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Abstract

Finding the available empty space for arrival tasks on FP-
GAs with runtime partially reconfigurable abilities is the most time
consuming phase in on-line placement algorithms. Naturally, this
phase has the highest impact on the overall system performance.
In this paper, we present a new algorithm which is used to find
the complete set of maximum free rectangles on the FPGA at run-
time. During scanning, our algorithm relies on dynamic informa-
tion about the edges of all already placed tasks. Simulation results
show that our algorithm has 1.5x to 5x speedup compared to state
of the art algorithms aiming at maximum free rectangles. In ad-
dition, our proposal requires at least 4.4x less scanning load.

1 Introduction

In recent years, with the development of the partially recon-
figurable FPGAs, hardware tasks can be loaded into (or removed
from) the FPGA individually without interfering with any other
tasks running on the same FPGA. In many cases, such systems
have runtime constraints and the sequence of the hardware tasks
is unknown in advance. In all on-line task placement algorithms
designed for such systems, determining and maintaining the free
space on the FPGA is the most time-consuming process. This fact
validates the high demand of efficient algorithms to manage the
free FPGA space.

Because most of the hardware tasks can be fitted in a rectan-
gular shape, the free FPGA space is usually recorded as a set of
rectangles. There are two types of rectangles: the non-overlapping
rectangles and the maximum rectangles. In general, it is more
time-consuming to maintain a set of maximum rectangles than a
set of non-overlapping rectangles. Maintaining a set of maximum
rectangles, however, increases the possibility to fit an arrival task
on the FPGA [1].

In this paper, we propose a novel algorithm to find the complete
set of maximum free rectangles at runtime. The main contributions
of this paper are:

• a new mechanism to find a complete set of maximum free
rectangles on the FPGA;

• improved algorithm performance compared to other state of
the art approaches.

In section 2, related work is presented. Then, we detail our
algorithm in section 3. In section 4, we present the simulation re-
sults and evaluate performance of our and two previously proposed
algorithms. Finally, we conclude this paper and discuss future di-
rections in section 5.

2 Related Work

In 1999, Bazargan et al. [1] proposed their on-line task place-
ment approach. This approach stores the free space of the FPGA as

a set of non-overlapping rectangles and can achieve high speed but
at the cost of low placement quality. In [3], Handa et al. proposed
an algorithm to find empty space on the FPGA. In their algorithm,
the FPGA surface is modeled as a 2D array of configurable units,
referred as ”area matrix”. Their algorithm starts with encoding
the matrix. Thereafter, all maximum staircases are found based on
the encoded information. Finally the maximum free rectangles are
extracted from each maximum staircase. In [2], Cui et al. used
the same 2D FPGA surface model but with different encoding in-
formation. The authors defined MKE points to utilize the scan-
ning process while looking for the maximum free rectangles. In
[4], Tomono et al. proposed an online placement approach, which
takes the module connectivity to the reminder of the system into
account. In their approach, the staircase algorithm [3] is reused to
find the complete set of maximum free rectangles.

In all algorithms above two basic approaches to manage free
space with rectangular shape can be defined: the tracing approach
and the scanning approach. In the tracing approach, only non-
overlapping rectangles can be created and used. Because there is
no overlap between any two rectangles, all geometry operations
are limited to the current rectangle only. Algorithms using this ap-
proach, e.g. [1], achieve shorter algorithm execution time, but low
overall placement quality (based on the task rejection rate). Non-
overlapping rectangle based approaches can be unable to fit a new
arrival task although there is enough space available as shown in
the simple example depicted in figure 1(a). However, when using
the scanning approach, e.g. [3, 2], whose output is the complete
set of maximum free rectangles, the arrival task will be placed as
shown in figure 1(b). In the reminder of this paper, only the scan-

A

B

Arrival task

A

B

(a) (b)

Figure 1. Allocation of an arrival task

ning approach will be considered due to its higher placement qual-
ity. In this paper, we propose a novel algorithm using the scanning
approach to find the complete set of maximum free rectangles. The
details about the algorithm are presented in the next section.

