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Abstract—In several disciplines, a multiscale approach is
being used to model complex natural processes yet a principled
background to multiscale modeling is not clear. Additionally,
some multiscale models requiring distributed resources to be
computed in an acceptable timeframe, while no standard
framework for distributed multiscale computing is place. In
this paper a principled approach to distributed multiscale
computing is taken, formalizing multiscale modeling based on
natural processes. Based on these foundations, the Multiscale
Modeling Language (MML) is extended as a clear, general,
formal, and high-level means to specify scales and interactions
in, and as a guide to a uniform approach to crystalize,
communicate, develop and execute a multiscale model. With
an MML specification, a multiscale model can be analyzed
for scheduling or deadlock detection using a task graph. The
potential of this method is shown by applying it to two selected
applications in nano materials and biophysics.

Keywords-distributed multiscale computing; multiscale mod-
eling; MML; task graph; coupling template; coupling topology;
submodel execution loop;

I. INTRODUCTION

Understanding the complexity of nature by using com-

puter models drives computational science [1]. As the

knowledge and data on a multitude of scales is accumulating

independently, the need for bridging the scales became ap-

parent, introducing multiscale modeling [2]. Currently, early

multiscale models show their high computational demands

and at the same time their potential for modularity, leading

to the idea of distributed multiscale computing.

An early incarnation of this idea was the COAST project,

applying it with Complex Automata (CxA): coupled single

scale cellular automata models [3]–[5]. At the same time

they also partially formalized multiscale modeling, be it

for cellular automata only. In the MAPPER project, backed

by five scientific communities, the CxA concept is being

generalized to different types of models besides cellular au-

tomata [6]. Moreover, it emphasizes the need for distributed

multiscale computing, to compute multiscale models in an

acceptable timeframe.

Meanwhile, it has become apparent that scientists need a

common language to communicate their multiscale model

with, and this has been undertaken separately in the form of

an ontology by Yang and Marquardt [7] and of a Multiscale

Modeling Language (MML) [8].

In this paper, we will detail the principles of multiscale

computing, extend MML to fit a general multiscale the-

ory and show how distributed multiscale computing can

be achieved. Finally, distributed multiscale computing is

applied to two selected applications in biophysics and nan-

otechnology.

II. STANDARDIZING MULTISCALE INTERACTIONS

Multiscale modeling is used throughout the natural sci-

ences for understanding, with different processes observed

on different scales. To be precise, if by a process is meant

something natural or really existing, a case can be made

that the process itself does not have scale. Rather, the

observation of a process, called a phenomenon, will have a

certain resolution or granularity that may be called a scale.

A scale may refer to any dimension, be it time, space, or an

abstract dimension such as the size of a set. It should have

an empirical meaning, in that the observation or data may

have inherent limits to precision or granularity that can be

reflected in a scale. We do assume, however, having started

at natural sciences, that a phenomenon has at least a temporal

and spatial scale. Likewise, a domain may have a scale and

is represented as part of a phenomenon by excluding its

temporal domain. A domain may have subdomains, which

observe only part of the object of the phenomenon, or

correspond to other domains that observe the same object

in another way.

A. Scale

To serve human intuition, the scale may be expressed by

a single number, a characteristic scale [4], [9], describing its

granularity. This number can sometimes be used directly in

equations modeling a phenomenon, like in reaction-diffusion

equations [10].

For precise relations between scales, whether they are

comparable or different, not only the granularity but also the

total size of a phenomenon should be taken into account, and
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Figure 1. Contiguous scales, scale separation, and scale overlap on a
single dimension according to the scale specifications of given submodels
μ, m, M , and M ′, plotted on a arbitrary logarithmic SI scale.

their variability. Two scales can be considered truly different

or separated if the total size of one scale is smaller than the

granularity of another.

These concepts of a scale can be captured by a scale

specification S(δ,Δ, ω,Ω) over a dimension, with δ and Δ
as minimum and maximum granularity, respectively, and ω
and Ω as minimum and maximum total size. Since scale in

principle concerns observations of the natural world, none

of these numbers may be infinite. For simple phenomena

or ones with fixed-step observations, a regular scale with

no variability may be used, as in S(Δ,Ω). For phenomena

of which particle locations are measured or where changes

only occur at certain events, a full scale specification should

be used. Throughout this article, when a scale is mentioned,

its scale specification is also implicitly referred to.

