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ABSTRACT Networks had an increasing impact on modern life since network cybersecurity has become
an important research field. Several machine learning techniques have been developed to build network
intrusion detection systems for correctly detecting unforeseen cyber-attacks at the network-level. For
example, deep artificial neural network architectures have recently achieved state-of-the-art results. In this
paper a novel deep neural network architecture is defined, in order to learn flexible and effective intrusion
detection models, by combining an unsupervised stage for multi-channel feature learning with a supervised
one exploiting feature dependencies on cross channels. The aim is to investigate whether class-specific
features of the network flows could be learned and added to the original ones in order to increase the
model accuracy. In particular, in the unsupervised stage, two autoencoders are separately learned on normal
and attack flows, respectively. As the top layer in the decoder of these autoencoders reconstructs samples
in the same space as the input one, they could be used to define two new feature vectors allowing the
representation of each network flow as a multi-channel sample. In the supervised stage, a multi-channel
parametric convolution is adopted, in order to learn the effect of each channel on the others. In particular,
as the samples belong to two different distributions (normal and attack flows), the samples labelled as
normal should be more similar to the representation reconstructed with the normal autoencoder than that
of the attack one, and viceversa. This expected dependency will be exploited to better disentangle the
differences between normal and attack flows. The proposed neural network architecture leads to better
predictive accuracy when compared to competitive intrusion detection architectures on three benchmark
datasets.

INDEX TERMS cybersecurity, intrusion detection, machine learning, computer security

I. INTRODUCTION

The goal of a network intrusion detection system (IDS) is
to discover any unauthorised access to a computer network
by analysing traffic on the network for signs of malicious
activity. In particular, the network intrusion detection task is
to build a predictive model capable of distinguishing between
attack and normal network flows. Despite decades of devel-
opments, existing IDSs still face challenges in improving
the detection accuracy by reducing the false alarm rate and
detecting unknown attacks. To solve these problems, many
researchers have focused on developing IDSs that capitalise
on machine learning methods [1]. The category of the ma-
chine learning methods [2]–[4] has achieved satisfactory

detection levels when sufficient training data are available
and sophisticated hand-engineering features are constructed
to achieve sufficient generality and detect both attack variants
and novel attacks.

With the advent of deep learning [5], the task of hand-
engineering features has been replaced with trainable multi-
layer networks that have shown impressive feature represen-
tation capability for a wide range of applications. The recent
research trend is recognising deep learning as a definitely rel-
evant approach in intrusion detection [1], [6], [7], since (non-
linear) multiple activation layers may actually facilitate the
discovery of effective patterns that keep their effectiveness
also under drifting conditions [8]. In this case, raw input data
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are transformed into higher representations through consec-
utive transformations, with each transformation reaching a
higher level of abstraction and complexity, which is useful
for gaining accuracy in the predictive task.

Among the different approaches in deep learning, autoen-
coder architectures have received significant attention. An
autoencoder is an artificial neural network (NN) consisting
of an encoder function mapping the input to a hidden code
and a decoder, producing the reconstructed input learned by
minimizing a loss function. As the hidden code commonly
reduces the size of data, autoencoders are mostly used for
saving the output of the encoder function for dimensionality
reduction [9]–[13]. In any case, there are few studies that
learn autoencoders, which go beyond the dimensionality
reduction purpose, e.g., considering the output of the decoder
function for data denoising [14] or the loss (residual error)
for the anomaly detection [15]–[17]. In particular, the loss
has been recently used as a likelihood measure to assess the
outlier degree of a sample in intrusion detection tasks [18].

The aim of this paper is to enrich the representation of
the original flows with class-specific information, in order
to facilitate the disentanglement between the classes. In par-
ticular, we consider network flows represented as raw data
vectors and use autoencoders, in a novel manner, to derive
a multi-channel representation of each network flow. One
way to learn a new representation specific for each kind of
flow is to learn two autoencoders on normal and attack flows,
separately. Then they are used to restore each network flow
by applying the learned encoder and decoder in cascade to the
original data row representation. The restored representation
obtained represents a new description of the original flow.
In this way, each sample is represented as a multi-channel
sample spanned on three dimensions, that is, the original
raw vector, as well as the two vectors recovered through the
autoencoders.

We note that our use of autoencoders is novel with respect
to the common one in the literature. In fact, it leads to
augmenting the representation size instead of performing
dimensionality reduction. On the other hand, considering the
output of the decoder function of class-specific autoencoders
is not directed to operate simple data denoising. In principle,
the autoencoder trained on the normal samples can contribute
to recovering denoised normal samples, but it should see
attacks as anomalies, and so reconstruct them badly. Vicev-
ersa, the autoencoder trained on the attacks should denoise
the attacks, seeing the normal flows as anomalies and badly
reconstructing them. The idea is to exploit possible patterns
existing among the channels, given the class of flow. Multi-
channel deep feature learning can disclose these patterns,
which aids in intrusion detection.

Multi-channel feature learning has recently gained atten-
tion in both image analysis [19] and speech recognition [20],
where the learned model can be improved by capturing
possible correlation among multiple channels. In general,
multiple channels are dealt with through feature-level fusion-
based approaches [21] or decision-level fusion-based strate-

gies [22]. However, these approaches separate the feature
extraction from the dependency modelling—they may under-
utilise the ability of modelling dependencies. To address
this issue, we learn the intrusion detection model through
a convolution neural network, adopting many convolutional
filters to learn dependencies among multiple channels, i.e.,
learning channel-based representations. The ability of deep
learning in automatic feature extraction and feature selection
reduces the difficulties in computing domain-specific, hand-
engineered features, and helps us to bypass the traditional
feature selection phase.

In short, the main contributions of this work are the fol-
lowing:

1) An extensive discussion of the state-of-the-art works in
deep learning for intrusion detection.

