log-likelihood ratios (LLRs). LORD
and T-LORD are particularly suited for hardware, paral-
lel implementation and soft-output bit detection, and
perform very well in combination with soft decoders
like SOVA [25] or BCJR [26] for convolutional codes, or
with an LDPC decoder [27]. Nevertheless, their com-
plexity is still high in case of high cardinality constella-
tions, such as the 64-QAM foreseen e.g., by the 802.11n
standard.
In this article, we propose simplified LORD and T-

LORD versions, that keep their vocation for hardware
implementation, maintaining deterministic complexity
(quadratic in the number of transmitting antennas) and
flexibility for setting the desired performance-complexity
trade-off. Besides, we show that, when only global

latency constraints exist, e.g., a fixed time to detect the
whole OFDM symbol, the LORD and T-LORD com-
plexity can be remarkably reduced, still approaching the
ML and MAP performance, respectively.
In all cases the performance is very good. We show in

particular that LORD and T-LORD can perform very
close to the ideal MAP detector for at least up to four
antennas and for modulation orders of 3 bits per dimen-
sion, even in a realistic setting, with imperfect channel
state information (CSI) and correlated channels.
Furthermore, we show that our detectors exhibit the
same EXIT chart behavior as the MMSE-assisted SD
[20], yet with a lower complexity, even more reduced w.
r.t. [23]. Recently, a strategy that recalls in principle the
idea proposed in this article for OFDM tones processing
has been proposed in [28], with a different detector.
The article is organized as follows. Section 2 describes

the system model. Section 3 recalls the full-complexity
LORD and T-LORD algorithms. Section 4 motivates
and describes our low-complexity hardware-oriented
LORD and T-LORD proposals. Section 5 shows their
performance. Section 6 concludes the article.

2 System model
Consider a MIMO communication system with Nt

antennas at the transmitter side and Nr ≥ Nt at the
receiver side. To focus on a practical application, we
adopt many of the parameters from the 802.11n stan-
dard [1]. At the transmitter, each Wireless LAN packet
carrying 390 data bytes is encoded by a 64-states binary
convolutional encoder, space-frequency interleaved and
Gray-mapped onto an M-QAM constellation. An
OFDM modulator, for each spatial stream, splits the
overall frequency band (20 MHz) in Nf = 64 sub-bands
(tones), out of which Ndc = 52 are data carriers. The
block diagram in Figure 1 summarizes the main opera-
tions applied to a packet, when Nt = 2 and Nr = 2. The
extension to more than two antennas is straightforward.
The OFDM format allows to separately consider each

tone. Therefore the dependency on the carrier index is
omitted in the article, and all the equations refer to a
single OFDM tone. The received signal y ∈ CNr reads

y = Hx + n (1)

where x ∈ CNt contains the transmitted symbols and
n ∈ CNr is an i.i.d. Gaussian complex white noise vector
with covariance matrix: Rn = E [nnH] = N0I. The trans-
mitted M-QAM symbols are uncorrelated, with zero
mean and variance σ 2

X = 1, for each transmitting
antenna. Therefore, the transmitter Signal-to-Noise-
Ratio SNRTX equals Nt/N0.
The MIMO (frequency selective) channel is repre-

sented by H ∈ CNr×Nt, whose elements hr,t are the
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complex (flat) gain of the path between transmitter t
and receiver r, at a certain tone. These elements are
normalized, i.e., E [|hr,t|

2] = 1, with t = 1, 2,..., Nt and r
= 1, 2,..., Nr. More details on channel assumptions are
given in Section 5.
At the receiver (see Figure 1), after OFDM demodula-

tion the symbol vector y is passed to the detector, which
computes the LLRs of the coded bits lt(n), with t = 1,
2,..., Nt and n = 1, 2,..., 2Nb, where Nb = log2(M)/2 is the
number of bits per dimension. The soft values are de-
interleaved and passed to a decoder. In case of serially
concatenated detection and decoding, the decoder, e.g.,
a Viterbi one, outputs hard bits. Conversely, in case of
turbo detection and decoding, the SISO decoder, such
as the BCJR [26] or the SOVA [25], also outputs the
extrinsic information used as a priori LLR ξt(n) at the
detector (after interleaving)

ξt(n) = ln
P(bn(xt) = 0)
P(bn(xt) = 1)

(2)

where bn (xt) Î {0,1} is the i-th bit of symbol xt. Tak-
ing advantage of the soft information fed back by the

decoder, at each iteration the detector produces more
reliable extrinsic information to be passed to the deco-
der itself:

λt(n) = φt(n) − ξt(n). (3)

Here jt (n) is the a posteriori LLR of bn (xt), com-
puted during the detection process. In the next section
we focus on this detection stage.

