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Abstract
The “4 per 1,000” initiative calls for land management practices that increase
soil organic C (SOC). Despite an imperative for accurate SOC measurement,
several methodological issues may complicate the verification of C seques-
tration. The aim of this work is to evaluate the potential advantages of using
apparent electrical conductivity (ECa)-directed sampling to deep (0–90 cm) SOC
stock assessment. We compared simple random sampling (SRS) and stratified
random sampling (StSRS), with either a fixed or optimized number of samples,
in fields managed under conservation agriculture and conventional tillage. The
stratification in StSRS was built from ECa maps that showed two different soil
conditions—the presence or absence (high-salinity conditions) of a strong cor-
relation between ECa and soil properties. Treatment and sampling design effects
on SOC estimates were tested through a mixed-model approach. Sampling effi-
ciency was calculated by classical and bootstrap methods. Results suggested that
whenECa has a strong relationshipwith soil properties, StSRSwasmore efficient
than SRS, especially when using an optimal number of samples per stratum.
Stratification was based on ECa maps of the no-till site, which allowed a smaller
minimum sample size. When stratification failed due to the effect of salinity on
ECa, StSRS efficiencywas similar to SRS. These results suggest that ECa–directed
sampling, regardless of knowing the relationships between ECa and soil proper-
ties, is a win-win solution to advance soil characterization and SOC stock estima-
tion in agricultural fields of the low Venetian plain. However, further research
should investigate EC a–directed sampling where strong patterns not related to
SOC could lead to inappropriate stratification or suboptimal sample allocation.

Abbreviations: BD, bulk density; CONS, conservation agriculture; CONV, conventional agriculture; ECa, soil apparent electrical conductivity; F1,
Farm 1; F2, Farm 2; SOC, soil organic carbon; SRS, simple random sampling; SRSfix, simple random sampling using the same number of samples for
each stratum; SRSopt, simple random sampling using an optimal number of samples per stratum; StSRS, stratified simple random sampling; StSRSfix,
stratified simple random sampling using the same number of samples for each stratum; StSRSopt, stratified simple random sampling using an optimal
number of samples per stratum.
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1 INTRODUCTION

Over recent years, accurate soil organic C (SOC) stock
estimation in agricultural fields has become a key issue
because of the potential impact of the C cycle on cli-
mate change. The “4 per 1,000″ initiative (Minasny et al.,
2017) calls for land management practices that raise
SOC stocks at a rate of 4 per 1,000 per year (https://
www.4p1000.org/). However, criticism has arisen as to
the achievability of the initiative across soil types and
its suitability in food-limited production systems (grass-
lands vs. croplands; Poulton, Johnston,Macdonald,White,
& Powlson, 2018; Rumpel et al., 2020). Moreover, sev-
eral methodological issues facing SOC inventory, such
as soil profile depth, initial SOC content, and time after
best management practice adoption, can complicate the
aspiration.
Methods to quantify SOC in the soil profile depend

on several factors, such as temporal and spatial reso-
lution of the surveyed area, soil availability, land use,
local or regional management data availability, the exis-
tence of harmonized monitoring networks, and others
(Morari, Berti, Dal Ferro, & Piccoli, 2019). For this purpose,
the Intergovernmental Panel on Climate Change (IPCC)
has laid out a decision tree (Eggleston, Buenidia, Miwa,
Ngara, & Tanabe, 2006) to identify the appropriate tiers
to estimate soil C stock changes. To assess the nonlinear
behavior of SOC in soils, the implementation of a
measurement-based inventory or simulation model (e.g.,
CENTURY, Roth-C) has been suggested (Tier 3). Assess-
ment using a measurement-based inventory approach
requires the consideration of two methodological issues.
One concerns SOC contentmeasurement; the other relates
to soil sampling optimization to maximize its sensitivity to
field-level variation in soil C after changes in land use or
management (Conant & Paustian, 2002; de Gruijter et al.,
2016). Indeed, SOC spatial variability is often many times
greater than its variability over time, which can intro-
duce unavoidable uncertainties in the detection of changes
in SOC stocks. In fact, the results of agronomic experi-
ments are influenced by two types of factors: treatment
and experimental error, including soil spatial variability
and others. Although treatments reflect the objectives of
the experiment, experiment error is not relevant to the
objectives but does tend to mask treatment effects (Yang,
2010). Several efforts can be found in the literature to min-
imize and/or control experimental errors (Cochran & Cox,
1957; Petersen, 1994), but themixed-models approach is the
most recommended for use in agricultural experimenta-
tion (Yang, 2010). The classical approach regards the use of
a soil property, such as granulometry fraction, N content,
or moisture, as covariates to explain some of the variances.
Unfortunately, soil properties may not always be known a

Core Ideas

∙ Stratification requires a correlation between
covariates and soil properties.

∙ Stratified sampling based onECa is ideal in a no-
tillage system.

∙ Stratified sampling allows a reduced sample
size.

