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Abstract 

Mobile (third-generation) sequencing technologies, including Oxford Nanopore's MinION and SmidgION, have the benefit of 
outputting long sequence reads (up to hundred thousands of bases) in a portable manner. These sequencing devices fit in the palm 
of a hand and only require a USB outlet. Unfortunately, the development of data analysis tools for these technologies is in a 
nascent stage, impeding on the portability of these devices. The objective of this work is to introduce an out-of-core approach to 
port Nanopore analytics on mobile devices such as tablets or smartphones, often used in extreme experimental settings with 
special ergonomics needs and ease of sterilization. In this paper, we present a serial k-mer parser/counter for FAST5 files, and a 
de Bruijn graph construction method which can run on a hand-held device. In order to accomplish this portability we develop 
novel cache oblivious data structures and out-of-core chunked processing methods. Our toolset, which we refer to as Nanopore 
Portable Analytics Library (NanoPAL), wase implemented in ISO C++ v.14 and compiled for Android devices. Using MinION 
data (Zaire Ebolavirus species and others), we evaluate the time required to parse and build the de Bruijn graph with respect to 
the file sizes and RAM allocation. These metrics were compared to those of minimap/miniasm. On an LG Nexus 5 with 2GB or 
RAM, 2MB L2 cache and 16GB storage, the out-of-core NanoPAL is able to process FAST5 files at about 30 minutes per 0.5 
GB, creating sorted k-mer and de Bruijn graph files. The recompiled minimap/miniasm tool cannot complete FAST5 files larger 
than 170MB. In conjunction with base calling/error correction, and with addition of assembly procedures downstream, NanoPAL 
can be effectively used to perform analyses of MinION/SmidgION data locally on a mobile device. 
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1. Introduction 

In the past decade, next-generation sequencing (NGS) technologies (e.g. Illumina’s HiSeq, Pacific Biosciences’ 
PacBio) enabled the generation of genomic and transcripomic data in a cost-effective, high-throughput manner. This 
has enabled the application of this data to a wide-range of problems stemming from biological and health sciences. 
Currently genomics, transcriptomics, metabolomics and other –omics sciences are linchpins of basic and 
translational biomedical research. After high-throughput, miniaturization and portability is the next scientific new 
leap. Mobile and portable (third-generation) sequencing technologies—e.g. Oxford Nanopore’s MinION, SmidgION 
and VolTRAX for library preparation—literally bring genomics to the palm of a hand (the MinION weighs 90g and 
measures 10×3×2cm), transforming again biomedical sciences [1]. Nanopore combines long sequence read length 
(up to hundred thousands of bases) with extreme portability [2,3]. Proof-of-concept studies showed MinION can be 
used to detect pathogens, e.g. Ebola or tuberculosis, with rapid turnaround time [4-6]—making them well-suited for 
field applications, such as food safety monitoring in farms and water purification testing. 

   While MinION and SmidgION need only a USB outlet, the data analysis phases are bound to an available 
Internet connection and ad hoc computing resources. However, tablets are preferable to desktop and laptop 
computers in many experimental settings because of their resilience to humidity or spills, ease of sterilization, 
usability (apps) and ergonomics (touchpad rather than a keyboard). This absence of smartphone/tablet-tailored 
analytics tools hampers portability, especially if the technology is used in resource-limited settings or remote areas 
with limited connectivity, which limits the applications to which these technologies were developed for.  

To date, a number of commercial and open source tools for Nanopore analytics are available—both cloud-based 
and local—but there is no software purposely built to run on portable devices such as tablets or smartphones. As one 
of the few commercial options, Metrichor (https://metrichor.com) provides all-purpose analytics services, from error 
correction to genome assembly. Among the open-source software: poRe and poretools provide file parsing and 
visualization [7,8]; Nanocall does base calling [9]; PoreSeq performs de novo/reference error correction and variant 
calling [10]; Canu and minimap/miniasm provide de novo assembly [11,12]. 

