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Abstract

Pregnancies obtained by Assisted Reproductive Tdobies are at higher risk of miscarriage than ¢hos
obtained naturally. Previously, we reported impdiptacental vascular developmentiofvitro produced
(IVP) sheep embryos and defective DNA methylatiothie placentae of those embryos. One reason behind
these observed defects may be an impaired One Qdvteiabolism (OCM) The present study was
performed to test the hypothesis that Cobalamintafwin B12, an important OCM co-factor)
supplementation during IVM corrects DNA methylatioh IVP embryos and, consequently, ameliorates
placental vasculogenesis. To this aim, embryosegrfrom oocytes matured with Cobalamin (B12 gioup
or without (negative control group, -CTR) were sfamred to synchronized recipient sheep. At dayf0
pregnancy, collected embryos were morphologicalBlated while placentae were subjected to gPCR and
histological analysis. The positive control grotfCTR) consisted of conceptuses obtained from niatura

mated sheefResults showed an increased fertilization rateheénB12 group vs —CTR (69.56% vs
57.91% respectively, P = 0.006) not associated gintitative improvement in blastocyst and/or
implantation rate (44.32% vs 36.67% respectively, ®.05). MoreoverCobalamin supplementation

during oocyte IVM ameliorated resulting conceptugeality, in terms of placental vascularizationgsels’
maturity and vasculogenetic factors’ expressiorf)e expression of DNA methyltransferas&NMWT1,

DNMT3A and DNMT3B was also improved in placentae from the B12 grdnponclusionCobalamin
supplementation during oocyte IVM improves IVP eptbruality. These results suggest that

Cobalamin should be included in standard IVM media.

Key words: oocyte, Cobalamin, placental vasculogenesis,sH2&A methylation

1. Introduction

Assisted Reproductive Technologies (ART) have douted to the births of >1% of children worldwideca
these numbers are increasing every year [1, 2Judinéhe majority of children born by ART are hegltt
birth, several studies have demonstrated ihatitro embryo production (IVP) may be associated with
increased pregnancy complications [3,4] developateand/or imprinting defects [5-8] and postnatal

diseases [9-12]. In our previous work, we have olesk that sheep IVP conceptuses showed impaired
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cardiovascular development, such as delayed plcemaisculogenesis and a thinner ventricular wall,
associated with cardiac and placental hemorrhagje®]| Also, defective DNA methylation machinery, i
particular DNMT1 dysfunction and deregulated exgi@s of imprinted genes in placental tissues, b
described [6]. One of the possible causes behiedettobserved developmental defects may reside in
alterations of the One Carbon Metabolism (OCM).sThietabolic pathway is responsible for several
cellular processes, such as cell proliferation, DiNl protein synthesis, gene expression and méthylof
DNA, RNA and protein. Dysfunctions of the OCM magatl to reduced pregnancy success and
compromised fetal development [13-18]. In particuldeficiency of one or both OCM cofactors — Folate
(Vitamin B9) and Cobalamin (Vitamin B12) — duringegnancy is associated with adverse pregnancy
outcomes i(e., neural tube defects, intrauterine growth ret@mda abnormal fetal brain development,
impaired cardiovascular development and epigewuetiects) [14, 19-21], and, in the long term, toabetic
diseases and impaired cognitive and motor fund@dn23] in both human and animal models. Commonly
used medium foin vitro maturation (Medium 199, M-199), does not contagb&lamin. Based on this, we
hypothesized that the supplementaion of the maturamedium with Cobalamin may ameliorate the
development of embryos, by improving DNA methylatiiatus. To test our hypothesis, we used sfwep
aries), as it is a powerful model to study ART pregnafie4]. To produce IVP embryos,oocytes wéamne
vitro maturated with 200 pM Cobalamin (B12 group). MatuiMIl oocytes and resulting embryos were
evaluated for developmental competence and DNAhyltednsferase expression profile. Moreover,
vascular development was investigated in placeataday 20 of pregnancy. Two control groups were
created: untreated IVP embryos (-CTR) and naturaliyed ones (+CTR). Our data showed that Cobalamin

supplementation during IVM enhanced the qualitj#® embryos.