∙ Stratification is less effective in conventional
tillage soil.

priori, and at times, their use is insufficient to describe the
entire spatial variability.
With this context as background, it is best to rely on

an optimized scheme at the sampling stage. Two main
approaches can be used for this purpose, either a model-
based approach or a design-based approach. In the for-
mer, the statistical inference is based on a model that
describes the soil-forming process as a stochastic process,
whereas the latter uses a predetermined random proce-
dure to select sample locations and the statistical infer-
ence is based on the sampling design (Brus & De Grui-
jter, 1997). The approach choice is mainly dictated by study
purposes. For the production of a SOC stock map, model-
based sampling is preferable (England & Rossel, 2018; Pri-
ori et al., 2016). However, for accurate measures of SOC
stock, design-based sampling may be most suitable, as the
estimated quality does not depend on model assumptions
(de Gruijter et al., 2016).
Simple random sampling (SRS) is one of the simplest

sampling methods. A fixed number of samples are col-
lected randomly and independently from within the study
area. To reduce sampling variance, the stratified simple
random sampling (StSRS) method is usually proposed. It
divides the study area into subareas based on associated
covariates. Although StSRS can improve design efficiency,
two drawbacks can occur during the stratification step:
(a) strata fail to partition variation of the target variable,
and/or (b) samples are suboptimally allocated to strata (de
Gruijter, Brus, Bierkens, & Knotters, 2006). There is also
a risk that efficiency may be lost using StSRS, as com-
paredwith the simpler SRS. Further details about sampling
designs for SOC estimation can be found in Allen, Pringle,
Page, and Dalal (2010).
The first step in accurate StSRS is capturing soil spa-

tial variability. An easy and quick method to do this
is to measure soil apparent electrical conductivity (ECa;
Martinez, Vanderlinden, Ordóñez, & Muriel, 2009) using
the on-the-go electromagnetic induction techniques (Cor-
win&Lesch, 2003; Doolittle &Brevik, 2014). Earlywork by

https://www.4p1000.org/
https://www.4p1000.org/
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F IGURE 1 Experimental sites in the low plain of the Veneto
Region in northeastern Italy. Farm positions are marked with trian-
gles (F1 and F2)

Rhoades, Raats, and Prather (1976) focused mainly on the
effect of soil salinity on ECa. However, it is nowunderstood
that ECa is influenced by other soil properties (e.g., SOC,
texture, bulk density [BD], saturation percentage, water
content, and cation exchange capacity; Corwin& Scudiero,
2016), which make ECa use effective for soil–plant interac-
tion studies (Cassiani et al., 2012). Despite its benefits, ECa
survey is recommended only when the ECa/clay ratio < 5
(McBratney & Minasny, 2005) or ECa < 100 mS m−1 (Cor-
win & Scudiero, 2016), except in salinity studies.
Within a general framework, to evaluate those agro-

nomic practices best suited for the “4 per 1,000″ initia-
tive in northern Italy, we evaluated the potential advance-
ments introduced by ECa–directed sampling on deep SOC
stock estimates under two different agronomic manage-
ments (conservation agriculture [CONS] and conventional
tillage [CONV]). Two sampling strategies (SRS and StSRS)
were compared in two types of soil conditions, the pres-
ence and the absence of a strong dependency of the covari-
ate (i.e., ECa) from the primary soil properties. Our ini-
tial hypothesis is that the stratified sampling design should
be selected only when a strong relationship exists between
ECa and soil properties.

2 MATERIALS ANDMETHODS

2.1 Experimental sites

The experimental sites are located on two farms in Veneto
Region (northeastern Italy, Figure 1, Table 1). Farm 1 (F1),

TABLE 1 Main soil physical and chemical characteristics (top
50 cm) at the experimental farms

Characteristic Unit
Farm 1,
Vallevecchia

Farm 2,
Sasse-Rami

Sand g 100 g−1 34.2 18.4
Silt g 100 g−1 42.6 57.8
Clay g 100 g−1 23.2 23.8
pH 8.3 8.6
CO3

2− g 100 g−1 53.0 13.0
Active CO3

2− g 100 g−1 3.0 3.0
Organic C g 100 g−1 1.0 0.8
Assimilable P mg kg−1 32.0 6.0
Exchangeable Ca cmol(+) kg−1 24.7 15.5
Exchangeable
Mg

cmol(+) kg−1 3.2 1.4

Exchangeable K cmol(+) kg−1 0.5 0.2

“Vallevecchia,” lies in a reclaimed area along the coastline
of the Adriatic Sea (45◦38.350′ N, 12◦57.245′ E, −2 m asl).
The soil, characterized as either Calcari-Gleyc Fluvisols
or Cambisols (WRB, 2006), originates from Tagliamento
and Piave River sediment with textures ranging from silty-
clay to sandy-loam. It is locally saline with a saturated
paste extract soil electrical conductivity of 270 μS cm−1

and has a locally shallow groundwater electrical conduc-
tivity of 6,902 μS cm−1 (Agostini & Rosato, 1997), which is
classified as “brine water” according to Rhoades, Kandiah,
and Mashali (1992). Farm 2 (F2), “Sasse-Rami,” located
in the southern low plain of the Po River (45◦2.908′ N,
11◦52.872′ E, 2 m asl), is characterized by Hypocalcic Cal-
cisols soil with a silty-clay loam or silt-loam texture.
The climate in the region (1981–2010) is subhumid and

has a mean annual rainfall of 829 mm at F1 and 673 mm
at F2. Average rainfall was highest in autumn (302 for F1,
187mm for F2) and lowest in winter (190 for F1, 129mm for
F2), with average temperature rises from 3.5 (F1) and 3.1 ◦C
(F2) in January to 23.3 (F1) and 23.6 ◦C (F2) in July. Ref-
erence evapotranspiration was 860 (F1) and 848 mm (F2),
with the peak days of 4.9 (F1) and 4.8 mm d−1 (F2) occur-
ring in July.