2) The definition of a novel deep learning intrusion de-
tection approach, named MINDFUL (MultI-chanNel
Deep FeatUre Learning for intrusion detection), that
uses autoencoders to derive a multi-channel representa-
tion of flows, and resorts to a deep learning architecture
with convolutions, in order to disclose possible patterns
hidden in the adopted multi-channel representation.
To the best of our knowledge, this is the first study
that explores multi-channel deep feature learning in
intrusion detection.

3) An extensive evaluation of the effectiveness of the
proposed approach in intrusion detection for samples
collected in several benchmark datasets. The empirical
study investigates the ability of our approach to in-
crease accuracy when compared to several competitors
taken from the recent literature on deep learning in
intrusion detection.

The paper is organised as follows. The related works are
presented in Section II. The formulated machine learning
methodology is describe in Section III. The findings in the
evaluation of the proposed strategy are discussed in Section
IV. Finally, Section V refocuses on the purpose of the re-
search, draws conclusions and proposes future developments.

II. RELATED WORKS
The recent literature on network security proves how the
advances made in machine learning have led the problem
of intrusion detection to a more challenging level of study
and relative computational solutions to an improved level of
performance [23]. Neural network architectures, and more
generally deep learning, offer a determinant contribution,
thanks to the opportunity to deal with high-dimensionality
and non-linearity that are typical of network-related data.
They make classical intrusion detection systems perform
poorly, since trainable multi-layer networks achieve higher
feature representation capabilities than sophisticated hand-
engineering features constructed by classical approaches.
In fact, to deal with network data complexity, classical in-
trusion detection systems commonly perform complex data
transformations to obtain highly qualified training data. One
possibility is offered by the methods of feature selection
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and feature extraction. In the first category, we find works
focused on the identification of an optimal feature subset
of the original features, e.g. ranking methods based on Chi-
square statistical significance test or fuzzy rough set theory.
In the second category, we can collocate techniques such as
principal component analysis (PCA) and linear discriminant
analysis (LDA). Their main characteristic is defining a low-
dimensional space that fully takes the correlation between
features into consideration, although they require manual
experience and data pre-processing skills [24], [25] and
perform linear combinations only. We find few attempts in
the literature, which adopt an opposite approach, that is,
projecting data into a higher-dimensional space, where only
the kernel-based methods are applicable [26].

Deep learning approaches represent a valid alternative be-
cause they have a good potential for achieving effective data
representation. The superiority of the accuracy performance
of deep learning in intrusion detection applications is already
proved in [7], [27]. In this section, we focus on autoencoders
and convolutional neural networks, as they are more related
to the method proposed in this paper.

A well-consolidated research stream has focused on the
use of neural autoencoding models to lower the high dimen-
sionality of original raw data in favour of compressed rep-
resentations that exclude features prone to mis-classification
[10]–[13], [28]. Stacked autoencoders are also considered in
combination with traditional classifiers (e.g., SVM, K-NN,
Gaussian Naive-Bayes) [29]. In addition, Zeng et al. [30]
adopt stacked autoencoders, in which the compressed output
of an autoencoder is used as the input of the autoencoder in
the next layer.

Ali and Li [31] study the specific task of DDoS attack
detection by combining the features produced by a hierar-
chy of autoencoders, which are then unified according to
a weighting schema in Multiple Kernel Learning. Li et al.
[32] try to increase the intrusion detection rate by combining
pre-trained Restricted Boltzmann Machines, used as autoen-
coders, with a fine-tuning phase performed after the decoding
operation. However, experimental results of this study prove
that the Deep Belief Network model without autoencoders
can perform even better than configurations integrating au-
toencoders. A common aspect in the above mentioned works
is that complex autoencoders pay the price of several stages
of training, resulting in making the whole method inefficient,
without stably improving the attack detection capabilities
[29]. In addition, they all train the autoencoders on the entire
training set and focus on the dimensionality data reduction
purpose.

Recent studies have explored the possibility to combine
auotencoders, finalised to the dimensionality reduction, with
non-neural methods, finalised to the construction of new fea-
tures able to make inter-dependencies between class and fea-
tures explicit. In [33], the authors propose a multi-perspective
vectorized representation built with both a feature general-
ization step and a feature memorization step. The feature
generalization step converts raw input features into dense

vectors through a sparse autoencoder. The memorisation step
accounts for feature interactions extracted through cross-
product feature transformations. This is different from our
method, since in [33] correlations are pre-extracted as a part
of the feature extraction step, while in our method correla-
tions are directly extracted cross channels in the classification
step.

Andresini et al. [18] have recently investigated the use of
autoencoders for both feature augmentation and anomaly de-
tection. They propose a two-stepped intrusion detection deep
learning algorithm. In the first step, a deep neural network
is trained on an input feature space extended with a new
attribute measuring the loss (residual error) of an autoencoder
that reconstructs the training samples. In the second step,
an autoencoder is used as an anomaly detector to refine
classifications. In both steps, autoencoders are trained from
class-normal samples only. Again this is different from our
method presented here, although we also use autoencoders
to synthesise new feature spaces. However, in [18], a single
autoencoder is trained from normal samples only, while in
our method two autoencoders are trained from normal sam-
ples and attack samples separately. In [18], one new feature
is synthesised considering the loss, while in our method
we consider autoencoders to define two new feature vectors
arranging a multi-channel representation of the samples.

The idea of constructive new features has also been inves-
tigated in [34], where the authors try to unearth the class-
discriminating ability of the original feature space by creating
new feature spaces through the marginal density ratios of
the class estimations. This is a direct projection of the input
space, which, therefore, could inherit the data sparsity, as
well as the noisy data. However, this method does not use
deep learning architectures. In addition, it trains separate
classifiers (SVMs) from the distinct feature spaces and merge
decisions through an ensemble. This means that possible
correlations a cross various feature spaces are ignored during
the classifier learning in [34].