3 Detectors outline
In this Section, we give a synthetic description of LORD
and T-LORD, indispensable to understand the imple-
mentation proposed in the successive sections. For more
details about LORD and T-LORD and their various ver-
sions, we defer the reader to [23]. We also recall the
optimal MAP and ML detectors. Rather than practicable
solutions they are a reference for the performance of
any other detector. The reader interested in other tech-
niques, such as the MMSE and the Sphere, can refer
again to [23], where a detailed comparison with the
“standard” T-LORD is reported, both in terms of com-
plexity and performance.
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3.1 MAP and ML detectors
A MAP detector accepts the received vector y and the a
priori information, coming from the decoder, and evalu-
ates the probability of all possible transmitted vectors x.
These two contributions can be easily identified in the
following metric:

ϕ(x) = −
∥∥y − Hx

∥∥2
N0

+
Nt∑
t=1

2Nb∑
i=1

bi(xt)ξt(i) (4)

With no a priori information, i.e., ξt (i) = 0, (4)
reduces to the ML metric.
Equation (4) is the basis for the computation of a pos-

teriori LLRs

φt(n) = ln

∑
x:bn(xt)=0 exp ϕ(x)∑
x:bn(xt)=1 exp ϕ(x)

≈ max
x:bn(xt)=1

ϕ(x) − max
x:bn(xt)=0

ϕ(x) (5)

The last term in (5) is the (typically very accurate)
Max-Log-MAP approximation. As mentioned in the
introduction, the number of complex Euclidean dis-
tances (ED) and a-priori probabilities to compute, either
in case of MAP and ML, as well as of their Max-Log
approximations, increases exponentially with NbNt.

3.2 LORD detector
The LORD algorithm is composed of two stages.a The
former is a pre-processing, common to several received
sequences y, as long as the channel can be supposed
constant for several OFDM symbols. It consists in Nt

QR factorizations of the channel matrix H, with per-
muted column orders:

Q(t)R(t) = H�(t) (6)

where �(t) =
[
u1 . . . ut−1 ut+1 . . . uNtut

]
is the permu-

tation matrix which moves the t-th column of H in the
last position. Thus, the received symbol and the system
model can be rewritten as

ỹ(t) = Q(t)Hy = R�(t)Hx +Q(t)Hn = Rx̃(t) + ñ(t) (7)

without impairing the receiver performance as long as
the AWGN is spatially i.i.d., since ñ is still Gaussian
with Rñ = QH(t)RnQ(t) = N0I. The evaluation burden of
this phase is negligible if the channel can be supposed
constant for several consecutive OFDM symbols, thus
we focus on the second stage of the algorithm.
For each permutation Π(t), the LORD algorithm

explores every possible transmitted QAM symbol xt,
moved in the lowest position of x̃(t), called “root layer”
from now on. For each hypothesis xt = x̃Nt = x̃, the algo-
rithm subtracts its interference over the upper layers,
chooses the closest symbol over the new interference-
free layer (through a simple slicing) and iterates this
process, up to ỹ1(t). In formulas:

x̂j(t, x̄) =

⎧⎪⎨
⎪⎩
x̄, j = Nt

argmin
x

∣∣∣∣∣ỹj(t) − rj,j(t)x −
Nt∑

i=j+1
rj,i(t)x̂i(t, x̄)

∣∣∣∣∣ , j < Nt
(8)

Finally, the algorithm builds Nt different sets, back to
the “original” order:

St = {�(t)x̂(t, x̄),∀x̄} (9)

and performs the Log-Likelihood search only over the
elements in (9):

λm
t ≈ min

x∈St :bm(xt)=1

∥∥ỹ(t) − R(t)x
∥∥2

N0
− min

x∈St :bm(xt)=0

∥∥ỹ(t) − R(t)x
∥∥2

N0
(10)

If Nt = 2, it can be shown that the set St contains, for
each possible bit of xt, the closest hyper-symbol x hav-
ing bm(xt) equal to one or zero. Thus, the algorithm has
the same performance of the Max-Log ML detector. On
the contrary, if Nt > 2, this is not assured, due to possi-
ble error propagation in the decision feedback equaliza-
tion (DFE) (8). This sub-optimal behavior can be
mitigated crossing many sets Sj, i.e., letting a hyper-sym-
bol x ∈ St be replaced by the candidate x’ ∈ Sj, if its ED
is smaller and x′

t = xt = x̄:

S ′
t =

{
argmin

x′∈Sj,∀j:x′
t=x̄

∥∥ỹ(t) − R(t)�H(t)x’
∥∥2,∀x̄

}
(11)

3.3 T-LORD detector
Turbo-LORD is a generalization of LORD, able to man-
age a-priori information. Basically, (9) is replaced by

St =
{
arg max

x∈Ut(x̄)
ϕ(x), ∀x̄

}
(12)

where the metric � (x) is the same as (4) and all the
elements in the same subset Ut(x̄) share the same root
symbol x̄:

x ∈ Ut(x̄) ⇒ xt = x̄ (13)

Thus, the a-posteriori LLR (5) is eventually approxi-
mated as

φt(n) ≈ max
x∈St :bm(xt)=0

ϕ(x) − max
x∈St :bm(xt)=1

ϕ(x) (14)

The cardinality of Ut(x̄) is selected according to the
desired complexity-performance trade-off. E.g., one
could consider just two hyper-symbols, the one with
with the highest a-priori probability, and the one with
the smallest ED:

xA(t, x̄) = {x : (xt = x̄) and (bi(xj) = sign(ξj(i))∀i,∀j �= t)} (15)

xD(t, x̄) = argmin
x:xt=x̄

∥∥y’ − Rx’
∥∥2 (16)
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Ut(x̄) = {xA(t, x̄), xD(t, x̄)} (17)