2.2 The experiment

Experimental treatments were established at both farms
in 2010 to compare the CONV and CONS management
systems. The CONS protocol followed a set of practices
outlined in Measure 214, Submeasure 1, “Eco-compatible
management of agricultural lands” of the Rural Devel-
opment Programme (RDP) supported by Veneto Region
(Regione Veneto, 2013). It included such measures such as
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no-tillage, soil surface retention of crop residues, and cover
crop usage. The CONV management system used tradi-
tional tillage practices: moldboard plowing (35 cm), crop
residue incorporation, and a second disk-harrow tillage to
a depth of ∼10 cm.
Each of the four rectangular experimental fields (two

treatments × two farms) covered a surface area averaging
1.2 ha (about 400 m long × 30 m wide). Until 2014, the 4-
yr crop rotation consisted of wheat (Triticum aestivum L.),
oilseed rape (Brassica napus L.), maize (Zea mays L.), and
soybean [Glycinemax (L.) Merr.]. From 2014 and beyond, a
simplified, 3-yr crop rotation (wheat–maize–soybean) was
applied. In CONS, cover crops were grown between the
main crops. Until 2014, sorghum (Sorghum vulgare Pers.
var. sudanense) was grown during spring–summer, and a
mix of vetch (Vicia sativa L.) and barley (Hordeum vulgare
L.) was grown during autumn–winter. In the years after,
only barley or winter wheat was grown in autumn–winter.
In CONV, the soil remained bare between the main crops.
The base dressing fertilizer was applied 1–2 wk before

sowing inCONV; subsurface band fertilizationwas applied
at sowing in CONS. In both systems, mineral fertil-
ization was integrated by side-dressing in maize (one
treatment) and wheat (two treatments). Cover crops
received no additional fertilization. Pesticide applications
were applied based on need and crop for both treat-
ments. The winter cover crop was suppressed with N-
(phosphonomethyl) glycine; sorghum was suppressed by
mechanical shredding. More details on the management
systems are reported in Piccoli, Furlan, Lazzaro, and
Morari (2019).

2.3 Soil apparent electrical conductivity
survey

The ECa survey was carried out using a CMD-Mini
Explorer conductivity meter (GF Instruments). The data
were collected in December 2016 when the soil was bare in
CONV and under a cover crop in CONS. Both soil ECa (mS
m−1) measurements and the differential GPS (Trimble)
positions were recorded at 4 km h−1 (1-s interval, 6-m tran-
sect distance) with both horizontal and vertical CMD con-
figurations. The conductivitymeter had three receiver coils
positioned at 0.32, 0.71, and 1.18m from the single transmit-
ter coil. The effective depth ranges of the measurements
were 0.5 (H1), 1 (H2), and 1.8m (H3) in the horizontal copla-
nar configuration, and 0.25 (V1), 0.5 (V2), and 0.9 m (V3) in
the vertical coplanar configuration (GF Instruments, 2011).
Each of the ECa depth range measurements was interpo-
lated onto a 2-m regular grid using ordinary kriging with
moving windows (de Gruijter et al., 2006).

2.4 Soil sampling design

The SRS and StSRS sampling designs were used in this
study. In SRS, sample positions were randomly placed
inside the experimental field without any knowledge of
the soil variability. In StSRS, ECa was used as an ancil-
lary variable for sample selection, which was based on six
ECa maps. We used the k-means clustering algorithm on
the ECa maps to identify field strata using R software (R
Core Team). The k-means algorithm dividesM points in N
dimensions into K clusters to minimize the within-cluster
sum of squares (Hartigan & Wong, 1979). The objective
function was calculated using the formula by de Gruijter
et al. (2016):

𝑂𝐾𝑀 =

𝑁∑

𝑖=1

𝐻∑

ℎ=1

𝑑2
𝑖ℎ

(1)

where d is the component of a distance matrix, obtained
by:

𝑑2
𝑖ℎ
= (xi − cℎ)

′
𝐀 (x𝑖 − cℎ) (2)

where ch is the centroid of class h and A is the dis-
tance norm matrix, which can be the inverse of variance–
covariance matrix of X′, called the Mahalanobis distance.
The use of theMahalanobis distance is because the six ECa
variables are correlated.
Two types of StSRS were performed; both used the

same number of samples per field. In the first approach
(StSRSfix), an equal number of samples (six) were ran-
domly placed inside each stratum for a total of 18 per field.
In the second approach (StSRSopt), an optimal number of
samples were randomly placed inside each stratum. The
sample number was calculated according to the following
equation to consider the 0- to 90-cm instrumental config-
uration (i.e., V3):

𝑛′
ℎ
= 𝑛

𝑁ℎ𝑆ℎ
∑𝐻

ℎ=1
𝑁ℎ𝑆ℎ

(3)

where n is the total sample size (18), H is the number of
strata, Nh is the size of stratum h (i.e., stratum area), Sh is
the standard deviation in stratum h, and 𝑛′