Research investigating deep learning in intrusion detection
has recently focused on using Convolution Neural Networks
(CNNs). These are a family of robust, popular neural net-
works designed to process input data stored in arrays. They
are commonly considered where there is spatial or temporal
ordering in input data. Therefore, to learn 2-dimensional
CNNs in intrusion detection, network flows must be mapped
into 2D image arrays, expressing latent characteristics of
input data within a 2D data representation [35], [36]. To
this aim, Li et al. [35] describe a quantization method to
convert the value of each numeric feature into an 8-digit
binary pixel. The input representation built with this method
is finally processed as the input of two popular CNNs, that is,
ResNet50 [37] and GoogLeNet [38]. Kim et al. [36] illustrate
a RGB-like approach, that outperforms the one in [35].
This input representation is processed in combination with
GoogLeNet Inception V3 [38]. However, these approaches,
representing features as pixels, assume unconfirmed spatial
relations between features that depend on the order in which
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they are processed.
In the other-hand, Lopez at al. [26] use 1-dimensional

CNNs with vector-like data. However, their study computes
convolutions on original data without accounting for autoen-
coders.

Recently, Sharma et al [39] adopted a CNN architecture
to process software binaries as matrix-like data, by scanning
them along one dimension. They argue that this solution
leads to accuracy and efficiency gain compared with existing
solutions for malware detection tasks (malicious software or
benign software). Their idea is similar to the one we propose.
In fact we deem it unnecessary to scan the network flows
along 2-dimensions, as one should do with the real images,
and we read the matrix vector-by-vector from top to bottom.
Contrary to our work, however, Sharma et al [39] propose
representing sequences of vectors (software binaries) in the
form of single-channel matrices, while we rely on the com-
bined use of raw data with class-discriminating features,
which motivates the use of multi-channel CNNs.

III. THE PROPOSED METHOD
In this section we describe MINDFUL—the multi-channel
deep learning method we propose to deal with the problem
of network intrusion detection. It combines an unsupervised
approach for multi-channel feature construction—based on
two autoencoder NNs—with a supervised one exploiting
cross-channel feature correlations. The list of symbols used
to describe the method is reported in Table 1.

A. AUTOENCODERS
Differently from classical multi layer perceptrons (MLPs),
an autoencoder is a particular NN trained to attempt to
copy its input to its output [40]. In particular, it can be
viewed as being composed of two functions: an encoder f—
mapping the input vector x to a hidden representation h
via a deterministic mapping h = f(x), parameterized by
θf—and a decoder g—mapping back the resulting hidden
representation h to a reconstructed vector in the input space
x̂ = g(h), parameterized by θg .

Usually the functions g and f correspond to two different
NNs combined in a single one, whose parameters {θf , θg}
are simultaneously learned by minimizing a loss function
L(x, g(f(x)) = L(x, x̂) , penalising x for being dissimilar
from x̂ such that Lse(x, x̂) = ||x− x̂||2.

In this paper, we use class-specific autoencoders for fea-
ture learning, transforming a single-channel sample into a
multi-channel one.

Let D = {(xi, yi)}Ni=1 be a set of N training samples,
where each xi ∈ RD is a row vector corresponding to an
input sample defined over D features, and yi is the corre-
sponding binary label denoting a normal or an attack sample.
Furthermore, let X = [x1, . . . ,xN ]> ∈ RN×D denote the
data matrix of N D-dimensional random variables x ∈ RD.

We denote with Xn = X|yi=n, resp. Xa = X|yi=a, the
subset of samples in X, whose label is normal, resp. attack.
The samples in Xn and Xa could then be separately used to

learn two independent autoencoders gn · fn, denoted as zn,
and ga · fa, denoted as za.

Since the activation produced by the top layer in the
decoder network corresponds to a reconstructed vector in the
same input space, the idea is to consider it as new learned
features. In particular, each autoencoder can be employed to
build a new feature vector x̂ = g(f(x)) ∈ RD from a sample
x. These features may then be considered to transform a
single-channel sample to a multi-channel one by concatena-
tion.

Hence, each sample xi ∈ RD could be replaced by the
multi-channel sample:

x′i = [xi, x̂
n
i , x̂

a
i ]
> ∈ RD×3,

where x̂n
i = gn(fn(xi)) and x̂a

i = ga(fa(xi)) are the
reconstructed representations of the single-channel sample
xi, thus leading to the extended multi-channel representation
X′ = [x′1, . . . ,x

′
N ]> ∈ RN×D×3.

In this way, the sample xi is enriched with information
synthesised by exploiting both the normal and the attack
autoencoder. When the samples belong to two different dis-
tributions, samples xi, labelled as normal should be more
similar to the representation x̂n

i than that of x̂a
i , or ||xi −

x̂n
i ||2 < ||xi− x̂a

i ||2, and viceversa. This conjecture has been
experimentally validated in Section IV-D1.

The aim now is to exploit, in the supervised step, the
effect of one channel on each of the others, in order to better
disentangle the differences between the two classes. As we
will see in the next section, a solution to learn a representation
among the three channels is to adopt a (1× 1) convolutional
filter—a cross-channel parametric convolution. This is also
why the learned representations have been concatenated in
RD×3—a 3-channel representation—and not in R3D, by just
increasing the number of features.

B. CONVOLUTIONAL NEURAL NETWORKS

A Convolutional Neural Network (CNN) [41] is a specialised
kind of NN used for processing data with grid-like topology,
such as images or sequences. A CNN is able to produce
a good internal representation of the world by successfully
capturing (spatial and/or temporal) dependencies (e.g. edges,
colours, gradient orientation) in data through the application
of relevant filters [42].