Relations between scale specifications are much clearer

than those between characteristic scales, and they are de-

picted in Figure 1. Formal separation between two scales

SA(δA,ΔA, ωA,ΩA) and SB(δB ,ΔB , ωB ,ΩB) is present

if and only if δA > ΩB or the other way around. Scale

overlap on the other hand has ωA ≥ ΔB and ωB ≥ ΔA.

For contiguous scales, ωB ≤ δA ≤ ΩB ≤ ΔA or with A
and B switched in the comparison.

These relations can be motivated from natural obser-

vations, scale separation occurring if one phenomenon is

perceivable on a certain scale but an interacting phenomenon

is not. Scale overlap is then just perceivable on the same

scale and scale contiguity is viewing elements of a pheno-

menon on one scale, which are subject to other phenomena

themselves.

Computationally it also makes sense to distinguish be-

tween the three relationships, scale separation being an

opportunity to reduce computational costs by reusing certain

results on a coarser scale [10]. With scale overlap, more

interaction between submodels might be necessary to syn-

chronize their entire domain. Scale contiguity makes sense in

an object-oriented language or a multigrid approach, where

a submodel of a finer phenomenon is calculated for exactly

one element of a submodel of a coarser phenomenon.
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Figure 2. An example SSM of a classical macro-micro model, showing on
the axes spatial and temporal scale, with granularity Δx, Δt and total size
L and T respectively. In 2a a multiscale model without separating scales,
in 2b single scale submodels macro M and micro μ.

B. Multiscale modeling

Multiscale modeling consists of separating or splitting

phenomena by their scale, type, or representation and then

grasp the precise interaction between the phenomena. As

such, a multiscale model can be seen as a collection of in-

teracting single scale models or submodels [4], [9]. Methods

for splitting phenomena form a large part of what multiscale

modeling is about [9], [11], here we give a short overview.

First, scale splitting is a technique that is defining for

multiscale modeling, and consists of decomposing a phe-

nomenon into a fine, fast, or small part and a coarse, slow

or large part. By splitting the scales, the fine part might be

computed often, while the coarse part needs less iterations

to be computed. In certain cases an exact computational

reduction caused by this approach can be calculated [10].

A scale separation map (SSM) like in Figure 2 may help

in assessing the scales that are currently of interest [4], [12].

It shows the phenomena involved and their interactions, on

a logarithmic plot of time and space.

Second, a phenomenon consisting of different types of

phenomena could be separated. For example, a liquid that

flows along an elastic structure, could be modeled with

a fluid dynamics and an elastic mechanics submodel. The

type of phenomenon might also change over time, possibly

needing to be modeled by one submodel at the start but

needing another at the end.

Finally, different representations of a phenomenon could

be a reason for dividing it. For example, the same natural

object could be represented by a continuum domain and a

grid domain, for which different phenomena are appropriate.

A multiscale model consists of interacting submodels

that model these separated phenomena. By having separate

submodels, multiscale models are inherently modular and

suitable for applying component-based software engineering

[13], [14]. Multiscale modeling, in this terminology, distin-

guishes itself by performing scale splitting, otherwise any

other component-based modeling technique would suffice.

Besides separating different phenomena, computational

concerns may be a reason for domain decomposition, com-
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puting different parts of the domain of one phenomenon on

different machines. Later in this article, we will use a single

submodel with multiple instances for this.