ℎ
is the sample

size allocated to stratum h. Equation 3 allows more sam-
ples to be allocated to strata of larger area and higher vari-
ation. The StSRSfix and StSRSopt designs were used to pro-
duce SRSfix and SRSopt, respectively.
The procedure permitted the identification of 144 sam-

pling points (i.e., 18 sampling points × 2 treatments × 2
farms × 2 sampling designs). Considering the high num-
ber of needed soil samples, the time-consuming nature of
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F IGURE 2 Example of bulk density and soil organic C (SOC) spline fitting procedures and the resulting cumulative C stock profiles in
conservation agriculture (CONS) and conventional tillage (CONV)

F IGURE 3 Description of optimal sample size estimation
according to the bootstrap procedure. The points at which the 95%
confidence lines just cross the allowable error range represent sam-
ple size (vertical dashed line)

core extraction, and the cost of analysis for the StSRSproce-
dure, a modification was made to the process. Specifically,
appropriate SRS points (i.e., inside strata) were reused as
one of the possible infinite random configurations, while
additional soil cores were collected to cover underrepre-
sented strata. During winter 2017, sampling points were
identified using differential GPS, and a total of 89 undis-
turbed soil cores (90-cm length, 7-cmdiam.) were collected
by a hydraulic sampler. The cores were then cut to expose
four layers of differing depths: 0–5, 5–30, 30–50, and 50–
90 cm.

2.5 Soil physical and chemical analyses

A total of 356 samples were analyzed for BD, particle size
distribution, and organic C content. After samples were
weighed and a fraction (about half of the sample weight)
of each sample was oven dried at 105 ◦C for 24 h, BD
was determined by the core method (Grossman & Rein-
sch, 2002). The remainder of each sample fraction was air
dried and sieved through a 0.5-mm mesh for the deter-
mination of C and N content via dry combustion method
using a CNS elemental analyzer (Vario Max, Elementar
Americas). To determine particle size distribution, samples
were sieved through a 2-mmmesh, dispersed in 2% sodium
hexametaphosphate solution as described in Gee and Or
(2002), and analyzed using laser diffraction (Mastersizer
2000, Malvern Instruments). A dedicated algorithm was
used to convert diffraction values into pipette values (Bit-
telli et al., 2019).

2.6 Soil organic carbon stocks

The fixedminimum soil-mass approach of SOC stocks was
calculated using a spline depth function as suggested by
past studies (Gifford & Roderick, 2003; Orton, Pringle,
Page, Dalal, & Bishop, 2014; Pringle et al., 2011). In brief,
the method selects the reference mass based on the min-
imum soil mass approach in 0-a profiles (m0-a ref). After-
ward, an equal-area spline was fitted to estimate the vari-
ation in BD along the soil profile (Bishop, McBratney,
& Laslett, 1999; Malone, McBratney, Minasny, & Laslett,
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TABLE 2 Statistical summary of apparent soil electrical conductivity at Farm 1 (F1) and Farm 2 (F2) for conservation (CONS) and
conventional agriculture (CONV)

F1 F2
Treatment Configurationa Mean SD Min. Max. Mean SD Min. Max.

mS m−1

CONS V1 31.7 16.7 14.9 125.7 26.1 3.3 19.7 37.3
V2 69.9 25 42.6 200.7 21.7 4.0 13.5 31.5
V3 92.7 31.9 56.0 253.6 35.4 4.8 25.3 48.5
H1 50.4 21.5 26.7 177.8 23.3 4.0 14.1 42.6
H2 121.4 33.3 82 294.8 48.6 4.5 38.0 67.0
H3 142.5 36.6 97.6 319.4 44.7 4.6 32.1 59.2

CONV V1 29.4 9.5 9.0 92.5 22.1 3.2 12.2 33.7
V2 60.1 14.5 28.5 130.1 18.6 5.0 4.3 32.8
V3 82.0 19.4 38.5 167.2 34.1 6.3 16.1 48.7
H1 41.8 11.5 14.5 100.8 25.1 3.6 13.1 37.5
H2 107.7 19.2 61.0 219 48.7 5.6 30.1 63.7
H3 125.7 23.0 71.9 242.7 45.7 6.3 24.7 60.3

aV1, V2, andV3 represent the instrument vertical coplanar configurationwith effective depth ranges of 0.25, 0.50, and 0.90m, respectively. H1,H2, andH3 represent
the instrument horizontal coplanar configuration with effective depth ranges of 0.50, 1.00, and 1.80 m, respectively.

2009). Given the BD (BDi) profile, the spline was used to
calculate cumulative soil mass (per unit of surface area)
at incremental 1-cm depths to attain the depth d0-a ref (BDi,
m0-a ref) of the referencemass (m0-a ref). Likewise, SOC con-
centration was used to determine SOC stocks at the 0- to
5-, 0- to 30-, 0- to 50-, and 0- to 90-cm soil profile layers.
The splines were then fitted in R (R Core Team, 2017) using
the ‘mpspline’ command of the GSIF package (Tomislav,
Heuvelink, & Malone, 2019) (Figure 2).