2. Materials and Methods

All chemicals, unless otherwise indicated, wereamigd from Sigma Aldrich Chemicals Co. (St. Lo,
USA).
All animal experiments were performed in accordawdé the DPR 27/1/1992 (Italian Animal Protection

Regulations) and in conformity with the Europeamm@unity regulations 86/609.
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2.1- In vitro maturation (IVM)

Sheep ovaries were collected from local slaughtesée and transferred to the laboratory within 1-2 h
Oocytes were aspirated with 21 G needles in theemee of TCM-199 medium (Gibco, Thermo Fisher
Scientific, Milan, Italy) containing Hepes and HépaThen, all oocytes with an unexpanded cumuhg a
uniform cytoplasm were divided into two groups: reated control oocytes (-CTR) and treated oocytes
(Group B12). Untreated control oocytes werevitro maturated (IVM) in standard medium (bicarbonate-
buffered TCM-199 (Gibco) containing 2 mM glutamii®e3 mM sodium pyruvate, 1M cysteamine, 10%
fetal bovine serum (FBS) (Gibco),u8/mL FSH (Ovagen, ICPbio Reproduction, AucklandywiNgeland), 5
ug/mL LH and 1lug/mL estradiol. Treated oocytes wenevitro matured in standard medium supplemented
with 200 pM Cobalamin, a concentration that repnes¢he lower amount requested not to be considered
deficient [23, 25]. Maturation was conducted in dhwculture plates (Nunclon, Roskilde, Denmark)
containing 0.4 mL of IVM medium and a maximum of 88cytes. Maturation condition were 5% £i@

humified atmosphere and 39°C for 24 h.

2.2- In vitro embryo production

In vitro fertilized (IVF) embryos were produced as previgpudescribed [26]. Briefly, matured oocytes (-
CTR, n=220; B12, n=191) were partially strippeccomulus cells by repeated pipetting. Frozen senman w
rapidly thawed at 37°C and washed twice by cergafion at 500 g for 5 min in bicarbonate-buffered
Synthetic Oviductal Fluid (SOF) with 4 mg/mL BSA/R was carried out in 50 pL drops, using 5 ¥ 10
cells/mL and a maximum of 15 oocytes per drop,&6 in 5% CQ for 20 h. The IVF medium was
bicarbonate-buffered SOF enriched with 20% (v/vithieactivated oestrous sheep serum, 2.9 mM Ca
lactate, and 16 uM isoproterenol. Presumptive agjetere transferred into 20 L drops of SOF endche
with 1% (v:v) Basal Medium Eagle (BME) essentialimmacids, 1% (v:v) Minimum Essential Medium
(MEM) non-essential amino acids (Gibco), 1 mM ginitae and 8 mg/mL fatty acid-free BSA (SOFaa-
BSA). Zygotes were cultured in a humidified atma=shof 5% CQ, 7% Q, 88% N at 38.5°C, and the
medium changed on day 3 (supplemented with glucasd)day 5 (supplemented with 10% FBS charcoal
stripped). Maturation was assessed by evaluatimummiulus expansion and the extrusion of first pblzay.
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113 Fertilization rate (number of 2 cells embryos/tatamber of MIl oocytes) was assessed on day 1 and
114  Dblastocyst formation was recorded on day 7.

115

116  2.3- Animal treatment, embryo transfer and sample ecovery

117 Animal treatment and careSardinian ewes (n=25) obtained from local bregdeere housed in the

118 authorized experimental farm from the Istituto Zawjpattico Abruzzo, Loc. Gattia, Italy, fed andbi

119  under the best sheep housing standards. The symzdion of sheep was achieved with Crono-gest ggen
120 of 25 mg (Intervet, Milan, Italy). After 12 days @ro-gest sponges were removed and estrous were
121 monitored for 48 h. Six days after estrous, emltrgnsfer was performed. Ewes (n = 20) were faste@4

122 h before surgery and then were pre-anestetizedwitih. IM Acethyl Promazine (Prequillan, Fatro, Ozaa

123 dell’Emilia, Italy) and anesthetized with sodiumagpental (10 mg/kg BW, Penthotal Sodium, Intervef S
124 Milano, Italy). These treatments alleviate levekaffering to minimum. After surgery animals weepkin

125  warm and dry place, isolated from animals untilbokery. Post-operatory suffering alleviation wastioged

126 by flumixin meglumine (Zoetis, Rome, lItaly), givé, and antibiotic treatment consisted of intramulac

127  injection of ampicillin (0.02 g/kg, Amplital Vet,&va SpA, Agrate Brianza, Italy) every 24 h for §sla

128  Embryo transferTwenty females were randomly divided into twogye and were used as recipientsnof

129  vitro produced embryos. Both -CTR and B12 blastocys# (2r ewe) were surgically transferred to the
130 recipient ewes 6 days after oestrus. Five sheep magurally mated (+CTR).