Typically a CNN consists of alternating convolutional
layers and spatial pooling layers. The name “convolutional
neural network” indicates that the network employs a mathe-
matical operation called convolution [40]—a specialised kind
of linear operation. A convolution is a dot-product operation
between a grid-structured set of weights and similar grid-
structured inputs drawn from different spatial localities in
the input volume [43]. A convolutional layer builds a feature
map f by linear convolutional filters followed by a nonlinear
activation function σ as:

fijk = σ(w>k xij),
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TABLE 1: List of symbols

Symbol Description

D set of training samples {(xi, yi)}Ni=1

X data matrix of single-channel samples x ∈ RD

Xn subset of samples in X whose label is normal
Xa subset of samples in X whose label is attack
f encoder network
g decoder network
zn autoencoder gn · fn trained on Xn

za autoencoder ga · fa trained on Xa

xi single-channel sample xi ∈ X
x̂n
i xi reconstructed by zn

x̂a
i xi reconstructed by za

x′i multi-channel sample with x′i = [xi, x̂
n
i , x̂

a
i ]

X′ data matrix of multi-channel samples x′ ∈ RD×3

where (ij) is the position in the feature map, xij denotes the
input patch—receptive field—centered at the point (ij), and
k is the channel index in the feature map.

Usually a convolutional layer is followed by an additional
layer that performs a local averaging and a sub-sampling, by
both reducing the resolution of the feature map and diminish-
ing the sensitivity of the output to shifts and distortion [44].
The purpose of this operation, called pooling, is to achieve
spatial invariance by reducing the resolution of the feature
map, preserving important information and discarding irrele-
vant details [45].

For two-dimensional data, such as images, the convolu-
tions in a 2D CNN occur with multi-dimensional filters,
scanning through the data dimensions from left to right and
from top to bottom, in order to capture the high-level features
from the input image.

Restricting the size of the filter to 1, thus using (1 × 1)
2D convolutions, we may obtain a dimensionality reduc-
tion/increase in the filter dimension as happens in the Google
Inception module [46], as opposed to a (k × k) convolution,
making a reduction in the spatial dimension. Furthermore,
since they include the use of a non-linear activation, this
makes them dual purpose. The same Network-in-Network
approach, proposed in [47] to increase the representational
power of neural networks, when applied to convolutional
layers can be viewed as a (1 × 1) convolutional layer. In
particular, a (1 × 1) convolution should have the effect of
combining existing information in the channel dimension to
obtain more abstract channel-wise information.

C. 1D CONVOLUTIONAL NEURAL NETWORKS
1D CNNs have been recently used in several domains like
process mining [48], remote sensing [49], wind predic-
tion [50] , medical image processing [19] or malware detec-
tion [39]. 1D CNNs process 1-dimensional input vectors, like
sequential data, and the filter in the convolution slides along
one dimension only.

Restricting the size of the filter to 1 in a 1D convolutional

layer, like in a (1× 1) 2D convolutional layer, has the effect
of a non-linear reduction/increase of the number of channels.

Now the idea is to exploit a 1D convolution, in order to
increase the cross channel information. In particular, as re-
ported in Figure 1, the 3-channel representation X′, obtained
as previously described, is input to a 1D convolutional layer
with filter size equal to 1. Using a number of filters greater
than three, we are able to increase the number of non-linear
cross-channel dependencies.

In particular, given a sample x′i = [xi, x̂
n
i , x̂

a
i ]
> ∈ RD×3,

the receptive field of the 1D convolution is represented by
x′i,j,:, and each filter k computes the signal fi,j,k in the
feature map as:

fi,j,k = σ(w>k x
′
i,j,: + bk),

with weights and bias wk,bk ∈ R3, and σ a non-linear
activation function. The channels of each feature in x′i,j,: are
convolved with the same shared weights and mapped to the
feature map with a non-linearity. Adopting K filters in the
convolutional layer leads to a transformation of a sample in
RD×3 to a feature map in RD×K .

An alternative solution could be to concatenate the learned
features in the space R3D instead of in RD×3, and then input
them to a fully connected layer. However, the topology of the
input is completely ignored in a fully connected layer [44]—
the output of the training is not affected by the order of the
input features. Hence, with this alternative, we may lose both
the channel-based ordering and the possibility to learn new
cross-channel features.

The output of the 1D convolutional layer is then flattened
and dealt with as the input to two stacked fully-connected
layers (FC), computing the output classification probabilities
using a final softmax layer. The overall architecture of our
proposed MINDFUL model is reported in Figure 1. The
pseudocode of MINDFUL is described in Algorithm 1
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FIGURE 1: Architecture of MINDFUL. The architecture takes as training samples X as input. The normal samples are used to
learn the first autoencoder zn (top-left) and the attack samples are used to learn the second autoencoder za (bottom-left). The
two autoencoders are used for each training sample x, both normal and attack samples — in order to return the reconstructed
features x̂n and for x̂a. These new features are used to build a new augmented dataset that is used as input to a 1-CNN neural
network (right).

Algorithm 1: Multi-channel deep learning method
for network intrusion detection
Data:

D : set of training samples {(xi, yi)}Ni=1 with
yi ∈ {attack, normal}
X : data matrix of single-channel samples x ∈ RD

Result:
(zn, za, model) : the learned intrusion detection model

1 begin
/* Autoencoder training */

2 zn ← trainAutoencoder(Xn)
3 za ← trainAutoencoder(Xa)

/* Compute reconstructed vectors using the
autoencoders zn and za */

4 foreach x∈X do
5 x̂n

i ← zn(xi)
6 x̂a

i ← za(xi)
7 x′i = [xi, x̂

n
i , x̂

a
i ]
>

/* CNN training */

8 model← train1DCNN(X′)
9 return zn, za, model

IV. EMPIRICAL STUDY

We consider three benchmark datasets, described in Section
IV-A, in order to evaluate the effectiveness of the intrusion
detection methodology implemented in MINDFUL. Each
dataset includes both a labelled training set—processed to
learn the intrusion detection model—and a testing set—
considered to evaluate the intrusion detection ability of the
trained model. Specifically, we analyse the performance of
MINDFUL along the various accuracy metrics presented in
Section IV-C. These metrics are commonly considered in cy-
bersecurity for the evaluation of intrusion detection systems.
The implementation details of the deep learning architecture
adopted in this experimental study are illustrated in Section
IV-B, while the results, achieved on each dataset, are dis-
cussed in Section IV-D. In particular, the presentation of the
results is organised as follows. First, we evaluate how the
two autoencoders, computed on the normal/attack training
samples separately, disclose knowledge that may contribute
to separate attacks from normal flows (see Section IV-D1).
Second, we analyse the effectiveness of MINDFUL along the
components of the adopted deep learning architecture (see
Section IV-D2). Finally, we discuss the evaluation results that
are reported in the recent intrusion detection literature and
which have been achieved by processing the datasets also
considered in our study (see Section IV-D5).
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TABLE 2: Dataset description. For each dataset we report: the number of attributes, the total number of network flow samples
collected in the dataset, the number of normal network flows (and their percentage on the total size) and the number of attacking
flows (and their percentage on the total size).