C. Submodel execution loop
A submodel as defined models a single phenomenon.

A standard runtime flow of such a submodel has been

identified by Hoekstra et al. [4]: the submodel execution

loop (SEL). We generalize this loop here for submodels that

are not cellular automata. The SEL is a formal algorithm

with five operators, the content of which a modeler needs

to formulate. Its flow rests on the assumption that a state

change in a submodel only occurs when an event would be

observed in the underlying phenomenon. For an event-based

submodel this implies that each submodel has a well-ordered

time series ϑ = (e0, . . . , en) that may be determined during

runtime, with events at time t(e0) < t(e1) < · · · < t(en),
the minimal difference being governed by the temporal scale

of the submodel.
The submodel is initialized by operator finit at event e0,

after which it observes its first state with operator Oi. For

each subsequent event, it calculates with operator S what

state change is necessary to model that event, and updates

any boundary conditions with operator B. It then makes

an intermediate observation of its state with operator Oi.

Additionally, each step may change the timing and content

of future events, by returning a future time series ϑi, a subset

of ϑ only including events after event ei. When there are no

more events, the final state is observed with operator Of .

Formally, this SEL represented by the following pseudocode:

Input: starting time t0
i← 0
f, ϑ← finit(t0)
while |ϑi| > 0 do
Oi(f, t(ei), t(ei+1))
i← i+ 1
f, ϑi ← S(f, ei, ϑi)
f, ϑi ← B(f, ei, ϑi)

end while
Of (f, t(ei))

Variations on this general SEL are possible, as long as

the operators are executed in the same order. A time-driven

submodel could use the following pseudocode, with a fixed

time step rather than events.

Input: starting time t0 and temporal scale Sτ (Δt, T )
t← t0
f ← finit(t)
while t− t0 < T do

Oi(f, t)
t← t+Δt
f ← S(f, t)
f ← B(f, t)

end while
Of (f, t)

Table I
COUPLING TEMPLATES BETWEEN SUBMODELS A AND B, LISTING

WHAT THEIR TEMPORAL SCALE RELATION IS AND THE MOST LIKELY

SCENARIO IN WHICH THE TEMPLATE IS USED. WHERE OPERATOR S IS

LISTED, B CAN BE SUBSTITUTED FOR MD COUPLINGS.

Coupling template Temp. scale Scenario

interact Oi
A → SB overlap response by interact

call Oi
A → finit

B contig. or sep. response by release

release Of
B → SA contig. or sep. responds to call

relay Of
A → finit

B any loosely coupled or stateful

D. Coupling templates

The interaction between submodels can be formulated

in terms of their SEL operators, again restricting allowed

behavior. Furthermore, the computational SEL operators

finit, S, and B are only allowed to receive data and the

observational operators Oi and Of may only send data.

A distinction in interactions with operators S and B is

made not by their place in the SEL, which is similar, but

rather by whether a coupling is multidomain (mD) or single

domain (sD). An sD coupling is used for interactions where

one of the submodels is on a subdomain or corresponding

domain to another submodel; an mD coupling is used for

other couplings. For the same place in the SEL, S is used

for sD couplings and B for mD couplings.

With these restrictions, and those of scale separation, only

a few options for coupling remain, listed in Table I. First,

the interact coupling template allows two submodels on an

overlapping temporal scale to communicate. By the time

they finish one iteration at time tA they may send results

only to an operator of a submodel at time tB > tA. A

submodel A that is on a coarser scale than submodel B,

with scale separation or contiguity, can call B and once B
is finished, it can release its resources to A. Finally, one

submodel may relay a message to another that starts at a

later time, or save a state from one iteration of the submodel

to the next.

E. Coupling topology

Since a multiscale model consists of submodels and their

interactions, it can be instantiated with submodels instances

and coupling templates. We call the graph so formed a

coupling topology, and assign to its edges the number of

times a coupling template would be used. Based on certain

properties, the coupling topology is more dynamic, making

it harder to calculate.

Three properties of the coupling topology are deemed

important by us:

1) whether submodels are loosely or tightly coupled;

2) whether they have single, multiple, or a dynamic

number of instances; and

3) whether they have a fixed or dynamic number of

synchronization points.
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Figure 3. Graphical overview of different coupling topology properties,
like being loosely or tightly coupled, having a fixed or dynamic number
of submodel instances, and having a fixed or dynamic number of synchro-
nization points. Shown here are only examples with two submodels, but
this can be generalized to any number of submodels.

These properties are illustrated in Figure 3 and explained

below.