131  Sample recoveryFetuses and placentae were recovered by paraamkgarotomy at 20 days of gestation.

132 Once collected in Petri dishes (90 mm) with warmi"®#g*" PBS containing 0.005% (w: v) heparin, fetuses
133  were observed under the stereomicroscope to asisessvitality by the presence of heartbeat. Early
134  placental tissues (chorion-allantois) were snapefnoin liquid nitrogen and stored for subsequeiatyesis
135  and/or fixed for histological evaluation.

136

137  2.4- Immuno staining for 5-methylcytidine (5-MeC)

138 Immunostaining has been perfomed as describedwWB]minor modification. MIl oocytes and blastocyst
139 stage embryos (day 7) were treated with PronasedBs Acid Solution to remove zona. To obtain Mill
140 plates, oocytes were exposed to hypotonic solutib8% w/v sodium citrate) for 3 min, followed by
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treatment in 75 mM KCI solution for 3 min at 37°Then, they were pre-fixed in a solution of 75 mM
KCl:methanol:acetic acid 3:2:1 v/v for 15 min a@°€ and then fixed overnight in methanol:acetid&:il

viv at -20°C. Subsequently, MIl oocytes were spreladlide and MII plates were UV irradiated at 48€

11 hours before staining. Blastocysts were washd®BIS/PVP 0.4%, fixed in 4% paraformaldehyde for 15
min and permeabilized in 0.1% Triton X100 for 30nmTrhey were washed again and hydrolyzed in 4N
HCL for 10 min, neutralized in 100 mM Tris/HCI (p#15) for 15 min, washed in PBS + 0.4% PVP (5 min
for 3 times). Both MII plates and embryos were tedawith blocking solution (PBS + 1% BSA + 0.05%
Tween 20) at 4°C overnight. They were then incubatgh mouse anti-5-methylcytidine antibody (dituti
1:50; sc-56615, Santa Cruz Biotechnology, Santa,G2d, USA) at room temperature for 2 h, washed in
blocking medium and incubated with goat anti-molgge FITC conjugate antibody (dilution 1:200; F9137,
Sigma-Aldrich) at room temperature for 1 h. Mounsgecimens were analyzed with an epifluorescence

microscope.

2.5- Histological analysis

Chorion-allantois tissues were fixed in 4% (w:v)rgfarmaldehyde and subsequently dehydrated into
increasing ethanol solutions for 5 min at each steg then cleared in xylene mixture. Finally, ptaee
were paraplast embedded. For hematoxylin eosinistgi 5 um sections were used. Pictures were taken
using the Nikon Eclipse E600 microscope. Placerdgabels were divided into three different developtale
stages as previously described in Fidanza et hl.Biefly, Stage lcorresponds to early vasculogenesis
(formation of hemangioblastic cell cordsStage 2to tube formation characterized by endothelialscel
becoming flattened, additional mesenchymal cetisaly apposed to the endothelial tubes and hematapo
stem cells becoming visible in the capillary lum&tage 3to late vasculogenesis characterized by well-

formed capillaries surrounded bybasal lamina amiyascular cells.

2.6 - Expression analysis

Oocytes MIl oocyte were collected after IVM. After remdvaf granulosa cells and zona pellucida, oocytes
were washed in PBS + 0.4% PVP and pool of 5 Midybes were shap frozen and kept at -80° until
analysis. mMRNA was isolated from oocyte pool>(ri0/group) using Dynabeads® mRNA DIRECT Kit

6
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(Invitrogen Dynal AS, Oslo, Norway) containing Qi@T)25 magnetic beads. The procedure was carried
out according to the manufacturer’s instructions)\gisa magnetic separator (Dynal MPC-P-12 magnet;
Invitrogen). Placental tissueTotal RNA from placental tissues 8/ group) was extracted using an SV
Total RNA Isolation System (Promega, Milan, ItaBggcording to the manufacturer’s instructions. Total
RNA integrity was assessed by a 2100 Bioanalyzgil¢At Technologies, Waldbronn, Germany).

Samples with an RNA Integrity Number of at lea& ®ere used for subsequent analysis. All samples we
reverse-transcribed using GoScript™ Reverse Trgotsor System (Promega) according to the
manufacturer’s protocol. The obtained cDNAs, fromthb oocytes and placentae, were used for gene
expression analysis using specific 5'-3' primerrpalesigned to anneal at 56/58°C with an amplificat
efficiency (E) range between 2.1 and 1.9 (TableRBal-time PCR was carried out using Sso Advanced
Universal SYBR green Supermix (Bio-Rad, Milan, yailvith a CFX Connect Real-time PCR detection
system (Bio-Rad), according to the manufactureristructions. Relative gene expression data were
calculated using the comparative threshold cycléhote AACt) with GAPDH,uTUBULIN and SDHA as

housekeeping genes.