2.7 Statistical analysis

Data were analyzed for each farm using a linear mixed-
effect model based on the REML (restricted maximum
likelihood) estimation method. For BD and SOC concen-
tration, both treatment and soil layer × treatment inter-
action were considered as categorical variables, whereas
clay content was considered continuous. For SOC stock,
a mixed model that tested only the treatment effect was
fitted at progressive soil profiles (0–5, 0–30, 0–50, and
0–90 cm). Mixed models were applied to all sampling
designs (i.e., SRSfix, SRSopt, StSRSfix, and StSRSopt). In the
SRS designs, same-field data were considered as subrepli-
cates and treated as nestedmeasures. In the StSRS designs,
data from each treatment × stratum combinations were
nested, and themodelwasweighted by the strata surface in
addition. Mixed model results were not corrected for spa-
tial autocorrelation because both Moran’s test I and semi-
variogram analyses on the residuals confirmed the lack of
spatial autocorrelation. Post-hoc pairwise comparison of

least-squares means (LSE) was performed using the Tukey
method to adjust for multiple comparisons.
Pearson’s correlation coefficients were calculated to esti-

mate all possible linear relationships betweenECa, texture,
SOC, and BD. The sampling efficiency in SOC stock esti-
mation was evaluated by calculating the SRS equivalent
sample size to obtain the same precision as in StSRS. At
first, the StSRS sampling and spatial variances were deter-
mined according to Equations 7.15 and 7.16 in de Gruijter
et al. (2006). The SRS sampling variance [V(zsi)], StSRS
sampling efficiency (Vr), and finally the equivalent sam-
ple size (Neq) were calculated according to the following
equations:

𝑉(𝑧𝑠𝑖) =
𝑠2 (𝑧)

𝑛
(4)

𝑉r =
𝑉 (𝑧𝑠𝑖)

𝑉 (𝑧𝑠𝑡)
(5)

𝑁eq = 𝑉r𝑛 (6)

where 𝑠2(𝑧) is the spatial variance, n is the actual sample
size, V(zsi) is the SRS sampling variance, and V(zst) is the
StSRS sampling variance.
A Vr > 1 indicates that StSRS was more efficient

than SRS, meaning that fewer soil samples were
needed for StSRS to reach an accurate SOC stock
estimate.
The optimal sample size within a 95% confidence level

according to a fixed number of cores per stratum was also
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F IGURE 4 Ordinary kriging of soil apparent electrical conductivity (ECa) at 0- to 90-cm depth through vertical coplanar configuration at
(a) F1 and (b) F2. Panels c and d report ECa–based stratification by k-means clustering. CONS, conservation agriculture; CONV, conventional
tillage

TABLE 3 Percentage area covered by strata at Farm 1 (F1) and
Farm 2 (F2) for conservation (CONS) and conventional agriculture
(CONV)

F1 F2
Stratum CONS CONV CONS CONV

%
1 51 80 46 24
2 39 5 34 13
3 10 15 20 63

calculated, using both the bootstrap method (Dane, Reed,
& Hopmans, 1986) and allowable error (E) criterion. The

latter is defined as

𝐸 =
1.96σ
√
𝑐

(7)

where 1.96 corresponds to Z score at 95% confidence level,
σ corresponds to the weighted standard deviation, and
c corresponds to the number of observations. For each
treatment × farm, the resampling was applied 2,000 times
to the original SOC stock dataset (all cores) at d0-90 ref
(BDi, m0-90 ref) for both SRS and StSRS designs. In SRS,
resampling was applied from 1 to the maximum samples
per field (18). In StSRS, resampling was applied, starting
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TABLE 4 Sample size per stratum for stratified simple random sampling using the same number of samples for each stratum (StSRSfix)
and using an optimal number of samples per stratum (StSRSopt) at Farm 1 (F1) and Farm 2 (F2) for conservation (CONS) and conventional
agriculture (CONV)

StSRSfix StSRSopt
F1 F2 F1 F2

Stratum CONS CONV CONS CONV CONS CONV CONS CONV
no.

1 6 6 6 6 9 12 9 5
2 6 6 6 6 6 2 5 3
3 6 6 6 6 3 4 4 10
Total 18 18 18 18 18 18 18 18

TABLE 5 Estimated means and statistical significance for bulk density (BD) and soil organic carbon (SOC) concentration. According to
statistical model results, different letters indicate significant difference between estimated means according to Tukey test with p < .05

SRSfix SRSopt StSRSfix StSRSopt
Property Effect F1 F2 F1 F2 F1 F2 F1 F2
BD Treatment p value .3106 .0009 .3557 <.0001 .5239 .0929 .4021 .1727

CONS 1.38 1.43a 1.39 1.45a 1.38 1.43 1.39 1.43
CONV 1.36 1.35b 1.37 1.35b 1.37 1.36 1.37 1.37

Treatment × layera p value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
CONS L1 1.23c 1.27b 1.25d 1.31b 1.23c 1.27b 1.25d 1.30b
CONV L1 1.33bc 1.02c 1.34bcd 1.12c 1.33bc 1.02c 1.34bcd 1.14c
CONS L2 1.50a 1.50a 1.50a 1.48a 1.50a 1.50a 1.50a 1.47a
CONV L2 1.43ab 1.40a 1.41abc 1.36b 1.44ab 1.40ab 1.41abc 1.38ab
CONS L3 1.51a 1.52a 1.49a 1.53a 1.51a 1.52a 1.49a 1.52a
CONV L3 1.46ab 1.49a 1.44ab 1.50a 1.46ab 1.49a 1.44ab 1.52a
CONS L4 1.29c 1.44a 1.32cd 1.46ab 1.29c 1.44a 1.32cd 1.45a
CONV L4 1.23c 1.50a 1.30d 1.43ab 1.23c 1.50a 1.30d 1.45ab