Using the terminology introduced in [15] in the scalar
case, (15) and (16) are said to obey the a priori and the
distance criteria: T-LORD assumes that the symbol with
the smallest (4) is either xA or xD.
When Nt > 2, the distance to be minimized is function

of two or more variables, hence the solution can not be
found through simple slicing. As in the previous section,
one can rely on a DFE process, but there is not guaran-
tee that the chosen symbol is actually the closest,
because wrong decisions in intermediate layers can
happen.
We denote this sequentially chosen hyper-symbol as

xD,...,D(t, x̄), to underline the layer by layer application of
the distance criterion, over the upper layers. In the same
way, even the a-priori criterion can be applied layer by
layer, processing blocks of 2Nb LLRs per layer, letting
their signs drive the choice of QAM candidates and sub-
tracting their interference from the upper layers, this
time without introducing errors.
In [23], other criteria have been proposed to choose

the hyper-symbols in Ut(x̄), e.g., to take into account
not only the most probable a-priori symbol, but also the
second one xF(t, x̄), that can be easily computed by flip-
ping the weakest a-priori LLR. Furthermore, there is no
need for applying the same criterion at each layer: they
can be mixed, retaining only the K candidates with the
best Partial A-Posteriori Probability (PAPP)

ϕ
(
x’k÷Nt(t)

)
= −

∥∥y’k÷Nt
(t) − R’k÷Nt ,k÷Nt(t)x’k÷Nt(t)

∥∥2
N0

+
Nt∑
j=k

2Nb∑
i=1

bi
(
x′
j(t)

)
ξt′(j,t)(i) (18)

where k ÷ Nt stands for k,k + 1,...,Nt and

t′(j, t) =

⎧⎨
⎩
j j < t
Nt j = t
j − 1 j > t

(19)

is the LLR permutation, coherent with matrix Π(t).
The K-best algorithm builds Ut(x̄) as follows. At the first
step, the partial set UNt

t (x̄) contains only x̄. At the k-th
step, according to each possible criterion (a priori, dis-
tance and possibly flipping), the K-best algorithm
expands each candidate in Uk+1

t (x̄) (note that index k
decreases while the algorithm proceeds). Only the K
best results, out of this expanded set, are retained in the
partial set Uk

t (x̄), while the other ones are discarded. At
the last step, when k = 1, we declare Ut(x̄) = U1

t (x̄) and
the T-LORD search goes on as explained in Section 3.2.
We remark that (18) can be recursively updated, layer

by layer, adding the new partial ED and a priori terms
to the previous partial metric, saving computing time
and power. A very interesting choice, as shown in the

next section, is K = 1. This corresponds to retaining at
each layer only the best new candidate. This algorithm
can be interpreted as a decision feedback equalizer
(DFE), driven by the aforementioned criteria.
Finally, though the above enhancements proved to be

effective, it can anyhow happen that the above general-
ized DFE process fails, missing the correct detection at
some intermediate layer. However, when Sj for another
transmitted symbol is computed, the distance and the a
priori criteria may select some symbols x with xt = x̄ in
the upper layers with a better metric (4). So, in analogy
with (11), one can augment St as follows:

S′
t =

{
arg max

x∈Ut(x̄)∨x∈Sj �=t :xt=x̄
ϕ(x), ∀x̄

}
(20)

One can first compute (12) for all t, then cross data to
obtain the improved S′

t. This enhancement implies no
growth of the number of checked hyper-symbols, but
only extra latency and complexity due to additional
metric comparisons and selections.

4 Hardware-oriented, low-complexity LORD
As we are going to show, the number of QAM sym-
bols that LORD must check is largely affected by M,
the cardinality of the constellation, which can even
reach hundreds of points. Therefore, we aim to
reduce the number of candidates in St, exploring only
a subset of the QAM constellation at the root layer.
Thus, the hyper-symbol span described in (8) is per-
formed only with the root belonging to this reduced
set of QAM symbols. Trying to preserve the regularity
and parallelism typical of the full-complexity LORD,
we restrict our attention to square subsets of the
QAM constellation, centered in the received (equal-
ized) signal ỹNt(t)/rNt ,Nt(t), at the root layer (red cross
in Figure 2a).
The performance of the detector depends on the

probability that the transmitted symbol does not belong
to the square QAM subset, since when this happens, the
LORD algorithm fails with high probability. To describe
how this border violation behaves, we keep the QAM
constellation size fixed and properly re-scale the noise
power. After the pre-processing operations in (7), the
channel gain rNt ,Nt (t) multiplies the signal x̃Nt(t), and
the noise at the root layer reads

ñNt(t) = qH
Nt
(t)n, (21)

which is a Gaussian variable with zero mean and

unchanged power E
[∣∣ñNt

∣∣2] = N0qH
Nt
(t)qNt

(t) = N0.