3 Flow scan algorithm

The algorithm proposed in this paper is called Flow Scan (FS).
The FS algorithm is characterized by fast FPGA free space man-
agement.

3.1 Definitions

In-edge and out-edge: For each placed task, its lower Y coordi-
nate is defined as in-edge. The out-edge corresponds to the higher
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Y coordinate of the same task. The bottom and top of the FPGA
area are defined as out-edge and in-edge by default respectively.
The scanning flow direction is from in-edge to out-edge, as shown
in the figure 3(d).
Rectangular well (RW): During the scanning process, some tem-
porally rectangles without top lines are created, we define such
rectangles as rectangular wells.
Formed rectangular well (FRW): Any RW that can only be ex-
panded upwards is defined as FRW as shown in the figure 3(d). If
there are several RW s with the same X coordinates created dur-
ing the scanning process, only the FRW is recorded, e.g. in the
figure 3(d), only FRW6 is recorded and the temporal RWtemp

will be removed.
Maximum free rectangle: It is defined as a rectangle whose top,
bottom, left and right edge can not be expanded. It is abbreviated
as (left, right, bottom, top) in this paper, e.g. (0, 100, 0, 20) for the
maximum free rectangle available at the bottom of figure 3(d).

3.2 Data structure

In our algorithm we use linked lists to store the required infor-
mation. We defined 4 different linked lists: general edge linked
list (GELL), in-edge and out-edge linked lists (IELL and OELL),
and rectangular well linked list (RWLL). A GELL node consists
of the edge height at which one or more edges are present. In addi-
tion two edge counters are present to store the number of in-edges
and out-edges on that height. A node of IELL or OELL consists
of the height and the X coordinates of the edge, the expire time
of the corresponding task, and a pointer to the GELL node which
represents the same height. This pointer is used to updating the
corresponding edge counter when a new edge is inserted or ex-
isting one is removed. RWLL stores all current FRW s. A RW
node in the RWLL stores the lower Y and both X coordinates of
the FRW. In figure 2, the linked lists representing the situation as
depicted in figure 3(d) is shown.

in−edge = 1
out−edge = 0 out−edge = 1

pointer

in−edge = 0 in−edge = 1
out−edge = 0 out−edge = 1

in−edge = 0

pointer

OELL

GELL

IELL

height = 20 height = 60 height  = 85
in−edge = 1

out−edge = 0

height = 50 height = 100

  X: 10, 25     X: 50,70

  X: 10, 25     X: 50,70   X: 0,100

height = 50 height = 85

height = 20 height = 60 height = 100

Figure 2. Linked lists

3.3 Flow scan processing

There are two basic scan procedures in the FS algorithm, the
in-edge processing and out-edge processing. The in-edge process-
ing happens when the scanning flow reaches an in-edge and the
out-edge processing is called when leaving an out-edge. In the in-
edge processing, if a FRW is overlapped with an in-edge in the
X direction, a maximum free rectangle is created by adding to the
FRW a top line at the height of the in-edge. Only when the scan-
ning process reaches an in-edge, the search for overlapped FRW s
will start and if any found the maximum free rectangle will be cre-
ated. In the cases FRWL < in-edgeL < FRWR or FRWL <
in-edgeR < FRWR

1, at most two new RWs can be created for
the non-overlapping area within the FRW . If the width span (the
length along the X axis) of a FRW is fully covered by an in-edge,
no FRW will be generated. In the out-edge processing, only one

1The FRWL represents the left side of the FRW and FRWR is the
right side; similar considerations hold for the in-edge.

new FRW is created. Its bottom has the same height as the out-
edge.