SOC Treatment p value .0671 .0391 .0132 .5667 .1326 .3290 .1382 .4669
CONS 1.62 1.49a 1.54a 1.23 1.62 1.50 1.55 1.37
CONV 1.43 1.25b 1.30b 1.29 1.43 1.24 1.31 1.15

Treatment × layera p value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
CONS L1 2.65a 2.79a 2.53a 2.14a 2.65a 2.79a 2.54a 2.29a
CONV L1 1.70b 1.74b 1.52b 1.55ab 1.70b 1.72b 1.52b 1.41ab
CONS L2 1.33b 1.25bcd 1.36c 1.12bc 1.33b 1.26bcd 1.37b 1.27bc
CONV L2 1.40b 1.45bc 1.38c 1.52b 1.40b 1.46bc 1.38b 1.38ab
CONS L3 1.22b 1.09cd 1.08c 1.00bc 1.22b 1.10bcd 1.10b 1.14bc
CONV L3 1.33b 1.02cd 1.20c 1.19bc 1.33b 1.02cd 1.20b 1.04bc
CONS L4 1.27b 0.83cd 1.19c 0.66c 1.27b 0.85cd 1.20b 0.80bc
CONV L4 1.29b 0.78d 1.11c 0.90c 1.29b 0.76d 1.12b 0.75c

aL1, 0–5 cm; L2, 5–30 cm; L3, 30–50 cm; L4, 50–90 cm.

from 1 core to a maximum number of cores (6) per stra-
tum at increments of 1. The optimal sample size was
estimated when both confidence lines (i.e., 97.5th and
2.5th percentiles) crossed the allowable error range (Han,
Zhang, Mattson, Zhang, & Weber, 2016), as reported in

Figure 3. The bootstrap test was not applied to StSRSopt
because of the huge number of combinations in the resam-
pling procedure. Mixed models were performed with SAS
software version 5.1 (SAS Institute). Bootstrap tests used
R software.
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3 RESULTS

3.1 Soil apparent electrical conductivity
and soil stratification

The overall average ECa was higher at Farm 1 (F1) than
at Farm 2 (F2) (79.6 vs. 32.8 mS m−1), and maximum val-
ues were found in the H3 configuration (242.7 mS m−1 in
CONS and 319.4 mS m−1 in CONV) (Table 2, Figure 4).
It is worth noting that at F1, ECa peaked on the western
side of the CONV field, despite the overall wider variabil-
ity observed in the CONS field (Table 2). On the contrary,
at F2, both ECa variability and mean were similar between
the two treatments (32.4 mS m−1 in CONV and 33.3 mS
m−1 in CONS). Here, maximum values were recorded in
the northern part of CONS field (67.0 mS m−1 for H2). For
further details, see Supplemental Figures S1 and S2.
Stratification based on ECa is shown in Figures 4c

and 4d, and Table 3. At F1, Stratum 1 represented more
than half of the field surface for both CONV (80%) and
CONS (51%). The sample size range for StSRSoptwas 3–9 in
CONS and 2–12 in CONV (Table 4). Even in CONV at F2, a
single stratum prevailed over the area (i.e., 63% in Stratum
3) to yield a sample size that ranged from 3 to 10, accord-
ing to StSRSopt. Similarly, Stratum 1 in CONS accounted
for 46% of the field and resulted in a sample size of nine
(Tables 3–4).

3.2 Bulk density and soil organic carbon
concentration

Irrespective of sampling designs, BD results showed a sim-
ilar effect from the treatment × layer interaction at both
farms (Table 5). At F1, stratification was stronger in CONS,
as evidenced by denser results in the 5- to 50-cm subsoil
than in the 0- to 5-cm topsoil for fixed (1.50 vs. 1.23 g
cm−3) and optimized (1.50 vs. 1.25 g cm−3) approaches,
respectively (Table 5). On the contrary, in CONV, BD was
more homogenous throughout the 0- to 50-cm profile
(1.40–1.41 g cm−3, on average), although a progressing BD
increase is detectable with depth. At F2, first-layer BD was
dominant and denser in CONS than in CONV (Table 5),
and its mean values varied with sampling design (1.27 vs.
1.02 g cm−3 in SRSfix and StSRSfix, and approximately
1.30 vs. 1.12 g cm−3 in SRSopt and StSRSopt). Clay con-
tent also affected BD, although the correlation was positive
at F1 (0.003 slope, on average) and negative at F2 based
on sampling design (+0.002 slope, on average, in SRSopt
and StSRSopt and −0.003 slope, on average, in SRSfix and
StSRSfix). For further details, see Supplemental Figures S3
and S4.