Thus, the actual noise power affecting the fixed-size
QAM constellation of Figure 2a reads
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σ 2
act.noise = E

[∣∣∣∣ ñNt (t)
rNt ,Nt(t)

∣∣∣∣
2
]
=

N0

r2Nt ,Nt
(t)

. (22)

This provides a better insight into our problem.
Indeed, let us assume the channel is composed by i.i.d.
Gaussian variables. Due to the Gram-Schmidt orthogo-
nalization in the QR process, rNt ,Nt (t) is a Rayleigh ran-
dom variable with unit power and probability density
function given by

pRNt ,Nt
(rNt ,Nt ) = 2rNt ,Nt exp(−r2Nt ,Nt

) (23)

We can easily compute the pdf of the actual noise
standard deviation, normalized by

√
N0, being the out-

put of the function d = f (rNt ,Nt) =
1

rNt ,Nt

:

pD(d) =
pRNt ,Nt

(
f−1(d)

)∣∣f ′(f−1(d))
∣∣ =

2
d3

exp
(

− 1
d2

)
(24)

This pdf is plotted in Figure 2b (solid blue line), along
with other simulated pdfs (dashed red lines), referring to
a MIMO system with Nt = Nr = 2 and spatially corre-
lated channel gains. It can be observed that the corre-
lated case is even worse, because the matrix H can
easily be ill-conditioned, i.e., with the last diagonal ele-
ments of R(t) close to zero.
Even more importantly, the pdfs always exhibit long

tails at high standard deviations. This suggests the

following interpretation of the SNR behaviour at the
root layer: quite often, the noise level is moderate; occa-
sionally it is very high. The square side reduction is
expected to be applicable only in the former case, since
any approximation in the latter case would likely be
harmful. This idea will be made practical in the follow-
ing section.

4.1 Algorithm description
Aiming at square subsets (see Figure 2a) that include
the transmitted symbol with a high probability, square
side lengths larger than α

√
N0/2 (with a > 1) should be

considered. Probably, one could approach the perfor-
mance of the full complexity LORD with ad-hoc tuning
of the parameter a, fundamental to find a good tradeoff
between complexity reduction and capability to detect
the ML point. Nevertheless, this solution would be sen-
sitive to the parameter a, thus not well suited to any
device implementation.
On the contrary we propose an attractive alternative

solution, which does not require any parameter to be
tuned, once the architecture has been chosen. Indeed,
we suggest to perform the full-complexity search over
the whole QAM constellation for the carriers affected
by the worst-case noise (in the following, “worst car-
riers” for brevity), limiting the search for all the other
ones to a square subset with a fixed number of points.
This way, we always reserve the more robust (full-
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Figure 2 Root layer : (a) a possible subset of QAM points, around the received symbol; (b) the pdf of the noise standard deviation, for different
channel correlations r in a system with Nt = Nr = 2.
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complexity) algorithm to the carriers affected by higher
noise powers at the root layer. This significantly reduces
the probability that a transmitted point falls outside the
reduced square subset of Figure 2a. Clearly, the higher
the hardware capability of the device, the higher the
fraction of carriers that can be fully spanned. The fun-
damental hypothesis, at the basis of this solution, is the
existence of detection time constraints (measured in
number of clock cycles) only at the level of the entire
OFDM symbol, and not carrier-by-carrier. This hypoth-
esis seems quite reasonable, since devices for typical
applications have to conclude the detection of an entire
OFDM symbol within a fixed time, say Tmax.
Let us focus on the QAM symbols transmitted by the

same antenna within an OFDM symbol. Define the par-
allelism Plc as the minimum number of DFE processors
(8) able to exhaustively analyze only the worst Nfull

c car-
riers, limiting the search for the rest of the tones within
a square subset of cardinality S2, as in Figure 2.
Assume that each DFE processing (8) takes Telem

clock cycles. Thus, the low-complexity LORD requires a
number of elementary processing units per antenna Plc

such that

Telem

⌈
Nfull

c M + (Ndc − Nfull
c )S2

Plc

⌉
≤ Tmax (25)

As a special case, when Nfull
c = Ndc we obtain the full-

complexity LORD parallelism Pfull, satisfying
Telem

⌈
NdcM/Pfull

⌉ ≤ Tmax.
For example, assume that Tmax = 6NdcTelem, i.e., on

average 6 clock cycles are allowed to conclude the
detection process for each antenna permutation, at
each data carrier.b With Nt = 2, Ndc = 52 and a 64-
QAM constellation, Figure 3 plots the maximum num-
ber of fully-spanned tones (solid lines) as a function of
the parallelism Plc and of the square subset side S.
Clearly, the higher the number of processing units, the
higher the number of exhaustive searches we can
exploit. On the contrary, the larger the square side
length S, the lower the number of full-complexity
detections.
To efficiently compute not only (8) but also (10), we

impose further regularity to the hardware supposing
that at each clock cycle the device can work only over a
row/column of the square.
When Plc ≥ S, as in Figure 4a, the square processing is

always performed in the same direction, e.g., by col-
umns. On the contrary, when Plc <S, the square is com-
puted through a tessellation, as in Figure 4b. It can be
shown that this kind of processing requires

⌊
S

Plc

⌋
(2S − Plc) −

⌊
S

Plc

⌋2

Plc + S (26)

clock cycles and, with a reasoning analogous to (25),
leads to a smaller number of available fully-spanned car-
riers, as reported in Figure 3 (dashed lines). Curves in
case of tessellation have been plotted only up to S = 6,
which is the limit case, since with 6 clock cycles (on
average) the detection time is exhausted for performing
the low-complexity algorithm over each carrier (i.e.,
Nfull

c = 0). If S > 6, it is not possible to meet the overall
OFDM time constraints of our example. Nevertheless, it
will be shown in the next section that S = 5 is enough
for all cases of practical interest we have tested. This
means that the ML performance can be approached
with S ⋅ Plc/M = 25/64 ≈ 40% of the original LORD
complexity.