Majority of de novo assembly methods look at overlaps among sequence reads to reconstruct the genome, using 
either the overlap-layout-consensus (OLC) or the de Bruijn graph [13]. In the ideal case, with the OLC, a read is a 
node, an overlap between two reads is an arc, and the genome is assembled by finding a Hamiltonian path that visits 
all reads once (NP-complete problem). In the de Bruijn, a read is broken down into smaller strings of fixed length k 
(k-mers), each k-mer is an arc connecting two overlapping (k-1)-mers, and the genome is assembled by finding an 
Euler path that visits all arcs once (linear time complexity). In practice, there are graph reduction/transformation, 
heuristic assembly of consistent regions, unitigs, and then pre- and post-scaffolding guided by multiple alignment 
[14]. 

There are several challenges to port Nanopore analytics on to mobile devices, including architectural differences, 
memory-computational constraints, and power/heating limitations. To address these challenges, we present novel, 
cache-oblivious, out-of-core approach to tackling the first two analysis challenges: k-mer counting and de Bruijn 
graph construction. Hence, we first show how to efficiently parse MinION’s FAST5 file using an HDF5 library for 
Android OS, then we introduce cache oblivious k-mer and de Bruijn data structures (which are the basis of most 
second- and third-generation sequencing analytics algorithms) and lastly, present their out-of-core implementation. 
We compare the results of our methods with the Android recompiled versions of minimap/miniasm. Of note, 
minimap/miniasm performs steps of an OLC assembly, so it is only in part comparable to our method, but it could 
be compiled seamlessly on Android, differently from others. The proposed framework is programmed using ISO 
C++ v.14 and takes the collective name of Nanopore Portable Analytics Library (NanoPAL). NanoPAL is available 
under the BSD-3 license at https://fmilicchio.bitbucket.io/nanopal.html. 
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2. Methods 

2.1. Out-of-core approach: conceptual framework 

Even if smartphones and tablets have RAM and cache comparable to that or desktop/laptop computers, the usage 
is often limited by the operating system (both iOS and Android). Analysis of high-throughput sequencing data often 
requires a considerable amount of memory and CPU resources, even when compressed data structures are used [15].  

An out-of-core approach that uses paged virtual memory is a feasible solution to the memory constraint problems 
only if the decrease in performance due to I/O and physical memory accesses is acceptable. To overcome this 
challenge, we propose a cache oblivious out-of-core approach, to build a k-mer spectrum and de Bruijn graph from 
FAST5 files, minimizing accesses to physical memory through chunked file processing and sorting.  In the 
following sections, we present the details of this approach. 

 
 

2.2. File parsing 

In order to parse FAST5 files, we used the HDF5 standard library (www.hdfgroup.org) on which the FAST5 
format is based. We previously theorized cache oblivious k-mer data structures, with an in house file parser for 
FASTA and FASTQ file formats for iOS and Android [16,17], which we extend here to build the k-mer graph. At 
the moment our procedures ignore quality score, supposing previously cleaned data. For high-noisy data such 
MinION, the assumption is realistic only upon a previously base-called and quality-trimmed raw sequence file, and 
either an independent error correction module such as LoRMA or LoRDEC [18,19], or standing an assembly tool 
with error correction, e.g. as in the string-graph SGA or in the de Bruijn graph SPAdes assembler [20,21]. 
 

2.3. Counting and storing k-mers 

Even though many efficient data structures for counting and storing k-mers are available [22-24], there are scarce 
approaches for out-of-core processing [25].  Thus, we implement a simple and minimalist representation of k-mers, 
based on a bit-wise representation of the four ACTG nucleotides, and bit-to-bit operations to verify string overlaps 
and reverse-complement equivalency, as previously described [26]. We note this representation can be replaced by a 
different one as we use a generic template programming approach, like SeqAn [27,28]. 

To allow feasibility of processing of Gigabyte-sized sequence data on a mobile device with limited amount of 
usable RAM (usually a few hundred MB over the total) and cache, we devised the out-of-core approach constituted 
by a cache oblivious data structure together with a chunked file processing. 

The k-mer spectrum creation is done in two phases. In the first phase, the FAST5/FASTQ/FASTA file is parsed 
and reads are broken down in k-mers that are stored, along with their counts, in a cache oblivious vector (which has 
less overhead then a hashmap) whose size is equal to the available RAM. When it is full, this is sorted and then 
printed into a file in physical memory. Once the vector has been emptied parsing can continue. For each block, k-
mers with partial counts are therefore, written.  