10 of 14 LONGO et al.Vadose Zone Journal

TABLE 7 Sampling variance [V(zst)], sampling efficiency (Vr), and simple random sampling (SRS) equivalent number (neq SRS)
according to the stratified simple random sampling using the same number of samples for each stratum (StSRSfix) and using an optimal
number of samples per stratum (StSRSopt) approaches

Fixed approach Optimal approach
F1 F2 F1 F2

Variable Sampling CONS CONV CONS CONV CONS CONV CONS CONV
V(zst) SRS 141.51 70.97 88.22 82.57 115.50 61.27 86.05 87.51

StSRS 176.48 152.51 37.43 67.90 93.56 60.53 50.38 96.43
Vr – 0.80 0.47 2.36 1.22 1.23 1.01 1.71 0.91
neq SRS – 14 8 42 22 22 18 31 16

Note. F1, Farm 1; F2, Farm 2; CONS, conservation agriculture; CONV, conventional agriculture.

The SOC concentration showed significant differences
(p< .01, Table 5) depending on the treatment × layer inter-
action only in the topsoil (0–5 cm) at both F1 (all sampling
designs) and F2 (all but StSRSopt). Indeed, CONS raised
topsoil SOC concentration by about 61 (F1) and 56% (F2).
Regarding sampling approaches, the average SOC con-

centration was higher with SRSfix and StSRSfix than with
SRSopt and StSRSopt, such that maximum values in the
first layer of F2 were 2.79 and 1.74 g cm−3, respectively. At
F2, clay content oppositely affected SOC according to sam-
pling design, with a positive correlation with SRSfix and
StSRSfix and negative correlation with SRSopt and StSRSopt
(Table 5).

3.3 Soil organic carbon stocks

The SOC stocks at 0–5 cm were generally greater in CONS
than in CONV, regardless of farm and sampling design
(Supplemental Figures S5 and S6). Notably, the relative
difference between treatments ranged from 49 (SRSopt at
F2) to 74% (both SRSopt and StSRSopt at F1). Similarly,
CONS 0- to 30-cm profile stocks were greater than CONV
stocks, ranging from 50.56 t ha−1 with SRSopt at F2 to 62.42 t
ha−1 with StSRSopt at F1. However, the observed variations
and differences between the two treatments were signifi-
cant (p = .05) only at F1 SRSopt, with 62.00 (CONS) and
51.18 t ha−1 (CONV). In the 0- to 50-cm and 0- to 90-cm soil
profiles, no significant differences were observed between
treatments, where average SOC stocks ranged between
140.47–152.85 t ha−1 at F1 (SRSopt) and 123.26–131.48 t ha−1
at F2 (SRSfix). For further details, see Supplemental Figures
S2 and S3 and Supplemental Table S1.

3.4 Relationship between soil apparent
electrical conductivity and soil
chemical–physical characteristics

In F1, ECa did not show any dependency on the primary
soil properties, with the exception of a very weak corre-

lation with both SOC and BD. Compared with F1, F2 had
stronger correlations between ECa and soil properties irre-
spective of sampling design. Significant positive relation-
ships for ECa–SOC and ECa–clay, and significant negative
relationships for ECa–BD and EC a–sand, were observed
(Table 6).

3.5 Sample size optimization

The sampling efficiency of SOC stock estimation in the
0- to 90-cm profile was evaluated initially by compar-
ing the sampling variances of the four sampling schemes.
Experimental site and sample allocation per stratum dif-
ferences produced contrasting results. When considering
variation related to sampling design (Table 7), the StSRSopt
method had the smallest variance (best result) at F1 in
CONS (93.6 t C ha−1) and CONV (60.5 t C ha−1), whereas
the StSRSfix method had in the largest variance (worst
result) in CONS (176.5 t C ha−1) and CONV (152.5 t ha−1).
Conversely, F2 StSRSfix, variances (37.4 and 67.9 t ha−1
for CONS and CONV, respectively) were lower than other
design averages (74.9 t ha−1 in CONS and 88.8 t ha−1
CONV). In general, a stratified design, both fixed and
optimized, was more efficient in CONS than in CONV
(Table 7). For example, at F2 with StSRSfix, sampling effi-
ciency (Vr) was 2.36 in CONS and 1.22 in CONV, and with
StSRSopt, sampling efficiency was 1.71 in CONS and 0.91
in CONV. Moreover, in CONS, StSRSopt was more effi-
cient (sampling efficiency >1) than SRSopt at both farms
(Table 7), given that the equivalent sample sizes with
SRSopt were larger by 4 (F1) and 13 (F2) thanwith StSRSopt.
On the contrary, in CONV, the efficiency of StSRSopt was
similar or slightly lower than that of SRSopt (Table 7). Only
when a fixed sample size per stratumwas applied at F1 did
sampling efficiency worsen with respect to SRSfix in both
treatments, particularly in CONV (Vr = 0.47). The contrary
was observed at F2, where StSRSfix yielded a SRS equiva-
lent sample size equal to 42 (in CONS) and 22 (in CONV),
+135.71% and +21.61% with respect to SRSfix.
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F IGURE 5 Decision criteria for sample size according to the bootstrap procedure in simple random sampling (SRS, italics) and stratifies
simple random sampling (StSRS, no italics) designs. The sample mean, allowable error, and 2.5th and 97.5th percentiles of soil organic C (SOC)
stock estimates are reported for each sampling design × farm × treatment interaction. The points at which the 95% confidence lines just cross
the allowable error range represent sample size (vertical dashed line). CONS, conservation agriculture; CONV, conventional tillage

Second, the StSRSfix design was evaluated at a 95% con-
fidence level according to the bootstrap method (Figure 5).
In general, this method confirmed the equivalent sample
size results, since SRSfix required a more samples than
StSRSfix at F2, but not at F1. In the former, three sam-

ples per stratum (nine total) allowed means to be achieved
at a 95% confidence level within the allowable E range
in CONV; 17 were required with SRS. Similarly, CONV
reached the optimal sample size with five samples per stra-
tum, whereas even the maximum sample number (18) was
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insufficient with SRS. At F1, the optimal sample size was
equal to 18 (CONS) and 16 cores (CONV) with SRS, but the
maximum core per stratum number (six) required means
to be outside the allowable error range.

