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Abstract 

This paper presents an exact analytical approach to calculate the dynamic response of elastic beams with periodically-attached resonators, 

generally referred to as locally-resonant beams. Showing that a typical resonator is equivalent to an external constraint, whose reaction force on 

the beam depends on the deflection of the application point through a pertinent frequency-dependent stiffness, the beam-resonators coupled 

system is handled using only the beam motion equation, with Dirac’s deltas modelling the shear-force discontinuities associated with the 

reaction forces of the resonators. This is the basis to tackle the dynamics of infinite as well as finite beams, the first by a transfer matrix method 

to calculate frequency band gaps, the second by a generalized function approach. The dynamics of the finite beam is studied in frequency and 

time domains deriving the exact frequency response and the exact modal response, including modal frequency and impulse response functions. 

The proposed approach is formulated for arbitrary number of resonators and loads, and applies for both non-proportional and proportional 

damping. 

 

© 2015 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Beams with periodically-attached resonators are an emerging and challenging concept for vibration attenuation, with several 

potential applications in mechanical and structural engineering [1-10]. Typically, they are modelled as a continuous-discrete 

system, where resonators are single- or multi-degree-of-freedom mass-spring subsystems coupled with a continuous Euler or 

Timoshenko beam. The continuous-discrete model has been applied to sandwich beams with embedded resonators [2], hollow 

aluminum beams with an array of rubber-ring coated copper columns [3], beams carrying beam-like resonators [4], elastic 

metamaterial beams [5-10]. Beams with periodically-attached resonators are referred to as locally-resonant (LR) beams [1]. 

Remarkably, the resonators provide elastic wave attenuation over low-frequency ranges named band gaps [1-10], whose number 

is equal to the resonator degrees of freedom (DOFs). Translational DOFs are generally considered for resonators [1-10], to be 

activated by the beam displacement at the application point.  

Most frequently, solutions for LR beams have been sought in the frequency domain using the spectral element method [3-4], 

the transfer matrix method [11] and the finite element method [12]. Also, homogenization techniques defining an equivalent 

mass per unit length [2] or the Galerkin technique in presence of non-linearity [9] have been used. 

The present study aims to introduce a comprehensive framework to calculate frequency and time response of elastic LR 

beams. The key is to show that the mass-spring subsystem modeling a resonator can be reverted to an equivalent constraint with 

reaction force depending on the deflection of the application point through a suitable frequency-dependent stiffness. Indeed, a 

pertinent stiffness will be derived for single- or multi-degree-of-freedom resonators generally considered in the literature [1-10]. 

Starting from this basis, a transfer matrix method will be adopted to calculate band gaps of the infinite beam, while the exact 

frequency and time responses of a finite beam subjected to arbitrary loads will be obtained, in closed analytical form, extending 

an approach recently introduced by some of the authors [13-15] using the theory of generalized functions [13-20]. 

The paper is organized as follows. Section 2 derives the frequency-dependent stiffness of typical resonators and formulates 

the transfer matrix method for infinite beams. Frequency and time domain solutions for finite beams are presented in Section 3. 

A numerical application is discussed in Section 4. Finally, one Appendix is included. 

2. Local resonance via transfer matrix approach 

Fig.1 shows the simple model of a LR Euler beam. Local resonators are periodically attached to the beam at mutual distance a 

( cell length). Symbol “R” denotes a resonator, typically with single or multiple DOFs as shown in Fig.2.  
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Fig. 1. Elastic LR beam.  

 

 

 

Fig. 2. Examples of resonators: (a) 1-DOF; (b) 2-DOF; (c) laterally-resonant 2-DOF.  