4.2 Extension to T-LORD
From the description of LORD and T-LORD outlined in
Section 3, it is clear that the LORD algorithm is actually
a special case of the T-LORD, when all the a-priori
LLRs ξt(n) are zero. Indeed, in this case there is no
point in applying the a-priori criterion, since any symbol

has the same a-priori probability equal to
1
M
. Only the

distance criterion makes sense, and its DFE process is
actually the same as (8). Finally, having just one mean-
ingful candidate per set Ut(x̄), also the K-best approach
becomes superfluous. To summarize, the distance criter-
ion in the T-LORD works as the LORD algorithm. For
this reason we can generalize the LORD hardware-
oriented simplification, presented in the previous sec-
tion, to the T-LORD.
Basically, the full T-LORD algorithm is performed

only for the most attenuated carriers. For the rest, the
DFE process is run just for a subset of root layer sym-
bols. In this case, the candidate sets Ut(x̄) are not deter-
mined for any hypothesis x̄, but only for those
belonging to a properly chosen square subset of the
QAM constellation. The only difference with LORD is
in the way we can choose the square subset of cardinal-
ity S2. Indeed, in principle one could find it at the first
iteration, as shown in Section 4, and let it unchanged
along iterations. Though this approach is quite attrac-
tive, it is potentially harmful, since it could inhibit the
a-priori LLRs influence on the detector outputs, if the
search gets stuck in a bad subset of root layer symbols,
not containing the transmitted one. An effective solution
is to let the a-priori information drive the choice of
the square subset, in conjunction with the observed
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signal ỹNt(t). We compute the L-MMSE estimation of
the transmitted symbol on the root layer, performing a
weighted maximal ratio combining (MRC) of the equal-
ized received signal x̌D(t) and of the a-priori expected

symbol x̌A(t):

x̌D(t) =
ỹNt(t)
rNt ,Nt(t)

(27)
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Figure 3 Maximum number of fully-spanned subcarriers, depending on the desired parallelism (in abscissa) and on square side length
(different lines).

(a) (b)

Figure 4 Processing of a 5 × 5 QAM constellation by a regular hardware. (a) with parallelism 6; (b) with parallelism 3.
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σ 2
D(t) =

N0∣∣rNt ,Nt(t)
∣∣2 (28)

x̌A(t) =
M∑
j=1

xj
2B∏
i=1

exp(bi(xi)ξt(i))
1 + exp(ξt(i))

(29)

σ 2
A (t) =

M∑
j=1

∣∣xj∣∣2 2B∏
i=1

exp(bi(xj)ξt(i))

1 + exp(ξt(i))
(30)

x̌(t) =
σ 2
A (t)x̌D(t) + σ 2

D(t)x̌A(t)

σ 2
D(t) + σ 2

A (t)
(31)

In case of null a-priori information, σ 2
A (t) = σ 2

X and
the square subset choice is practically the same as the
LORD one, since σ 2

X = 1 is typically much greater than
σ 2
D(t). Conversely, when the a-priori information in

high, the received symbol is ignored in the calculus of
x̌(t), since σ 2

A (t) is small. Finally we remark that (29)
and (30) can be efficiently computed with techniques
similar to [15].

4.3 Related issues
As the constellation search is restricted at the root layer,
there is no guarantee that at least one candidate symbol
in St exists for each value of any bit of xt. In this case, if
the crossing processes (11) or (20) do not recover one
in S ′

t, one of the two terms in (10) and (14) is missing
for that particular bit. Clipping approximations, like
assigning a fixed (finite or infinite) value to its LLR,
based on the hard decided ML or MAP symbol, are not
completely satisfactory. Nevertheless, for a Gray 64-
QAM constellation this approximation is required only
when S ≤ 4. In fact, as clear in Figure 5, if we consider
five or more adjacent symbols of an 8-PAM Gray con-
stellation, we are assured to span at least one symbol for
each possible bit value.
Another problem is how to efficiently find the square

subset of Figure 2a. An efficient solution is to apply, for

each dimension, the Euchner-Schnorr “zig-zag” algo-
rithm [29], which determines the symbol closest to the
received one or to the estimated x̌(t), and alternatively
adds points on its left and right, till the boundaries of
the constellation or the square subset sizes are not
exceeded.