The first property, loosely or tightly coupled, is measured

by whether the coupling topology is acyclic (loose) or cyclic

(tight). A cycle may form between two submodel instances

or more, but in any case tightly coupled models are harder

to compute since submodels need to stay active to receive

another message. With loosely coupled models, submodels

can compute some data and then halt again, making the

model easy to compute.

Second, the number of submodel instances, determines

how a submodel is accessed. With single instances, one sub-

model code is run for one instance, with multiple instances

the same code will be used multiple times throughout the

model. If there are a dynamic number of instances then the

framework that computes the model has to be informed what

number will run exactly.

Finally, the number of synchronization points determines

how often data needs to be transferred from one submodel

to another, but it may also involve submodels being started

a variable number of times. Again, a model must somehow

interact with the computational framework to enable this

kind of behavior.

All elements of a multiscale model are now standardized

in terms of interactions, easing subsequent specification,

analysis and execution.

III. MULTISCALE MODEL ARCHITECTURE

To compute a multiscale model, the computational archi-

tecture of that model should be known; this can be described

using the Multiscale Modeling Language (MML) [8]. This

language specifies submodel scales, interactions, and their

coupling topology, along with certain computational aspects

on running a model. An MML description serves multi-

ple purposes, such as communicating the specifics of a

multiscale model, aiding development by generating code,

validating the multiscale properties of a multiscale model,

or forming a description for a runtime system.

MML has three representations:

• a human language using the terminology of this paper;

• a graphical representation gMML; and

• a human-writable, machine-readable XML-based rep-

resentation xMML.

It is a high-level language, describing the architecture

in an implementation-agnostic way, but also a specific lan-

guage, allowing all computational elements to be specified.

Its advantage over any other components based specification

language [14]–[16] lies therein that the internal flow of sub-

models is well-defined, as well as their allowed interaction

based on scale.

A. Computational elements

Computational elements of a multiscale model architec-

ture are based on the composition of multiscale models. A

submodel instance has ports defined at SEL operators where

it has a coupling template, and a coupling is instantiated by

a conduit that transfers data in-order in the form of messages

from one port to another.

Along a conduit, messages can be altered, multiplied, or

stopped by conduit filters. However, a conduit filter can

not send a message without receiving one. It can be used

for data transformation, translating one domain to another,

or interpolate or aggregate messages for submodels with a

different but overlapping scale. Filters may have a state,

which is necessary for aggregating or interpolating data.

A conduit filter applies to only one conduit, so to manipu-

late data from multiple sources another construct is needed: a

mapper. We define two types of mappers: the fan-in and fan-

out mapper. The former has multiple input ports, possibly a

dynamic number, and one output port. The mapper blocks

until it receives a message on each input port, after which it

may send a single message. The latter has one input port and

multiple output ports, and sends one message on each output

port for every message received. Combined, mappers can

facilitate domain decomposition, where multiple submodel

instances compute a different part of a domain, and the

output is collected by a fan-in mapper. Mappers do not have

a state other than a buffer for messages, simplifying them

internally.

A model is started by specifying a subset of submodels

or mappers that should be initialized, and ended by the SEL

of the submodels.

B. Graphical representation

The graphical representation of MML, gMML, uses sim-

ple graphical elements inspired by UML Diagrams to com-

municate the architecture of a model, as seen in Figure 4. It

implies the definitions of the computational elements above

and has different icons for each of them. Submodels are
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Figure 4. The gMML of the macro-micro model used in Figure 2. The
different edge heads and tails show the operators that are used. The model
starts by computing an initial value, which is then given to the macro
submodel. The M2m and m2M fan-out and fan-in mappers convert a grid
from Macro to values for micro models and the other way around; the
m2M mapper then needs information on how M2m did the conversion. A
conduit filter converts, for instance, the data type from Macro before it is
processed by M2m.

depicted as rectangles, conduits as lines between submodels,

conduit filters as rounded squares on a conduit, and mappers

as hexagons. Submodel instances that are coupled by a

sD coupling can be grouped inside a dashed rectangle.