A simple example shown in figure 3 is used to clarify the pro-
cess in the following. In the beginning, an initial FRW is created
at the bottom of the 2D FPGA area. The bottom of this FRW
is 0 and it covers the whole width of the FPGA area, as shown in
figure 3(a). The scan process will reach the in-edge of task 1 at
height of 20 in the Y direction (shorthand At height = 20:), the
initial FRW is overlapped with this edge in X direction, so it be-
comes a maximum free rectangle (0, 100, 0, 20). Thereafter, two
new RW s are created for the non-overlapping area as explained
above. Because both of them can only be expanded upwards, they
are FRW s, as shown in figure 3(b), the FRW1 and FRW2. This
step is completed by recording the two FRW s into RWLL and
outputting the one maximum free rectangle found: (0, 100, 0, 20).
At height = 50: the out-edge of task 1 is met at this level, so
the out-edge processing is performed, which creates a new FRW :
FRW3 shown in figure3(c).
At height = 60: the in-edge processing is initiated. Because the
FRW2 and FRW3 are overlapped with the in-edge of task 2, two
maximum free rectangles, (25, 100, 0, 60) and (0, 100, 50, 60), are
found and generated. The FRW4, FRW5 and FRW6 are created
and recorded for the non-overlapping areas.
At height = 85 and height = 100 2: the FRW7 is created at the
out-edge of task 2. When reaching the top edge (100) all existing
FRW s are transferred to maximum free rectangles with top at Y
= 100.

During the scanning process described above, totally eight
maximum rectangles were found: (0,100,0,20), (0,100,50,60),
(0,10,0,100), (0,50, 50, 100), (0,100,85,100), (25,100,0,60),
(25,50,0,100) and (70,100, 0,100).
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Figure 3. Scan processing

3.4 Operations on Linked lists

There are two types of linked list operations used in our algo-
rithm. More precisely, the linked list update and linked list search.
The search operation checks all recorded edge nodes and finds all
maximum free rectangles existing on the FPGA. The algorithm
starts to search the GELL. When checking a node in the GELL,

2Please note that height=100 is the end of the FPGA area, in our exam-
ple, which is handled as an in-edge.



the in-edge and out-edge counters show the number of in- and out-
edges on the current height level. A simple example can be found
in the figure 2 where the first item represents the situation at height
= 20 with only one in-edge as represented by the two counter val-
ues. Thereafter, the algorithm searches the OELL or (and) IELL
according to the values of the counters. When searching OELL
and IELL, the FRWs are created and the maximum free rectangles
are found as described in section 3.3.

The linked list update operation adds (deletes) edge nodes into
(from) the lists and adjusting the edge counters to right value. All
edge nodes are ordered in increased height order. When a new
task arrives, two edge nodes standing for its in- and out-edges are
created and added into IELL and OELL separately. Next, if the
GELL already has a node characterized by the same height as that
of any of the edges, the corresponding counter is incremented by
1. Otherwise, a new node reflecting that height is added at the
right position. When a task completes its computation, the related
two edge nodes in OELL and IELL are removed while the edge
counters in related GELL nodes are adjusted using the pointers in
the OELL and IELL nodes. If in a GELL node both edge counters
equal ‘0’, this node will be removed from the list. Otherwise, there
are still other edges on this height.

3.5 Proof of completeness

In this section, we prove two theorems which guarantee that the
FS algorithm finds the complete set of true maximum rectangles.
Theorem 1: Generated FRWs always start at an out-edge height
and the set of FRWs created on any edge i is complete and correct.
Assuming the bottom of a FRW is not positioned on the height of
any out-edge implies that this FRW can still be expanded down-
wards until it reaches an out-edge. This is contradictory to the
definition of the FRW (a FRW can only be expanded upwards).
This proves that all FRW s start from an out-edge.