Dataset Attributes Total Normal(%) Attacks(%)

10%KDDCUP99Train 42 494021 97278 (19.7%) 396743 (80.3%)
KDDCUP99Test 311029 60593 (19.5%) 250436 (80.5%)

UNSW-NB15Train 43 82332 37000 (44.9%) 45332 (55.1%)
UNSW-NB15Test 175341 56000 (31.9%) 119341 (68.1%)

CICIDS2017Train 79 100000 80000 (80%) 20000 (20%)
CICIDS2017Test 900000 720000 (80%) 180000 (20%)

A. DATASET DESCRIPTION
A summary of the characteristics of the datasets considered
in this evaluation is reported in Table 2.
• KDDCUP991 was introduced in the KDD Tools Com-

petition organised in 1999. This is a benchmark dataset
that is commonly used for the evaluation of intrusion
detection systems also in recent studies [51]–[53]. It
contains network flows simulated in a military network
environment and recorded as vectors of 42 attributes (6
binary, 3 categorical and 32 numerical input attributes,
as well as 1 class attribute). The original dataset com-
prised a training set of 4.898.431 samples and a testing
set of 311.027 samples. As reported in [54], the testing
set collects network flows belonging to 14 attack fami-
lies, for which no sample is available in the training set.
We note that this simulates a zero-day attack condition.
To keep the cost of the learning stage under control,
the original dataset comprises a reduced training set,
denoted as 10%KDDCUP99Train, that contains 10% of
the training data taken from the original dataset. In this
study, we consider 10%KDDCUP99Train for the learn-
ing stage, while we use the entire testing set, denoted
as KDDCUP99Test, for the evaluation stage.2 We note
that this experimental scenario, with both 10%KDD-
CUP99Train and KDDCUP99Test, is commonly used in
the literature (e.g. [32], [55], [56]). In addition, the en-
tire dataset is imbalanced in both the training and testing
set, where the percentage of attacks is higher than that
of normal flows (80.3% vs 19.7% in the training set and
80.5% vs 19.5% in the testing set).

• UNSW-NB15 dataset3 was created by the IXIA Perfect-
Storm tool4 in the Cyber Range Lab of the Australian
Centre for Cyber Security (ACCS). This is a hybrid
dataset that includes the realistic modern normal activ-
ities and the synthetic contemporary attack behaviour

1http://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html
210%KDDCUP99Train and KDDCUP99Test are populated with the data

stored in kddcup.data_10_percent.gz and corrected.gz at http://kdd.ics.uci.
edu//databases//kddcup99//kddcup99.html

3https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/
ADFA-NB15-Datasets/

4https://www.ixiacom.com/products/perfectstorm

extracted from network traffic monitored in 2015 [57].
The dataset has recently been used in the evaluation of
various intrusion detection approaches [26], [36], [55],
[58]. It consists of one training set and one testing set,
which comprise network flow samples, stored as the
vectors of 43 attributes (2 binary, 3 categorical and 37
numerical input attributes and 1 class attribute). The
dataset, that is quite balanced in the training set, is a little
imbalanced in the testing set, where the percentage of
attacks is slightly higher than the percentage of normal
flows (68.1% vs 31.9%).

• CICIDS20175 was collected by the Canadian Institute
for Cybersecurity in 2017. This dataset contains nor-
mal flows and the most up-to-date common attacks,
which resemble the true real-world data (PCAPs). It
also comprises the results of the network traffic analysis,
performed using CICFlowMeter with the labelled flows
based on the timestamp, source and destination IPs,
source and destination ports, protocols and attack. The
original dataset was a 5-day log collected from Monday
July 3, 2017 to Friday July 7, 2017 [59]. The first day
(Monday) contained only benign traffic, while the other
days contained various types of attack, in addition to
normal network flows. Every network flow sample is
spanned over 79 attributes (18 binary and 60 categorical
input attributes and 1 class attribute) [59]. We note
that this dataset is commonly used in the evaluation of
anomaly detection approaches with the learning stage
performed on the first day [60], [61]. However, a few
recent studies have considered these data also in the
evaluation of classification approaches, as we do in this
paper [36], [56], [62]. In our experimental study, we
consider the training and testing sets built according to
the strategy described in [36]. So, we build one training
set with 100K samples and one testing set with 900K
samples. Both training and testing samples are randomly
selected from the entire 5-day log. For the creation
of both the training and testing set, we have used the
stratified random sampling, in order to select 80% of
normal flows and 20% of attacks, as in the original log.

5https://www.unb.ca/cic/datasets/ids-2017.html
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This dataset is imbalanced in both the learning stage
and the evaluation stage. In fact, the number of normal
network flows is significantly higher than the number of
attacks (80% vs 20%). We note that this resembles the
common set-up of an anomaly detection learning task
that often occurs in a network.

B. IMPLEMENTATION DETAILS
The proposed methodology has been implemented in Python
3.7 using the Keras 2.36 library with TensorFlow7 as back-
end. The source code is available online.8

For each dataset, we have conducted a hyper-parameter
optimization using the tree-structured Parzen estimator algo-
rithm as implemented in the Hyperopt library [63], by using
20% of the training set as the validation set. We chose the
configuration of the parameter that achieved the best vali-
dation loss. The hyper-parameters and their corresponding
possible values are reported in Table 3. Data have been scaled
using the Min-Max scaler.