2.7- Statistical analysis

Statistical analysis was performed using Insta&&aphPAD software for science, San Diego, CA, USA).
data reported are expressed as mean with relatwelard error of mean (SEM). Decimal variables were
analyzed using a Mann-Whitney test, while varialebgsressed as percentages were analyzed with er'Bish
Exact test. Only p values <0.05 were consideredifgignt. Immunofluorescence results were obtained
using ImageJ software. Primer sets were designied tise Primer 3 tool; the reference stability wailuas
calculated using geNorm; and efficiency values dath analysis of the amplification runs were penien

using BioRad software

3. Results

3.1- Cobalamin supplementation duringn vitro maturation enhances oocyte quality
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Qualitative evaluation of maturation rate folloginCobalamin supplementation did not reveal any
significant differences between B12 and —CTR groufise fertilization rate following IVF was sigreantly
increased in B12 vs -CTR (176/253 — 69.56% vs/28D— 57.91%, respectively, P = 0.006, Fisher'adEx
test) while no differences were observed at thastbtyst rate (78/176 — 44.32% vs. 55/150 — 36.67%,
respectively) or hatching rate (Figure 1A). In terof further development, a higher but not sigaific
implantation rate was detected in B12 (12/20, 7)2s -CTR (8/11, 60%). Differently, implantatioate

of both IVP groups was lower than naturally matedTR (8/8, 100%) (P =0.008). Moreover, gross
morphological evaluation of conceptuses revealgtlai development in B12, -CTR and +CTR embryos
(Figure 1B, C).

3.2- Cobalamin supplementation improves DNA methyléon status of embryos and placentae

gRT-PCR analysis revealed an increased expres§iDNBIT1 (P = 0.02) anddNMT3B(P = 0.012) in B12
mature (MIl) oocytes (Figure 2A). The increasecelsvof DNMTsdid not directly affect DNA methylation
of MIl oocytes, while it led to an increased globadthylation in blastocysts derived from B12 oos\(e =
0.04) (Figure 2B, C). In early placentae, the esgign profiles of DNMTs was comparable in B12 and

+CTR groups, while that of -CTR was significantgrelgulated (P < 0.03) (Figure 3).

3.3- Cobalamin supplementation during IVM ameliorakes vasculogenesis in early placentae

We evaluated placental vasculogenesis by assesmngaturity of vessels and the expression prafila
subset of factors regulating vessel formatio0rtEGF, VEGF2R, ANG2, TIE2(Figure 4). Our data
demonstrated a delayed placental vasculogenetiie ifCTR group vs. naturally mated +CTR (stage 2: P
0.006; stage 3: P = 0.0002) (Figure 4A, B). Intengd/, we observed a rescue of vasculogenesislid B
placentae; however, the number of stage 3 vesselgined reduced compared to +CTR (P = 0.006) (Eigur
4A, B). Moreover, gqRT-PCR revealed that WEGF, VEGF2R, ANG2, TIE2xpression profile of B12
placentae reflected that of +CTR, while in -CTRcelataecANG2 (P = 0.04) andTIE2 (P=0.03) were

downregulated (Figure 4C).

4. Discussion
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The present study showed that Cobalamin suppleti@mtaluring thein vitro maturation of oocytes
improved placental vasculogenesis of resulting greabryos. Results demonstrated that the addition
Cobalamin, missing in commercially available IVM dnem, rescued some of the defects generally
associated within vitro embryo production if. hypomethylation,DNMT deregulation and impaired
vasculogenesis).

Our first finding was an increased fertilizatiorterdollowing IVF in the B12 group not associated
with quantitative improvement in blastocyst andimplantation rate, as both -CTR and B12 embryos
showed reduced implantation ability vs. +CTR. Hoere\B12 embryos showed improved quality, in terms
of methylation status and placental vasculogen&dig. findings support the concept that non-optimal
maturation of oocytes is one of the underlying eausf impaired development, as suggested by Joeitgblo
[27]. In particular, it has been observed that spbmal oocyte maturation due to dysfunction of @M
(e.g.MTHFR polymorphism, folate deficiency) may be resgible for reduced embryonic development and
poor pregnancy outcome following ART [4,28].