Assume there is a missing or incorrect FRW created when
our algorithm scans edge i. (A) in case of an out-edge (as shown
in figure 4(a)) the L and R are the left side and right side of the
free space at out-edge i. In the out-edge processing, one FRW
is created with X dimensions equal to L and R. If there is a
missing or incorrect FRW , e.g. FRWm, one of the conditions
(L< L’ and R’≤ R) or (L≤ L’ and R’< R), should hold. This
means the free space span ([L’..R’]) is smaller than the real free
space available ([L..R]). This proves the assumption of missing
FRW at out-edge i wrong, hence the single FRW created from
an out-edge is correct. (B) For any in-edge: Assume a FRW is
missing, e.g. the FRWi in figure 4(b), or its width span does
not cover the full non-overlapping area. The bottom of FRWi

is on the out-edge of Taskj . As described in in-edge processing,
the RWs are created for the non-overlapping area from FWRs
(FRWj in our example) overlapped with the in-edge (in-edgei).
If FRWi is missing implies that the FRWj created from the
out-edge j is incorrect. More precisely, it does not contain the
area that FRWi occupies (or a part of that area when FRWi is
not correctly created). This contradicts with the proof about the
FRW from an out-edge generation presented above. This proves
the assumption above wrong. �

Theorem 2: There is a one-to-one relationship between the
set of FRW s and the complete set of maximum free rectangles.
Assume two FRW s have overlapping area, e.g. FRW and
FRWm as shown in figure 4 (a). This means that one of them can
be expanded horizontally (FRWm in this example), contradicting
with the FRW definition. So, any two FRW s can not overlap,
proving each FRW as unique.

Assume a maximum free rectangle R is not from any FRW .
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Figure 4. Contradiction situation

So this rectangle can still be expanded, as shown in figure 4(c).
This is a contradiction with the definition of the maximum free
rectangle as presented earlier. This proves that any maximum free
rectangle is generated from a FRW .

Assume there is a FRW that does not become a maximum
free rectangle after the scanning process. This means there is no
in-edge overlapped area above this FRW . This contradicts with
the fact that the top border of the FPGA area is defined as the
highest in-edge with width span equal to the FPGA area width.
This implies that all FRW will become maximum free rectangles
after the scanning flow is completed. �

Overall, the second theorem describes the one-to-one relation-
ship between FRW s and maximum free rectangles. So if the set
of FRW s is complete and correct, the whole set of maximum
free rectangles is found completely and correctly. Thanks to the
first theorem which guarantees that the complete and correct set
of FRW s is created. So, the FS algorithm finds the whole set of
maximum free rectangles completely and correctly.

4 Experimental evaluation
We performed simulations in order to evaluate the performance

of our algorithm(FS), the staircase algorithm [3] and the enhanced
SLA (eSLA) algorithm [2]. The three algorithms were imple-
mented in C, and evaluated under Linux 2.6 running on Intel Pen-
tium(R) 4 CPU 3.00GHz with 2GB main memory.

In each simulation run, 10000 tasks were generated randomly.
We integrated the three scanning algorithms in the same simple
on-line placement algorithm. This placement algorithm uses first
fit policy to find a suitable allocation for the arrival tasks from the
set of maximum free rectangles generated by the scanning algo-
rithm. Before each simulation, a tracing process using the place-
ment algorithm equipped with one of the scanning approaches is
performed. We saved the tracing output which contains the parti-
tioning information during placement in a trace to ensure the three
scanning algorithms used exactly the same partitioning during ex-
ecution. This trace was generated as follows: we run the place-
ment algorithm 10000 times and store a single task into the trace
at each run. We start from the complete size of the 2D FPGA
area (100x100 configurable units (CUs)) and we create each new
task by using the output of the previous scanning algorithm execu-
tion, which corresponds to the current complete set of maximum
free rectangles (the initial maximum free rectangle is the complete
FPGA area). One of the maximum free rectangles is selected ran-
domly. The size of the new task is randomly generated within
the selected maximum free rectangle. Considering the arrival time
each task is assigned a random number between [5..25] time units.
In respect to the task life time 3 ranges were used: T250, T500,
and T1000. For T250 the task life time is randomly chosen from
the time interval [5..250], for T500 the [251..500] is used, and for
T1000 [501..1000]. All the above information about the partition-
ing and the new tasks is saved in our trace. We used the generated
trace to evaluate the scan time of the three algorithms. Please note
that the selection of which algorithm is used to generate the trace