Submodels that are initialized first have an edge from a filled

circle, submodels that end the model have an edge to a filled

circle with a circle around it.

In gMML, the different SEL operators that are used in

coupling templates are shown with corresponding head and

tail icons for the edges. For the operators outside the loop,

finit and Of , a diamond is used, for two operators inside

the loop, Oi and S, a circle, and for B an arrow. Also,

sending operators Oi and Of are filled black, while the

others are filled white. If no coupling template was used

for the conduit, a simple arrowhead and no tail is used.

Although gMML serves as a concise communicational

tool or as a template for a specification, it does not com-

pletely describe a multiscale model. For instance, the scales

of the submodels are not represented directly, nor are the

implementation details. For this full description xMML

should be used.

C. XML format

For machines the XML format xMML is more suitable to

use, with its fixed elements and possibility for validation

with a Document Type Definition (DTD) or W3C XML

Schema. At the same time, the format is succinct and human-

writable, although a graphical user interface may eventually

write xMML.

Below an example xMML document is listed, following

the example of a macro-micro model given in Figures 2

and 4. It starts by naming the model and defining datatypes

and computational elements that can be used. The scales

of submodels are listed and the ports of submodels and

mappers are specified. In the topology, those elements can

be instantiated and used with couplings. Repeating elements

are replaced by an ellipsis.

<model id="MacroMicro" xmml_version="0.3.2">

<description>A macro-micro model with a macro
grid and micro cells.</description>

<definitions>
<datatype id="lattice2DDouble" size_estimate="

x*y*sizeof(double)"/>
...
<filter id="microArray" type="converter"

datatype_from="lattice2DDouble"
datatype_to="lattice2DFloat"/>

<submodel id="Macro" init="yes">
<timescale delta="1 s" total="1 min"/>
<spacescale total="1 dm">
<delta min="0.7 mm" max="1.3 mm"/>

</spacescale>

<ports>
<out id="grid" operator="Oi" datatype="

lattice2DDouble"/>
<in id="gridDiff" operator="S" datatype="

lattice2DFloat"/>
</ports>

</submodel>
<submodel id="micro" name="Micro 1D">

... </submodel>

<mapper id="gridDivide" type="fan-out">
<ports>
<in id="grid" datatype="lattice2DFloat"/>
<out id="value" datatype="float"/>

</ports>
</mapper>
<mapper id="gridCombine" type="fan-in"> ...
</mapper>

</definitions>
<topology>

<instance id="M" submodel="Macro"/>
<instance id="m" submodel="micro"

multiplicity="10"/>
<instance id="M2m" mapper="gridDivide"/>
<instance id="m2M" mapper="gridCombine"/>

<coupling from="M.grid" to="M2m.grid">
<apply filter="microArray"/>

</coupling>
<coupling from="M2m.value" to="m.value"/>
<coupling from="m.diff" to="m2M.value"/>
<coupling from="m2M.grid" to="M.gridDiff"/>

</topology>
</model>

Practical details of the computational elements can also

be added, both implementation details and runtime statistics.

The size estimate accompanying the datatype depends on the

scale of the sending submodel and it can be an indication

that some couplings are more data-heavy than others.

IV. DOING DISTRIBUTED MULTISCALE COMPUTING

A formal background for multiscale modeling in place,

it is time to do distributed multiscale computing. A few

questions are inevitable for making this step, of which we

will address two: how can a multiscale model be scheduled

across distributed resources and will it execute without dead-

locks. An intermediate solution is shown by constructing a

distributed acyclic task graph using an MML specification;
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micro0[1]

Init Macro(finit-Oi,0) Macro(S-Oi,1-2)M2m0 m2M0

micro0[0]

M2m1

Figure 5. The start of the taskgraph of the example given in Figure 4
after collapsing redundant nodes. The Init model is computed without
dependencies and does not list SEL operators separately, while the macro
model computes multiple operators per task but not more than one iteration
at a time. The dashed edges represent a transition from one SEL operator
to the next.

the task graph can then be scheduled according to known

algorithms [17]–[19] and deadlocks can be detected.
The usage of a software package that can handle dis-

tributed submodels is outlined, the multiscale coupling li-

brary and environment (MUSCLE) [20], [21].