Correct DNA methylation during the pre-implantatiperiod is fundamental for ensuring appropriate
embryonic development, resulting in healthy offsgri[29,30]. Dysfunction of the DNA methylation
machinery, leading to impaired DNA methylation amdderegulated expression of imprinted genes, has
been described in both pre- and post-implantatiobrgos following ART [6,31-33] and in case of ddfee
OCM pathway [18,34]. Nevertheless, the underlyirechanisms responsible for the epigenetic defests ha
not been understood. The dysregulation of key ptayevolved in DNA methylation is one reasonable
explanation. The main enzymes involved in the distainent and maintenance of DNA methylation are the
DNA methyltransferases DNMT1, DNMT3A and DNMT3B [33he impaired expression and/or activity of
DNMTs in ART embryos and placentae has been prelyoteported [6, 36]. Here we showed that
Cobalamin supplementation leads to an increaserkssipn ofDNMT1 and DNMT3Bin MIl oocytes It
suggests that Cobalamin positively contributedhi® acquisition of epigenetic competence during teocy
maturation. This speculation was further confirm®d the correction of the hypomethylated status in
blastocyst stage embryos derived from B12 oocydes.data revealed a comparable expressidpNNT3A
in MIl oocytes in both the B12 and -CTR groups. ¥éeilld hypothesize tham vitro culture did not affect
DNMT3Aexpression or that our findings could have befluénced by experimental limitation. In fact, it is

9



252  widely described that DNMT3A has several isoformiffecently expressed during development. For
253  example, Hara et al. [37] reported that DNMT3A2t not DNMT3A, is mainly expressed in growing
254  murine oocytes, so it may be possible that we ewatlDNMT3A as it was the only sequence available in
255  our model (sheep). To confirm that the expressiorfilp of DNMTsas well as the global methylation in the
256  B12 group reflects what occuirs vivo, the best control should be oocytes and blastegystducedn vivo.

257  However, obtaining oocytes and early embryos inegher in other mono/bi-ovulatory large animals,
258  requires very high numbers of animals and invoteenical difficulties, therefore is not feasible.

259 Abnormal expression oDNMTs and/or hypomethylation have been described foHgwART

260  protocols [6,32,34].. Our data confirmed the dysfaton of DNMTs in IVP placentae, as previously
261  described by us [6] and others [38-39] and, ofuvatee, we found thdDNMTs’ expression profile in B12
262 tissues reflected that oh vivo +CTR. Taken together, these results demonstrated Gadalamin

263  supplementation during sheep oocytesvitro maturation corrected the defective methylatiotustaf IVP

264  embryos.

265 Another key event in the establishment of healtlggpancy is placentation — the formation of a
266  functional interface between the fetus and the evoitm order to ensure maternal-fetal exchange gfen,

267  nutrient and waste products [40-42]. Once placemtdias started, the vascular network begins t@ldev
268  extensively [43]. This process is regulated by éxeression of vasculogenetic and angiogenetic ffacto
269 involved in the recruitment of hemangioblast, thaiganization into tubes and/or further remodelamgl

270  differentiation to create mature vessels [43,44f.the molecular level, vasculogenesis is reguldigd
271  Vascular Endothelial Growth Factor (VEGF), Angiagiin (ANG) and their receptors (respectively, VEGFR
272 and Tie2). Perturbation of VEGF/VEGFR and/or AN@&JZ systems has been proposed as one of the reasons
273 behind defective placental vascularization in ART3P] and/or compromised pregnanée.(lUGR, pre-

274  eclampsia) [45-47]. Our data showed delayed vageunlesis associated with deregulated expression of
275 ANG2andTie2 but notVEGF nor its receptoWEGF2R,in -CTR placentae. Interestingly, the expression
276  profile of all studied factors in B12 placentadeaefed that of naturally mated ones (+CTR) andriaired

277  vasculogenesis was partially rescued in B12 plasgntas reduced percentage of vessels at late
278  vasculogenesis (stage 3) was observed. The prapezssion of the VEGF system as well as the presehc
279  hemangioblast and immature vessels indicated @catoimitiation of vasculogenesis in both -CTR antB
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tissues. On the contrary, the improved expressichiNgG2/Tie2and vessel maturity in B12 placentae led us
to speculate that Cobalamin may rescue the delegecllarization in IVP tissues, through improvement
vasculogenetic factors’ expression. This enhancastcularization can be directly associated with the
improvement of epigenetic machinery described abWe can speculate that Cobalamin supplementation
can lead to an increased uptake of methyl donorisglwocyte maturation, thus contributing to epigtn
modification during pre-implantation developmentdamo feto-placental development in the peri-
implantation period.