After this phase, a second phase starts and k-mers in each block are merged using an out-of-core merge sort 
algorithm which allows an arbitrary allocation of spatial resources. Fig. 1 illustrates the steps of these two phases.  
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As a clean-up, after ordering, all k-mers with frequency of one are purged (this step is optional and customizable 
on any desired count). 

 
 

2.4. De Bruijn graph building 

The de Bruijn graph can be defined constructively as follows: all unique k-length sequences (k-mers) are found in 
the set of input reads, a directed edge of each k-mer is built, and the nodes of the edge are labelled as the prefix and 
suffix made by (k-1)-mers of the corresponding k-mer, gluing nodes with the same label together. 

The de Bruijn graph is constructed from the k-mer spectrum and overlap information using an adjacency list 
implemented through an out-of-core array with divisions into blocks. Default search and insertion operators are 
overridden and rewritten accordingly. The RAM is used as a cache, which guarantees better performance as 
compared to classical paging. This ad hoc array solution was found more performant than a vector for files of 1GB 
or larger. The out-of-core array contains the k-mer and four integers with the indices of the overlapping k-mers, as 
shown in Fig. 2. 

Fig. 2. Out-of-core de Bruijn graph. The out-of-core array contains the k-mer and indices of the four possible overlapping k-mers. 

 

3. Results 

To evaluate the NanoPAL, an LG Nexus 5 device (2.26 GHz quad-core Snapdragon 800, 2GB RAM, 4 KiB + 4 
KiB L0 cache, 16 KiB + 16 KiB L1 cache and 2 MiB L2 cache, 16GB internal storage) mounting Android OS 
v.6.0.1 with api-level 23, was used. Three public MinION FAST5 sequencing experiments were downloaded from 
Genbank’s sequence read archive and used as test datasets: (i) Ooceraea biroi (accession no. SRX3429051); (ii) 
Zaire ebolavirus species (accession no. ERR1248114); and (iii) Homo sapiens metagenomics sequencing of 

Fig. 1. Out-of-core k-mer merging and sorting. Blocks created during the parsing are merged and sorted using an out-of-core merge sort with 
user-defined space allocation, via file chunking and RAM buffering. 

 Author name / Procedia Computer Science 00 (2018) 000–000  5 

 

prosthetic joint infection (accession no. ERR2195910). On the same files, we run the recompiled version of 
minimap/miniasm, and compared processing times with NanoPAL using both full file sizes and ad hoc sampling. 

3.1. File parsing, k-mer processing, and graph building 

We evaluated the OOC performance of NanoPAL first by varying the available RAM (50MB, 100MB, and 
200MB), and then by varying the k-mer spectrum composition using the different real-world data sets. 

Given the latency due to I/O, small variations in the allocated RAM do not affect sensibly the execution times. 
However, shorter times are observed when the RAM is increased (see Fig. 3). 

Fig. 3.  NanoPAL performance by RAM allocation. Execution times in relation to RAM allocation for the out-of-core k-mer spectrum and de 
Bruijn graph construction, using FAST5 samples of 100-700 MB (Spodoptera frugiperda species dataset, accession no. SRR6042592). 

 
We then fixed the RAM to 200MB and executed tests for the three different FAST5 retrieved from Genbank. 

Table 1 summarizes results in relation to input file size and k-mer spectrum size: the size of the out-of-core file is 
given, and execution times are broken down by: sorted k-mer file size (F1); cleaned de Bruijn graph file size (F2); 
and time to build de Bruijn graph (T2). 

The total time increases linearly with the file size, and on average every half GB is processed in about half an 
hour to create both the sorted k-mer file and the de Bruijn graph.  

 
Table 1. Out-of-core k-mer counting and graph construction. 

Dataset File size F1 F2 T2 Tot time 
i 
i 
ii 
ii 

400MB 2289MB 59MB 2m 32m  
600MB 3425MB 104MB 5m 50m 
100MB 572MB 4MB 8s 7m 
150MB 858MB 8MB 17s 10m 

iii 200MB 733MB 114MB 1m  14m 
iii 400MB 1417MB 244MB 3m  31m 
iii 600MB 2082MB 376MB 5m 48m 
iii 1GB 2760MB 507MB 12m 1h5m 
iii 2GB 3435MB 634MB 37m 2h38m 

F1: sorted k-mer file size (all k-mers); F2 cleaned de Bruijn graph file size; T2 time to build de Bruijn graph; i: O. biroi species; ii: Zaire Ebolavirus; iii: H. sapiens metagenomics. 
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The total time increases linearly with the file size, and on average every half GB is processed in about half an 
hour to create both the sorted k-mer file and the de Bruijn graph.  