The autoencoders have been defined with three layers.
These layers include 40 × 10 × 40 neurons, in KDDCUP99
and UNSW-NB15 datasets, and 50 × 10 × 50 neurons in
CICIDS2017. A dropout layer is placed before the decode
layer, in order to perform data regularisation and prevent
the overfitting. For the autoencoders, the mean squared error
(mse) has been used as the loss function. The classical recti-
fied linear unit (ReLu) [64] has been selected as the activation
function for each hidden layer, while for the last layer the
Linear activation function has been used.

As regards the classifier, the architecture consists of a
1D convolutional layer and three fully-connected layers. The
network takes samples of size (D × 3) as input and predicts
a Bernoulli probability. The input sample is transformed by
the 1D convolutional layer with 64 filters into a feature map
of size (D × 64), that is processed by the following fully-
connected layer of size 320, 160 and 2, respectively. The
output probabilities are obtained using the softmax activation
function in the last layer. The ReLu activation function has
been used in all the other layers. In order to perform data reg-
ularisation, a dropout layer follows each layer in the network.
For this architecture, weights are optimised by minimising
the binary-cross entropy as the loss function.

The networks are trained with mini-batches by back-
propagation, and the gradient-based optimisation is per-
formed using the Adam update rule [65]. The weights are
initialized following the Xavier scheme. Furthermore, a max-
imum number of epochs equal to 150 has been set, retain-
ing the best models, using an early stopping approach that
achieves the lowest loss on a validation set.

C. EVALUATION METRICS
The overall performance of the proposed approach is mea-
sured by analysing both the accuracy and F-score of the

6https://keras.io/
7https://www.tensorflow.org/
8https://github.com/gsndr/MINDFUL

TABLE 3: Hyperparameter search space for both the autoen-
coders and classifier.

autoencoders classifier

batch size {25, 26, 27, 28, 29 } {25,26, 27, 28, 29 }
learning rate [0.0001, 0.01] [0.0001, 0.01]
dropout [0,1] [0,1]

intrusion detection models learned. While the accuracy is the
ratio of flows correctly labelled, the F-score is the harmonic
mean of precision and recall, where the precision measures
the ability of an intrusion detection system to identify only
the attacks, while the recall can be thought as of a system’s
ability to find all the attacks. Mathematically, the precision is
calculated as the ratio of the attacking flows correctly labelled
by the intrusion detection algorithm to all attacking flows
labelled at each independent configuration parameter set. The
recall is calculated as the ratio of the attacking flows correctly
labelled by the algorithm to all flows which are actually
attacking. The higher the F-score, the better the balance
between precision and recall achieved by the algorithm. On
the contrary, the F-score is not so high when one measure is
improved at the expense of the other.

D. RESULTS
The performance of the proposed approach is measured
reporting the residual error of autoencoders, as well as the
accuracy and the F-score of intrusion detection models.

1) Autoencoder analysis

We start by investigating how the autoencoders can actually
disclose knowledge that contributes to separating attacking
flows from normal ones. To this aim, we explore how the
autoencoders zn (trained on normal samples) and za (trained
on attack samples) can accurately reconstruct samples from
both classes.

Figures 2, 3 and 4 show the box plots of the reconstruction
errors, computed as ||x − x̂||2, when both autoencoders zn
and za are used to reconstruct both normal and attack flows
x as x̂ in each considered dataset.

These plots confirm that the autoencoder zn is, in general,
more accurate in reconstructing the normal samples than
in reconstructing the attack ones. On the other hand, the
opposite behaviour is evident for za. This behaviour, that
was expected on the training samples (as shown in Figures
2(a), 2(b), 3(a), 3(b), 4(a) and 4(b)), has also been evident
on testing samples (as shown in Figures 2(c), 2(d), 3(c),
3(d), 4(c) and 4(d)), although the testing samples comprise
network flows unseen at training time.

In general, the result of this analysis supports the idea
that the knowledge enclosed in the autoencoders, separately
trained from the normal and attack samples, allows us
to introduce information that can contribute to separating
the two classes. Furthermore, this result also suggests that
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(a) Training normal flows (b) Training attacks (c) Testing normal flows (d) Testing attacks

FIGURE 2: Reconstruction error analysis (KDDCUP99 dataset): normal and attack flows reconstructed with the autoencoders
trained on the normal flows (zn) and the attacks (za), respectively. Figures 2(a) and 2(b) show the box plots of the reconstruction
errors (RE) of the training samples, while Figures 2(c) and 2(d) show the box plots of the reconstruction errors of the testing
samples.

(a) Training normal flows (b) Training attacks (c) Testing normal flows (d) Testing attacks

FIGURE 3: Reconstruction error analysis (UNSW-NB15 dataset): normal and attack flows reconstructed with the autoencoders
trained on the normal flows (zn) and the attacks (za), respectively. Figures 3(a) and 3(b) show the box plots of the reconstruction
errors (RE) of the training samples, while Figures 3(c) and 3(d) show the box plots of the reconstruction errors of the testing
samples.

(a) Training normal samples (b) Training attacks (c) Testing normal samples (d) Testing attacks

FIGURE 4: Reconstruction error analysis (CICIDS2017 dataset): normal and attack flows reconstructed with the autoencoders
trained on the normal flows (zn) and the attacks (za), respectively. Figures 4(a) and 4(b) show the box plots of the reconstruction
errors (RE) of the training samples, while Figures 4(c) and 4(d) show the box plots of the reconstruction errors of the testing
samples.

our methodology can better benefit from autoencoder-based
number of samples in both classes.