A. Constructing a task graph from MML
The directed acyclic task graph constructed in this paper is

a serialization or unfolding of the execution of a multiscale

model. By definition, it may not contain the cycles that

are present in coupling topology if it concerns a tightly

coupled multiscale model. Therefore, tasks in this graph are

necessarily more granular than submodel instances. The SEL

operators are a viable candidate, as they are indivisible and

do all communication.
The nodes of the task graph will thus contain an iden-

tifiable SEL operator. A full label of such a node looks

like instj [k](o, i) for submodel instance inst, SEL operator

o, iteration i, index k if a multiplicity was used, and an

initialization number j if the submodel instance is restarted

multiple times. Any of the identifiers after inst may be

omitted as long as the label uniquely identifies a task. For

mappers and filters, only an initialization number is used, as

they don’t have iterations and operators.
An edge between two nodes p and q is added if:

• p should send a message to q;

• q is the operator after p in the SEL of one submodel;

or

• q is the initialization of the same stateful computational

element as p, and p is the elements previous final

observation.

These properties can be deducted in advance in a linear

way, unless the associated coupling topology has a dynamic

number of synchronization points. Not only can the number

of nodes not be predicted then, but also the flow might

be significantly different. A dynamic task graph algorithm

may be employed in this case, in combination with dynamic

deadlock detection algorithms [22]. If there are a dynamic

number of submodel instances, the flow will still remain

largely intact, by representing all of those instances by a

single node.
Even if the above method works linearly in the number

of edges of the task graph, the number of edges in the task

graph may be exponential to the number of submodel in-

stances. Reduction techniques such as collapsing equivalent

nodes and detecting repetition can be used to handle such

large task graph.

Once a task graph is constructed, a deadlock is indicated

by nodes that need additional input and cycles. With the

information about the implementation and runtime statistics

in the MML, edges and nodes can be given a weight that a

scheduling system can use.

B. Implementing and executing with MUSCLE

A framework that can execute multiscale models on dis-

tributed resources is MUSCLE. The core of MUSCLE is im-

plemented in Java, but submodels can also be implemented

in C++ or by extension in Fortran or C. Its communication

layer is currently managed by the Java Agent Development

Environment (JADE) [23].

MUSCLE has two base elements: the kernel, which con-

tains the submodel code, and the conduit. It does not have

an explicit SEL, so communication must be regulated by the

model developer. Conduit filters are explicitly supported, so

a developer may implement them or reuse a pre-defined one.

A mapper can be implemented as a kernel.

Within submodels parallel code can be used, for instance

by using Java threads or OpenMP. On the other hand,

because of the Java core of MUSCLE, the use of MPI

is not supported directly and currently requires separate

executables for code using it.

A MUSCLE model can be executed by starting an in-

stance of MUSCLE on each machine that should be used and

starting submodel instances on those MUSCLE instances. If

a single machine setup is needed, just one MUSCLE instance

needs to be started, otherwise they can communicate using

TCP/IP. Machines that have no TCP/IP connections to others

that run MUSCLE can only be accessed if there is a head

node with a TCP/IP connection that controls the executable

on that machine.

If the targeted machines are not directly available but are

part of a grid or e- Infrastructure instead, it can be wise

to make use of grid middleware, for example the tools from

the QosCosGrid project [24]. Such a system could also make

use of the task graph for scheduling submodels on several

resources, as MUSCLE also does not do any scheduling.

V. EXAMPLE IMPLEMENTATIONS

The approach shown in this paper is being applied to

multiscale models from different disciplines in the MAPPER

project [6]. The aim of MAPPER is to automate distributed

multiscale computing. Two applications are selected here:

a three-dimensional in-stent restenosis model (ISR3D) [25],

[26] clay-polymer nanocomposite material formation (nano-

materials) [27].