4.4 LORD and T-LORD complexity
In this section we discuss the complexity of the pro-
posed hardware-oriented LORD and T-LORD. A simple
measure to rate the complexity of any detector is the
number of spanned modulated symbols, i.e., the number
of EDs to compute. Indeed, this is approximately pro-
portional to the number of multiplications (usually
more expensive than additions in hardware). E.g., one
could compare the ML receiver with LORD and MMSE.
With the above definition, the ML complexity is larger
thanc MNt. Conversely, LORD evaluates

CL = MNt(Nt − 1) (32)

EDs, while the MMSE essentially requires 2 points per
coded bit (we can exploit the Gray mapping regularity
as in [30], “folding” the constellation), i.e., 2Nt log2 M
on the whole. Though the computation of the number
of EDs is only a preliminary tool to evaluate complexity,
it reveals that the ML cost is exponential in the number
of antennas, practically unaffordable even for small
arrays, while the LORD complexity is only quadratic.
Analogous considerations can be done in case of itera-
tive detectors.
Here, we focus on the complexity reduction of the

simplified LORD and K-best T-LORD, w.r.t. the “origi-
nal” ones. For an exhaustive complexity analisys of all
the T-LORD versions as well of other detector families,
we refer the reader to [23]. As reported therein, the K-
best T-LORD (with K = 1 and all the enhancements set
on) computes

CKTL = 3MNt(Nt − 1) (33)

EDs. From (32) and (33), it is clear that when the con-
stellation cardinality M is large, it represents the largest

000 001 011 010 110 111 101 100 

Figure 5 Five consecutive 8-PAM symbols with gray mapping provide at least one candidate for each possible bit value.
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contribute to the LORD and T-LORD complexity. The
simplification proposed in the previous Subsections
reduces that factor, and the complexity (averaged w.r.t.
frequency tones) becomes

CLC - L =
Nfull

c M + (Ndc − Nfull
c )S2

Ndc
Nt(Nt − 1) (34)

CLC - KTL = 3
Nfull

c M + (Ndc − Nfull
c )S2

Ndc
Nt(Nt − 1) (35)

To strenghten the above analysis, we study the num-
ber of multiplications, additions and comparisons, also
distinguishing those performed just once (such as the
QR decomposition), from those to be repeated for every
detection process, i.e., referring to a single tone, OFDM
symbol and iteration. Results for these fixed and variable
operations are reported in Table 1, for the most com-
plex case that we have investigated, i.e., M = 64 and Nt

= 4. The table also comprises the complexity referring
to the soft-output generation stage. For completeness,
the SIC-MMSE [15], the Full-Complexity T-LORD [23]
and a SD have been reported, too. Among different SD
families, a breadth-first list detector has been consid-
ered, since it guarantees deterministic complexity and
latency, as T-LORD does. The list size is K = 36, chosen
to achieve a performance close to the T-LORD one.
Focusing on the low-complexity K-best T-LORD, we

have chosen a reduced square subset of side S = 4, the
smallest available parallelism Plc = 4, and a full search
over Nfull

c = 8 carriers. The square subset center is dri-
ven both by the received symbols and the a-priori
LLRs. This solution is very attractive, since the loss w.
r.t. the full-complexity T-LORD evanishes after some
iterations, as shown in the next section. Furthermore,
being the square subset 4 × 4, the same hardware
could be used also to detect a 16-QAM constellation,
with negligible incremental costs. As we can see in
Table 1, the low-complexity K-best T-LORD saves less
multiplications and additions than those expected
looking at the number of computed ED. Indeed, there

are additional operations to perform, e.g., (29)-(31) and
the identification of the Nfull

c worst carriers. Also the
crossing between candidate sets St contributes to lower
the complexity reduction, since it must be performed
within the entire constellation, and not only among
points of the square subset. Anyway, the simplified T-
LORD greatly benefits from the reduction of the
spanned symbols, and almost halves the number of
required variable multiplications. Also the number of
variable additions is sligthly smaller (the a-priori cri-
terion remains almost unchanged).
To conclude, we remark that not only the device area

(i.e., the number of required logic gates) benefits from
the simplification proposed in this paper, but also the
power consumption, as reported in [31]. E.g., in case of
LORD with Nt = Nr = 2 and M = 64, assuming a 65 nm
CMOS technology with an 80 MHz clock frequency, the
area is reduced from 0.64 mm2 to 0.21 mm2 and the
power from 38 to 14 mW, respectively. Therein, a com-
parison with prior designs can be found, too.d

5 Simulation results
In this section, we provide performance results, both in
terms of extrinsic information delivered by several
detectors and Monte Carlo simulation of the receivers
embedding them.
We assume two different environments, referred in

the following as the “ideal” and “real” one. Firstly, we
use a rich scattering channel, whose coefficients hr,t are
i.i.d. complex gaussian values with unit power. Perfect
CSI at the receiver side is assumed, too. Then we con-
sider a more realistic channel, with exponentially decay-
ing power delay profile (PDP) and a short time delay
spread τrms = 50 ns (equal to the sampling time). Spatial
correlation is assumed equal to r(t1, t2) = 0.5|t1−t2|, being
t1 and t2 the antenna indexes, sorted in ascending order
from a border of the linear array. The perfect CSI
hypothesis is abandoned, and substituted by pilot aided
tone-by-tone channel estimation (CE): due to the aver-
age of subsequent orthogonal long training sequences
(LTS), as in [32], each channel tap estimation ĥr,t is
affected by i.i.d. Gaussian noise with power

σ 2
CE =

N0

2�log2Nt�. No time nor frequency smoothing, such

as [32,33], is adopted, since this would have reduced the
difference between the ideal and real settlements.