2) Ablation study

We proceed with the analysis by studying how a) the addi-
tional information synthesised through the autoencoders, b)
the multi-channel input representation and c) the convolu-
tions can jointly contribute to gain accuracy in the intrusion
detection model learned by MINDFUL. To this purpose,
we consider four architecture configurations as baselines.
These are in turn defined by removing the autoencoders’
information, the multi-channel input representation, or the
convolutions from the whole architecture of MINDFUL. In

particular, we consider the following baseline architectures:

• NN: it consists of the last 3 fully-connected layers of
the MINDFUL architecture, and it processes as input
samples xi ∈ RD, represented in the original feature
space, i.e., X(D) → FC(320)→ FC(160)→ FC(2);

• ANN: it accounts for the autoencoders’ information.
The architecture is the same as NN, but taking as input
samples xi ⊕ x̂n

i ⊕ x̂a
i ∈ R3D, where the output of

the autoencoders zn and za has been row-concatenated,
i.e., X(3D) → FC(320) → FC(160) → FC(2).
In particular, we want to see how much is added by
considering the autoencoders’ information wrt NN;

• CNN: it works like NN, taking as input samples xi ∈
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RD, but adding a 1D convolutional layer before the
fully-connected layers, i.e., X(D) → Conv1D(64) →
FC(320)→ FC(160)→ FC(2);

• ACNN: it is like CNN, but the same as ANN it takes
as input the row-concatenated autoencoders’ informa-
tion, i.e., X(3D) → Conv1D(64) → FC(320) →
FC(160) → FC(2). In particular, it is like MINDFUL,
but the outputs of the autoencoders zn and za are not
concatenated to obtain a multi-channel representation.

The baselines listed above have been run with the same
parameter set-up (e.g. activation function, number of neurons
and loss function) adopted to run MINDFUL (see the descrip-
tion in Section IV-B).

We evaluate the performance of MINDFUL, NN, ANN,
CNN and ACNN in terms of accuracy and F-score. The
results, reported in Table 4 for all the datasets, show that
MINDFUL outperforms all its baselines. This confirms the
effectiveness of combining autoencoders, convolutions and
multi-channel input, in order to gain accuracy in an intru-
sion detection task. In particular, we note that autoencoders
decoupled from convolutions cannot guarantee an overall
improvement of the performance. On the other hand, putting
autoencoders aside, a convolution dense layer commonly im-
proves the intrusion detection accuracy. In any case, the high-
est overall accuracy and the highest F-score are commonly
achieved when convolutions are applied to data enriched with
autoencoders. Concerning that point, our analysis highlights
that the superiority of MINDFUL due to convolutions de-
pends on the ability of computing convolutions on multiple
channels (instead of a single channel built by concatenation),
looking for features across the original variables and their
autoencoder-based counterparts.

In addition, we analyse the number of parameters esti-
mated with MINDFUL, NN, ANN, CNN and ACNN. The
results reported in Table 3 show that the higher accuracy
of MINDFUL is commonly achieved at the expenses of the
higher number of parameters to estimate. In any case, we note
that ACNN, which is the runner-up in the accuracy analysis
reported in Table 4 for KDDCUP99 and UNSW-NB15, re-
quires a higher number of parameters than MINDFUL.

3) Varying the number of filters
To explore in depth the advantages of using convolutions
on multi-channel input, we have performed an additional
experiment, where MINDFUL has been run by varying the
number of filters in the convolutional layer. Let us consider
that filters can be seen as pattern detectors, as they multiply
the number of channels. Our point of view is that the higher
the number of filters, the better the pattern detected by
augmenting the data volume along the channel dimension
through the convolutions and, consequently, the higher the
accuracy of the intrusion detection model. To validate this
point of view, we analyse the F-score by varying the number
of filters in the convolutional layer. Figure 5 plots the F-score
of a simplified version of the MINDFUL architecture, as it is
measured on both the training set and testing set of UNSW-

NB15, by varying the number of filters of the convolutional
layer among 3, 5, 7, 9 and 11. After the flatten layer, we used
a single fully-connected layer, of varying size, before the last
layer, in order to have architectures with the same number of
parameter. When three filters were considered, 256 neurons
were used in the fully-connected layer, arriving at 68 neurons
in the case of 11 filters. This plot confirms our point of view,
as it shows that the F-score computed on the training set,
jointly with the F-score computed on the testing set, increases
with the number of filters.

3 5 7 9 11
Number of Filters

90

91

92

93

94

95

F-
sc

or
e

Training
Test

FIGURE 5: F-score of MINDFUL measured on both the
training set and testing set of UNSW-NB15 by varying the
number of filters among 3, 5, 7, 9 and 11.

4) Imbalanced scenario
We analyse the robustness of the proposed approach to the
imbalance phenomenon. For this analysis, we consider the
CICIDS2017 dataset, where data have already been collected
in an imbalanced scenario (the expected one in many real
world networks), consisting of 80% normal flows and 20%
attacks. We stress this condition by considering new trials on
this dataset, which comprise all normal flows and a sample of
attacks both in the learning stage and in the evaluation stage.
We consider five trials with 100% (baseline), 75%, 50%, 25%
and 5% attacks, respectively. The F-score of MINDFUL, NN,
ANN, CNN and ACNN, collected by diminishing the number
of attacks, is plotted in Figure 6. We note that diminishing
the number of attacks (and consequently stressing the im-
balanced condition), the F-score of all compared algorithms
decreases. In any case, MINDFUL continues outperforming
its baselines independently of the balance degree in the
training set.

5) Competitor analysis
To complete this evaluation, we compare the accuracy perfor-
mance achieved by MINDFUL to that of several competitors
selected from the recent state-of-the-art literature. A sum-
mary of the characteristics of the considered competitors is
reported in Table 6 (column 3). For all the methods in this
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TABLE 4: Accuracy and F-score measured on KDDCUP99Test, UNSW-NB15Test and CICIDS2017Test: MINDFUL, NN, ANN,
CNN and ACNN. The best results are in bold.