In summary, we described that the addition of oofaator, Cobalamin, positively affected sheep
oocytes’in vitro maturation and, consequently, IVP embryo develognreterms of DNA methylation and
placental vasculogenesis. However, some considagtshould be taken in mind when looking at the
present work. First, only one factor (Cobalamin)swaalded to the IVM medium.Further studies should
investigate whether other compounds are missirtpenVC system. Second, we focused our attention on
the peri-implantation period, as it is a criticaindow for the proper establishment of pregnancye Th
evaluation of additional time points and/or pregryaautcomes would further confirm our results. @hin
light of our findings, therapeutic treatment basedvitamins B should be suggested not only to maiag

women, but also to those planning a pregnancy.
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Figure Legend

Table 1: Sequences of primer pairs used for qPCR

Figure 1: Development of sheep embryos untill day 20 of pregncy. A) The fertilization rate in the B12
group is significantly increased, while further dpment up to the blastocyst stage appears siififlar
denotes P < 0.05, Fisher’'s Exact test). B) Crownpuneasurement revealed similar sizes of conceptuse
from B12, -CTR and +CTR groups. C) Similar develeptal stage of B12, -CTR and +CTR conceptuses at
day 20 of pregnancy: in all embryos, optical len28 pharyngeal arches and closed anterior neareph

were detectable.

Figure 2: IVM with Cobalamin enhances genome-wide mthylation of sheep oocytesA) Increased
MRNA expression oDNMT1andDNMT3Bin mature oocytes following IVM with Cobalamin. ¢enotes P

= 0.02; Mann-Whitney test). B-C) Immunostaining i&ntnethylcytidine on MIl oocytes and derived
blastocysts revealed an increased genome-wide fatitylevel in blastocyst stage embryos followlk@/

with Cobalamin. Green indicates 5-methylcytidineedBlue is nuclear counterstaining. Fluorescence

intensity was evaluated by ImageJ software. (* tef® = 0.04; Mann-Whitney test).

Figure 3: Improved DNMTs' expression in placentae from B12 groupThe DNMTs’ expression profile
of B12 placentae is comparable to that of +CTR,levhiis deregulated in -CTR. (* denotes P < 0.03 i
+CTR, a denotes P < 0.04 in -CTR; Mann-Whitney)test
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Figure 4: Normal vasculogenesis in placentae fromEB group.A) Hematoxylin eosin staining of 20 days
placental tissues. Vessels have been classifi&taggel: formation of hemangioblastic cords (arrowhead);
Stage 2 tube formation (arrow);Stage 3 well-formed capillaries surrounded by basal laemiand
perivascular cells (double arrowheads). B) The wat@dn of vessel maturity demonstrated delayed
vasculogenesis in -CTR placentae vs. +CTR (** desd® = 0.006, *** denotes P = 0.0002). The resdue o
delayed vasculogenesis was noticed in the B12 gronly stage 3 vessels’ percentage remained reduced
compared to +CTR (P = 0.006; Fisher's Exact té€S}.Comparable expression profiles of vasculogenetic
and angiogenetic factors in B12 and +CTR placerntate the increased expressionfdiG2and TIE2 in

B12 placenta compared to -CTR. (a denotes P <GOW, Mann-Whitney test).
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Gene targeted

Sequence (5’-3’)

Accession Number

Forward Reverse
DNMT1 aagtcasaccaaagaacc ttctcatcagagacttgtgg NM _ 001009473
DNMT3A aaccttcctggtatgaacagg ttcagtgcaccataagatgtcc XM_001252215.2
DNMT3B ttccagcagataagttggtggce aacatgggcttcagctgatcc NM 181813
VEGF tttctgctctcttgggtgeattgg atctgcatggtgatgttgaactcc NM _ 001025110
VEGF2R aactgtacggcaagaactgagc aacgtgctgttcttcttgg AF513909
TIE-2 ttaccaggtggacatctttgc ttgggccattctcctttgg AY 288926
ANG2 atagaaatagggaccaacc ttcttatcttgcagtttge AY 881029
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Highlights

1. Cobaamin supplementation during in vitro maturation (IVM) enhances ovine oocyte quality
2. Cobalamin supplementation improves DNA methyltransferases expression in IV P placentae

3. Cobalamin supplementation during IVM ameliorates vasculogenesisin early placentae