5.1 EXIT charts
In an iterative receiver, a detector is rated on its capabil-
ity to transfer extrinsic information to the decoder.
EXIT charts are an effective tool to predict the conver-
gence behavior of iterative systems [34] and to design
component codes [27,35], even in case of (possibly

Table 1 Number of real operations per tone and iteration
(Nt = 4, M = 64)

Multiplications Additions &
Comparisons

Detector Symbols Fixed Variable Fixed Variable

SIC-MMSE 56 672 372 536 2077

Sphere detector 6976 744 4414 583 19456

LC K-best T-LORD 842 848 616 971 22278

K-best T-LORD 2304 832 1082 571 28919

T-LORD Full 9984 832 7994 571 83495
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MIMO) selective channels. The EXIT analysis assumes
independent a priori LLRs ξt(n), drawn at random from
some probability density function (pdf) often modeled
as the output of an AWGN channel with variance twice
the mean μ. The output pdf p(l) of extrinsic LLRs is
generally sampled experimentally. The mutual informa-
tion for a consistent pdf is [36]

I = 1 −
∫

p(l)log2

(
1 +

p(−l)
p(l)

)
dl (36)

In case of serial concatenation between the detector
and the decoder, the quality of the detector output can
be evaluated looking at the leftmost value in the graph,
corresponding to absence of a-priori information (see, e.
g., Figure 6). On the contrary, in turbo receivers one
can track the system convergence overlapping the charts
of the two iterative modules (with exchanged axes),
since the output of the former becomes the input of the
latter and so on.
In Figure 6, we plot (both in ideal and realistic chan-

nel conditions) the EXIT curve of the hardware oriented
T-LORD developed so far and, as references, the SIC-
MMSE [9] and the MAP.

We choose SNR = 23dB, corresponding to a target
packet error rate (PER) close to 10-2. The T-LORD algo-
rithm produces at the output almost the same informa-
tion as the MAP detector, for any input information IA.
On the contrary, SIC-MMSE is largely suboptimal and
is expected to introduce severe losses in an iterative
receiver. Monte-Carlo simulation will confirm these
predictions.
In Figure 7 we further compare the EXIT curves of

different T-LORD detectors. As we can see, the gap
between the hardware oriented T-LORD with S = Plc =
5 and the full-complexity T-LORD is small. Conversely,
the case S = Plc = 4 without the update of the square
subset center leads to some information loss.
An interesting choice is S = Plc = 4 with the update

enabled (denoted throughout figures as “moving
square”), exhibiting an abrupt change of the delivered
information, as the a-priori information gets large.
When no a-priori information is available, the reduced
square positioning is based only on the received, noisy
symbol, therefore when the transmitted signal lies out-
side the reduced square, some extrinsic information is
lost. Conversely, when the square positioning can
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Figure 6 EXIT charts for different detectors (SNR = 23 dB).
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benefit from a priori information, a relevant fraction of
extrinsic information is recovered. This closes the gap
iteration by iteration, as confirmed by simulation in the
following. Similar results hold for the realistic channel.

5.2 Monte Carlo simulations
In this section we provide simulation results for the
above described low-complexity LORD detectors, with
different square sides and parallelisms. For comparison,
we plot also the MAP, MMSE [9] and full-complexity
T-LORD [23] curves. Simulations are floating-point.
Iterations range from 1 to 4. Iteration 1 means no
extrinsic information is available to the detector, i.e.,
LORD and T-LORD coincide, as well as MAP and ML.
Aiming to achieve very high spectral efficiencies, up to
15 bit/carrier, and to test the simplified T-LORD in
challenging conditions, we always consider a channel
code rate Rc = 5/6, i.e., the most sensitive 64-QAM
mode in the 802.11n standard [1].

Figures 8 and 9 plot PER vs SNR for the case Nt = Nr

= 2 and Nt = Nr = 3, respectively. Target PER has been
set equal to 10-2, a common assumption in wireless
LAN communications when retransmission is allowed.e

Here, we assume ideal channel conditions (i.e., Gaussian
uncorrelated channels with perfect CSI at the receiver).
As we can see, the T-LORD performance is close to

the MAP detector, and largely outperforms the MMSE
receiver, plagued by ill-conditioned channel matrices.
Only the T-LORD with S = Plc = 4 and fixed subset
choice at the root layer has a modest loss, say 0.2dB
more than the full-complexity T-LORD.
The T-LORD robustness w.r.t. MMSE becomes even

more pronounced in Figure 10, assuming the realistic
channel conditions described at the beginning of this
section. Part of the SNR gap between ideal and realistic
conditions can be ascribed to the noisy (tone-by-tone,
ZF) channel estimates, computed exploiting the ortho-
gonal preambles in [1]. The estimation error can be
interpreted as additional noise over the link, and one
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Figure 9 Detectors performance for a MIMO system with Nt = Nr = 3, Rc = 5/6 and 64-QAM (15 bit/carrier), with ideal channel
conditions.
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can expect an overall performance degradation