Dataset Architecture

MINDFUL NN ANN CNN ACNN

KDDCUP99Test Accuracy 92.49 92.06 91.96 92.18 92.11
F-score 95.13 94.83 94.75 94.92 94.87

UNSW-NB15Test Accuracy 93.40 85.84 79.28 87.71 90.68
F-score 95.29 90.51 83.06 91.72 93.49

CICIDS2017Test Accuracy 97.90 95.89 96.71 95.71 96.54
F-score 94.93 89.50 91.72 89.35 91.32

TABLE 5: Number of parameters (weights) learned with each neural network on KDDCUP99Train, UNSW-NB15Train and
CICIDS2017Train: MINDFUL, NN, ANN, CNN and ACNN.

Dataset Architecture

MINDFUL NN ANN CNN ACNN

KDDCUP99Train 891.938 65.122 91.362 891.810 2.571.170

UNSW-NB15Train 912.418 65.442 92.322 912.290 2.632.610

CICIDS2017Train 1.649.698 76.962 126.882 1.649.570 4.844.450

100% 75% 50% 25% 5%
Attacks

50

60

70

80

90

100
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FIGURE 6: F-score of MINDFUL NN, ANN, CNN and ACNN
by varying the amount of attacks in both CICIDS2017.

comparative study, we consider the accuracy and the F-score
as provided in the reference studies.

The accuracy performance of the compared methods is
reported in Table 6 (columns 4 and 5) for all the datasets.
These results show that MINDFUL commonly outperforms
its competitors (including the competitors with autoencoders
and/or CNN architectures). The only exception is observed
with the performance of the competitor named DNN 4 Lay-
ers on KDDCUP99Test. This competitor learns its intrusion
detection model with a deep neural network along with
text representation methods to capture the contextual and
sequence-related information from system calls. It comprises
optimisation procedures to find the optimal parameters and

the optimal topology of the network. Therefore, the higher
accuracy of DNN 4 Layers on KDDCUP99Test can be due
to the text representation methods, as well as to the topology
and parameter setting of the architecture determined. In any
case, we note that the performance of DNN 4 Layers has also
been evaluated on UNSW-NB15Test in [55]. In this dataset,
MINDFUL significantly outperforms DNN 4 Layers. Hence,
the superiority of DNN 4 Layers is restricted to the eval-
uation made on KDDCUP99Test, so it may also depend on
the specific characteristics of this dataset. On the other hand,
MINDFUL is the runner-up in KDDCUP99Test measuring
accuracy and F-score, close to DNN 4 Layers.

V. CONCLUSION

In this study, we have presented a network intrusion detection
methodology, named MINDFUL. This learns an intrusion
detection model through a Convolution Neural Network,
trained on a multi-channel representation of network flows.
Two autoencoders are learned from normal and attack flows,
respectively. They are used to supply the original feature
vector representation of the network flows with the feature
vectors built with these autoencoders. The main idea is
that patterns may exist across the channels, formed by the
original features and their autoencoder-based counterparts.
Disclosing these patterns may aid the intrusion detection
model in separating attack flows from normal ones. To select
features disclosing such patterns we use a convolutional layer
with a multi-channel filter, so that it is forced to learn the
possible dependencies among the channels. Representations
disclosed from convolutions are processed through fully-
connected layers that look for further relationships among
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TABLE 6: Accuracy and F-score measured on KDDCUP99Test, UNSW-NB15Test and CICIDS2017Test: MINDFUL is compared
to several competitors reported in the recent literature. The accuracy metrics of the competitors are collected from the reference
papers. The best results are in bold. "-" denotes that no value is reported in the reference paper for the considered metric.

Dataset Algorithm Description Accuracy F-score

KDDCUP99Test

MINDFUL Autoencoder + 1D CNN 92.49 95.13
DNN 4 Layers [55] DNN + Text representation methods 93.00 95.50
DBN [32] Deep Belief Network 91.40 -
A+DBN [32] Autoencoder + Deep Belief Network 92.10 -
AIDA [18] Autoencoder + MLP 92.36 95.04

UNSW-NB15Test

MINDFUL Autoencoder + 1D CNN 93.40 95.29
CNN-1D [26] 1D CNN 89.80 91.30
Grey-scale [36] 2D CNN 80.00 84.00
RGB [36] 2D CNN 83.00 86.50
DNN 4 Layers [55] DNN + Text representation methods 76.50 90.10
MLP [26] DNN 86.60 88.90
WnD [33] DNN + Embeddings 91.20 -
MLP [33] MLP 86.70 -
SAE [33] Autoencoder 88.20 -
AIDA [18] Autoencoder + MLP 90.54 92.71
MDPCA-DBN [58] Clustering + DNN 90.18 91.49
RBM [33] RBM 87.10 -

CICIDS2017Test

MINDFUL Autoencoder + 1D CNN 97.90 94.93
Grey-scale [36] 2D-CNN - 82.00
RGB [36] 2D-CNN - 89.00
AIDA [18] Autoencoder + MLP 94.50 85.80

these patterns.

We evaluate the effectiveness of the proposed method-
ology using three benchmark datasets that contain network
flows collected in different years and scenarios. The exper-
imental analysis confirms the effectiveness of the proposed
methodology. In addition, it proves that MINDFUL gains
accuracy compared to several, recently defined, state-of-the-
art competitors. In particular, our experiments have proved
that our methodology is more robust than its baselines also
for imbalanced data.

One research direction is investigating a strategy to supply
new training samples, in order to reduce the gap between
the majority and minority class—when this gap exists. This
could also be an important task in an adversarial environ-
ment, to be considered as one of the significant directions
for future work.

Another limitation of the proposed methodology is that
it does not give detailed information on the structure and
characteristics of the attacks. Therefore explainable artificial
intelligence may be an additional research direction here.

Finally, we consider the opportunity of extending the pro-
posed methodology, in order to classify intrusion categories
(e.g. Probe, DoS, R2L or U2R). In principle, this is possible
by using separate autoencoders, learned from samples be-
longing to distinct intrusion categories, as multiple channels
of the methodology described in this paper.
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