4 DISCUSSION

The ECa data from the two farms were grouped using
the k-means clustering method. The goodness of the
ECa–directed stratification affected the sampling design
performance. In the absence of a clear correlation between
ECa and soil properties, as in the case of F1, the stratifi-
cation did not capture the spatial variability. As expected,
the high-salinity conditions at F1 masked the influence of
other soil properties on electromagnetic signal transmis-
sion, as shown by the weak correlations between ECa and
soil characteristics. The F1 results confirmed the recom-
mendations made by McBratney and Minasny (2005) and
Corwin and Scudiero (2016), as clay content averaged 26.4 g
100 g−1 and ECa values were >125 mS m−1 for 65% of the
total area. In general, stratified simple random sampling
reduces uncertainty, improves the sampling efficiency, and
reduces the sample size required for a given level of pre-
cision (de Gruijter et al., 2006). However, for an efficient
StSRS design, the ancillary information must be spatially
correlated with the variable to be sampled. In instances
where this assumption was not met, the sampling effi-
ciency is similar to a random sampling scheme. Indeed,
the optimal F1 sampling scheme eliminated the effect of
soil variability by strengthening the sampling points in het-
erogeneous areas. Similar results were described by Brus
(1994) and Uribeetxebarria, Martínez-Casasnovas, Escolà,
Rosell-Polo, and Arnó (2019), who attributed the failure of
an StSRS scheme to using a fixed number of samples per
stratum instead of an optimal number.
At F2, where a good ECa–soil properties correlation was

present, soil stratification captured the soil spatial variabil-
ity. This may be because SOC and clay contentsmight have
influenced soil bulk conductance and increased the num-
ber of exchangeable cations in the solid–liquid phase path-
way (Corwin & Lesch, 2005; Sudduth et al., 2005). The sig-
nificant correlation between ECa and SOC appears to be
more of an indirect consequence of the effect of texture
on SOC than of a direct effect of SOC on electrical con-
ductivity, considering its low content within the soil pro-
file (<15 g kg−1). This is due to the “chemical stabilization”
defined by Six, Conant, Paul, and Paustian (2002), inwhich
SOC is protected by chemical or physicochemical binding
with clay and silt particles. Indeed, a greater organic C
input conversion efficiency and higher adsorption capac-
ity are generally observed in clay soils, which act to stabi-
lize the organic carbon limit and prevent mineralization

(Piccoli et al., 2016). In this way, ECa can be used to assist
the quantitative spatial characterization of SOC (Martinez
et al., 2009). It is also possible that the opposite relation-
ship (negative) between ECa and sand might be explained
by the lower water content usually recorded in the pres-
ence of high sand content. At F2, clustering allowed
sampling variance to be reduced, even with a fixed sam-
pling scheme.
Notably, irrespective of the goodness of theECa–directed

stratification, the stratification procedure was particularly
effective in CONS compared with CONV, as it always led
to higher sampling efficiencies. The most likely explana-
tion for this behavior is the absence of tillage operations,
which preserved the original heterogeneity of the field
and, in turn, increased the efficiency of the stratification.
Alternately, CONV tillage mixed the soil layers and
increased soil movement within the field, smoothing the
soil spatial variability (Sibbesen, Skjøth, & Rubæk, 2000).
The bootstrap method showed that StSRSfix not only
improved sampling efficiency by reducing the sampling
variance with stratification, but it also failed when stratifi-
cation was not correlated with the relevant soil properties.

5 CONCLUSIONS

The SOC stock varied according to the sampling strategy
and site-specific conditions. Results suggested that when
the assumption of a strong ECa–soil properties correlation
was met, ECa sensing was a valuable means by which to
decrease the minimum sample size. However, when the
stratification process failed because of the salinity effect
on ECa, StSRS efficiency was still comparable with that of
SRS, especially when an optimal number of samples per
stratum was used.
Most likely, this occurred because the salinity-driven

ECa did not show strong patterns unrelated to the SOC
that resulted in a disproportional sample size with respect
to the strata surface areas. From a practical point of view,
we were able to reject our starting hypothesis in the spe-
cific conditions of the low venetian plain. Even without
prior knowledge of the relationships between ECa and soil
properties, ECa–directed sampling is a win-win solution to
advance soil characterization and SOC stock estimation in
agricultural fields. Of note, in different pedoclimatic con-
ditions, StSRS could be less effective than SRS in optimiz-
ing sample size allocation when strong ECa pattern would
lead to inappropriate stratification or suboptimal samples
allocation.
Further research should investigate the spatial relation-

ship between ECa and soil properties in different environ-
ments to improve the use of geophysical survey for direct-
ing the sample strategy.
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