above is irrelevant for our study because all maximum free rect-
angles are sorted in the same order and the first fit is used. Also
please note that the FS algorithm aims to find the complete set
of maximum free rectangles on the FPGA at runtime, it is not an
online placement algorithm.

4.1 Execution time
The algorithm is executed every time when a new task arrives

or one is removed. In our simulation with 10000 tasks, the three
algorithms are invoked approximately 15000 times. In the figure 5,
the average execution time of a single algorithm call and its execu-
tion time distribution are presented. As shown in the figure 5 (a),
our algorithm has shortest execution time compared to the other
two algorithms for all three task sets. The eSLA has the longest
execution time in all simulations. The reason is that in both eSLA
and staircase algorithms, in order to find all maximum free rect-
angles, the information stored in bigger number of CUs should be
accessed. In addition, during the update process they have to adjust
the information in all related CUs. In our algorithm, only the task
edges are processed, which is a relatively smaller number. The
worst case for our algorithm is when all edges of n placed tasks
are located on different heights, implying 2n nodes have to be ac-
cessed. This makes the worst case complexity of our algorithm
O(2n). On average our algorithm is 1.5x faster than staircase and
5x faster than eSLA respectively. In figure 5(b), the distributions
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Figure 5. Time issue
for single run time of algorithms are given. For example, in figure
5(b), the highest point of the curve representing the FS algorithm,
indicates that 50% of the algorithm calls (around 7500) complete
in the time interval between 20µs and 40µs. For short task life-
times (figure 5(b)) FS has execution times clearly concentrated on
the left side of the graph. This is due to the fact that with short task
life times a low number of tasks is present on the FPGA and the
total number of edges to be processed by the FS algorithm is small.
For all three ranges of life times, the density of the FS algorithm
samples is higher in the shorter time periods compared to the other
two algorithms, similar as the situation shown in figure 5(b).

No. of update No. of scan
CUs(nodes) CUs(nodes)

FS ≤ 3 38
T250 staircase 502 463

eSLA 463 20379
FS ≤ 3 70

T500 staircase 321 597
eSLA 255 21547

FS ≤ 3 130
T1000 staircase 191 573

eSLA 160 20852

Table 1. Scanning load

4.2 Scanning load
In the staircase and the eSLA algorithms, all CUs are encoded.

The algorithms use the encoded information to find the maximum
rectangles. In our algorithm, we use linked lists to record infor-
mation and to find maximum free rectangles. The scanning load
is defined as the number of CUs (or nodes of linked list) have to
be accessed during algorithm execution. As shown in the table 1,
for each update, the staircase modifies at least 191 CUs and the
eSLA minimum 160 CUs. In our algorithm in the worst case only
3 nodes will be added (deleted) into (from) the GELL, OELL and
IELL respectively. During the scanning process (looking for the
complete set of maximum free rectangles) the number of nodes
need to be checked by our FS algorithm is much lower than the
number of CUs need to be visited in the other two algorithms, as
shown in the last collum of the table 1. The large number of CUs
for the eSLA algorithm is many CUs are checked several times for
different rectangles in the same scan iteration.

5 Conclusion and future work
In this paper, we proposed a new algorithm for finding the

complete set of maximum free rectangles during online FPGA
placement. Our experimental results have shown that the Flow
Scan algorithm has better performance compared to state of the
art algorithms providing the same functionality. In the future, our
work will focus on: (i) integrating the Flow Scan algorithm in
previously proposed on-line placement technique; (ii) apply the
FS algorithm in task scheduling schemes.
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