 
Table 1. Out-of-core k-mer counting and graph construction. 

Dataset File size F1 F2 T2 Tot time 
i 
i 
ii 
ii 

400MB 2289MB 59MB 2m 32m  
600MB 3425MB 104MB 5m 50m 
100MB 572MB 4MB 8s 7m 
150MB 858MB 8MB 17s 10m 

iii 200MB 733MB 114MB 1m  14m 
iii 400MB 1417MB 244MB 3m  31m 
iii 600MB 2082MB 376MB 5m 48m 
iii 1GB 2760MB 507MB 12m 1h5m 
iii 2GB 3435MB 634MB 37m 2h38m 

F1: sorted k-mer file size (all k-mers); F2 cleaned de Bruijn graph file size; T2 time to build de Bruijn graph; i: O. biroi species; ii: Zaire Ebolavirus; iii: H. sapiens metagenomics. 
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3.2. Comparison with minimap/miniasm 

We compiled our code and recompiled minimap/miniasm using the Android SDK/NDK 
(https://developer.android.com/ndk/index.html), C++ v.14, with minimal modifications made to the 
minimap/miniasm source code. 

Using the FAST5 data sets i-iii, we created various file samples of increasing size between 50 MB and 2GB. We 
run minimap/miniasm on each file and the program completed successfully for all files up to 170MB, then halted 
with error. Fig. 4 compares minimap/miniasm with NanoPAL, which completed successfully all files. On average, 
out-of-core NanoPAL was 12x slower than minimap/miniasm. 

Fig. 4. NanoPAL vs. minimap/miniasm. Execution times of NanoPAL and minimap/miniasm as a function of the input FAST5 file size 
(average over all datasets): minimap/miniasm halts at 170 MB, whilst the out-of-core NanoPAL completes all files. 

 
 

4. Discussion 

We presented NanoPAL, an open source, generic programming template library designed to enable portable 
analysis of third-generation sequencing data, including Oxford’s Nanopore MinION and SmidgION. 

NanoPAL features a FAST5 file parser and cache oblivious, out-of-core methods for building the k-mer spectrum 
and the de Bruijn graph. Even with the usage of non-compressed data structures, NanoPAL offers a reasonable 
memory-runtime tradeoff, which opens up a vast perspective for analyzing real experimental data –from a few to 
several GB– directly on mobile devices mounting Android or iOS.  

Only a few k-mer spectrum builders that exploit external memories are available [29,30], and a tool for string 
graph build-up [31]. Overall, efficient representations of de Bruijn graphs in external memory are scarce, but such 
structures are vital for enabling truly portable analytics of third-generation sequencing data. 

 

4.1. Limitations 

This work has some limitations. First, the k-mer and the de Bruijn graph data structures could be optimized, e.g. 
using compression, allowing a smaller memory footprint and executing more operations in the fast memory 
hierarchies. Second, memory constraints of the operating systems on mobile devices often do not practically permit 
usage of all available RAM and cache levels. Third, we have not evaluated battery consumption and ignored device 
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heating issues. Fourth, NanoPAL does not provide a base calling method, and one must rely on other preprocessing 
tools, such as Nanocall [32]. Finally, at the moment NanoPAL does not feature a de novo genome assembly 
algorithm, although it is possible to test other software via generation of standard FASTG files 
(http://fastg.sourceforge.net/). 

 

4.2. Perspectives 

As NanoPAL uses the generic template approach, we foresee the improvement of its methods. For instance, a 
cache-efficient Bloom filter [33] could be employed for the k-mer spectrum. Also, usage of minimum substring 
partitioning for out-of-core [34] can improve performance. Another possible improvement for the de Bruijn graphs 
is through usage of succinct (compressed): an external memory version of the Ferragina-Manzini index has been 
proposed [35], and very recently the first implementation of suffix trees that avoids direct string comparisons has 
been released [36]. 
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