LCE =
N0

N0 +Ntσ
2
CE

∣∣∣∣
dB

= −
(
1 +

Nt

2�log2Nt�
)∣∣∣∣

dB
(37)

equal to 3dB when Nt = 2 or Nt = 4, and slightly
smaller (2.4dB) when Nt = 3, since the 802.11n pream-
ble contains one more LTS than the number of trans-
mitting antennas. The remaining 3dB loss, that one
would experience even in case of ideal CE, is due to the
severe channel described in Section 2, with an exponen-
tially decaying PDP, short time delay spread and spatial
correlation. In this challenging case with less spatial
diversity, the MMSE receiver completely fails to improve
with iterations, while the full-complexity K-best T-
LORD misses the MAP performance by only 0.5 dB in
the realistic case. This gap is probably due to error pro-
pagation in the DFE process.
For completeness, in Figures 11 and 12 we also report

simulations for the case Nt = Nr = 4, both for ideal and

realistic channels.f In this case, the extremely time con-
suming MAP has been replaced by a lower bound,
assuming that MAP receiver can fail only when also the
full complexity T-LORD is not able to recover the
message.
Focusing now on LORD detectors, S = Plc = 5 is

enough to approach the optimal ML detector perfor-
mance as the full-complexity LORD does, while in case
of S = Plc = 4 LORD suffers some performance degrada-
tion. This can be explained by a higher probability that
noise overcomes the square subset borders or the soft
output generation misses some EDs in (10) or (14). Thus,
the former parameters have been chosen for the HDL
implementation of LORD [31]. Conversely, focusing on
the fourth iteration, the above gap is almost closed by the
S = Plc = 4 T-LORD with the square subset center update
(as predicted by EXIT charts), performing even better
than the case S = Plc = 5, with fixed subset.
To conclude, we defer readers interested in a perfor-

mance comparison with sphere detectors to [23]. Results
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Figure 10 Detectors performance for a MIMO system with Nt = Nr = 3, Rc = 5/6 and 64-QAM (15 bit/carrier), with realistic channel
conditions.
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show that T-LORD achieves better performance com-
puting less EDs, in any simulated case.

6 Conclusions
In this article, we have proposed innovative hardware-
oriented, soft-output LORD and T-LORD algorithms,
that can heavily reduce the number of parallel elemen-
tary processing units, required to meet the latency con-
straints in MIMO-OFDM systems, when high-
cardinality QAM constellations are deployed. The sim-
plified versions preserve the features of the original algo-
rithms, i.e., fixed complexity, deterministic latency and a
remarkable parallel structure. The proposed solution is
regular, scalable and does not require any ad hoc para-
meter tuning, e.g., depending on the experienced aver-
age SNR or the actual channel realization.
Besides, the loss in 802.11n systems w.r.t. the ML and

MAP detectors is very small (few tenths of dB). We tried
several configurations up to 20 bit/carrier (Nt = 4), corre-
sponding to a system throughput of 260 Mb/s, if we

consider the 802.11n standard. We also tested the system
with very noisy channel estimates, as well as a more rea-
listic channel offering less spatial and frequency diversity,
due to correlation. In each case, the simplified LORD and
T-LORD showed comforting robustness, outperforming
the non-iterative ML and the iterative SIC-MMSE recei-
ver, and always approaching the receiver with the ideal
detector. These features make LORD and T-LORD good
candidates for VLSI MIMO receivers.

Endnotes
aFor brevity, we give a simplified description of the LORD
algorithm. For more details, refer to [21] and [22], where a
real-domain modified QR decomposition allows to avoid
the normalization of the columns of Q. Nevertheless, the
low-complexity, hardware-oriented LORD and T-LORD
presented in this article can be also applied to that frame-
work, as shown in [31]. bObviously this value depends on
the hardware, but it is reasonable for an FPGA device
(with a clock frequency of tens of MHz) aiming to process
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conditions.
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in realtime an ODFM symbol lasting 4 μs and carrying 52
data carries, as in [1]. cNote that the measure does not
refer to the number of Nt-dimensional hyper-symbols, but
to the number of spanned QAM symbols throughout the
algorithm. dA fair comparison of area and power con-
sumption is hard to achieve, since many parameters
change from one design to the other (e.g., clock frequency,
CMOS technology, modulations, antennas, soft-output
generation). Nevertheless, in [31] it is shown that LORD
provides a very good trade-off in any case. eE.g., the stan-
dardization group for 802.11n chose PER = 10-2 for perfor-
mance comparison purposes. fA straight performance
comparison between systems with a different number of
antennas is hard to achieve. The SNR letting the system
meet the target PER changes when the number of anten-
nas gets large and its trend is hard to foresee, for at least
two reasons. On the one hand, we exploit the capacity
growth to increase the throughput, not to strengthen the
communication. On the other hand, a larger number of
antennas makes the data packet shorter, since more

information is conveyed at each channel use: this reduces
the PER for a given SNR.
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