The former, ISR3D, models the growth of a restenosis

in a coronary artery, after a stent has been placed with a
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QM FGMD CGMDC M CM

Figure 6. The gMML of the Nano materials application. It starts with a
few QM submodels, after which their output is collected by the C fan-in
mapper. The output is then preprocessed by fan-out mapper M to send it
to a number of FGMD submodels. Their output, and the mapping used by
M, is collected by the CM fan-in mapper to be used by the final CGMD
submodel.

balloon angioplasty to remedy a growing stenosis [25]. The

two-dimensional version has shown to be a valid [28] and

well-described [26] computational model to study this phe-

nomenon. Preliminary results for ISR3D have been obtained,

but distributed resources are required to get more results.

Submodels of ISR3D compute the stent placement (IC),

smooth muscle cell proliferation (SMC) causing the resteno-

sis, blood flow (BF) in the lumen and drug diffusion (DD)

that a drug-eluting stent would produce. From a multiscale

perspective, ISR3D has temporal scale separation in all its

submodels except IC, with SMC acting in days, DD in hours,

and BF in seconds. They do not have spatial scale separation,

since each acts on a similar part of the blood vessel.

Its coupling topology is simple, having no dynamic prop-

erties, just a tightly coupled cycle where SMC needs BF and

DD to calculate their values in each iteration. In its MML

specification, like in Figure 4, a fan-out mapper is needed to

distribute the domain computed by SMC to BF and DD and

a fan-in mapper to collect their results to send then back to

SMC. This has been implemented in MUSCLE, with a Java

and Fortran part, and has had its first distributed execution,

using MUSCLE like in the two-dimensional version [26].

The other application, nanomaterials, models the for-

mation of a clay-polymer nanocomposite material because

of its enhanced thermochemical and mechanical properties

[27]. Placement of individual atoms between clay sheets

is evaluated using quantum mechanics (QM), placement of

individual molecules is decided by fine-grained molecular

dynamics (FGMD), and groups of molecules are placed

using coarse-grained molecular dynamics (CGMD). The

simulation starts by evaluating multiple instances of QM,

the computed values are then used in a number of FGMD

instances, and finally the molecules are placed in CGMD.

The three submodels have a typical macro-micro coupling,

from QM to FGMD to CGMD, with spatial and temporal

scale separation, and a scale ranging from picometer to

micrometer and from picosecond to millisecond. Smaller

submodels are in a subdomain of larger submodels, so all

couplings are sD.

The gMML of Nano materials is shown in Figure 6, and

also features mappers to manage information coming from

the submodels with decomposition. The coupling topology

is loosely coupled, as can be seen from the gMML, so it

also has a fixed number of synchronization points, also the

number of submodel instances is fixed before the model

starts.

The model is implemented using multiple libraries: the

LAMMPS [29] and CASTEP [30], with Perl scripts acting

as mappers. Since the model is loosely coupled the workflow

is straightforward to implement, by running one submodel

after the other; using MUSCLE is not necessary.

VI. CONCLUSION

As multiscale modeling is made use of throughout exact

sciences, settling on a set of principles of multiscale model-

ing will help it maturing [2], [3]. In this paper, a few of the

principles surrounding scale have been made explicit, and

a standardized approach for modeling multiscale problems

is given. Moreover, by proposing this standardization, multi-

scale models adhering to it can write their specifications with

MML, and general software can be adapted to execute them.

Achieving this also makes distributed multiscale computing

possible and usable.

Compared to previous work on Complex Automata [3],

[31], [32], this contribution describes a more general ap-

proach to multiscale modeling than only coupled cellular

automata. It expands on MML by fixing the behavior of

mappers and introducing submodel instances. Furthermore,

this contribution introduces the coupling topology as a way

to assess how dynamic the execution of a multiscale model

will be. It also introduces the task graph as a way to model

the flow of a multiscale model.

We hope that this approach will gain following by ap-

plying it to more multiscale applications, making them

suitable for a distributed computing. Currently, we are

exploring the possibilities of making MUSCLE compatible

with supercomputing systems and easing its combination

with C++ and Fortran code. Future theoretical developments

include finding solutions for fully taking dynamic coupling

topologies into account. Finally, the use of this methodology

for abstract scales, network models, and other complex

systems should be further explored.
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