In the frequency domain, the reaction force of resonators in Fig.2 can be expressed in terms of the deflection of the application 

point by using the resonator motion equations. For instance, the motion equations of the 2-DOF resonator in Fig.2c are [10]: 

   2

2 2 2 2 1 2 0m U U U V                                            (1a) 

      2

1 1 1 1 2 2 1 2 0m U U V U U V                 (1b) 

where VV(xj), H/D and l()  kl + icl, for l1,2. From Eqs.(1), the displacements U1, U2 and the reaction force of the 

resonator take the form: 
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Likewise, the reaction force of the 2-DOF resonator in Fig.2b is given as Eq.(4), being  

   2

2 1 2 2 2 0U U m U                                                     (6a) 

      2

2 2 1 1 1 1 1 0U U U V m U                                (6b) 
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Next, consider the n
th

 cell of the LR beam shown in Fig.1. Being EI the flexural stiffness and  the mass density per unit 

length, for a given frequency  the motion equation within the n
th

 cell reads (-dependence is omitted for brevity) 
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where V(x) is the deflection 

         cos sin cosh sinhn n n nV x A x B x C x D x           (9) 

for xx(n1)a and 4
2

/EI. Now, enforcing appropriate matching conditions for deflection, rotation, bending moment and 

shear force at the connection point between n
th

 and (n1)
th

 cells leads to the following equation [21] 
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Now, to investigate wave propagation in an infinite periodic LR beam, assume no damping in every resonator. According to 

the Bloch theorem [21], it is known that Ψn=e
iqa
Ψn−1, where q is the wave vector in x direction and iimaginary unit. Combining 

Ψn=e
iqa
Ψn−1 and Eq.(10) leads to the following standard eigenvalue problem of the transfer matrix T: 

 i
det 0

qa
e T I                                                                         (14) 

where I is the 4×4 unit matrix. Eq.(14) gives the values of q for specified ω: if q is real the corresponding wave propagates 

through the beam, i.e. the frequency ranges associated with real q are pass bands. On the contrary, there is a band gap over a 

specific frequency range for which no real q exists and, in this case, the imaginary part of q indicates the wave attenuation 

through one cell of the beam. For convenience, roots of the characteristic equation (14) will be sought setting iqa. 
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Regarding a finite LR beam, it is known that its frequency band gaps are described effectively by the frequency response 

function (FRF) [22]. Therefore, the remainder of the paper will derive the exact FRF for a LR finite beam and, in addition, the 

exact modal response in frequency and time domains. 

3. Dynamics of LR finite beam 

Assume that the LR beam in Fig.1 is finite. The vibration response can be represented in the general form 

   i i
, e ;    e

t t

j jx t t
 

 y Y u U                                          (15) 

where y={v    m  s}
T
, Y={V    M  S}

T
, uj={uj

(1)
 uj

(2)
…uj

(Q)
}

T
 and Uj={Uj

(1)
 Uj

(2)
…Uj

(Q)
}

T
 collect the response variables of the 

beam and the Q-DOF resonator applied at xxj (e.g., Uj
(1)

=U1, Uj
(2)

=U2 in Fig.2). Eq.(15) will be used as general form to 

represent: 

(a) FRF under an harmonic load with frequency , i.e. Y=Y(x,) and Uj= Uj(); 

(b) free-vibration response, being =k an eigenvalue and Y=Yk(x), U=Uj,k the corresponding eigenfunctions. Eigenvalues and 

eigenfunctions may be either real or complex depending on damping in the system. 

Since Eq.(4) provides the resonator reaction force in terms of the deflection V(xj), the response of the beam-resonators coupled 

system can be obtained from the motion equation of the beam only, generalizing the approach recently proposed by some of the 

authors in frequency and time domains [13-14]. 

3.1. Exact frequency response 

Be the beam in Fig.1 subjected to a harmonic load f(x)e
it

, so that the FRF takes the form (15). The motion equation reads 
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where bar means generalized derivative, symbol (xxj) denotes a Dirac’s delta at  x=xj, Rj is the reaction force of the j
th
 

resonator, i.e. (see Eq.(4)) 

           1,2...j j jR V x j N                                                   (17) 

for N=number of resonators. Following ref. [13], it can be written that 

       , , ,
f

x x x   Y W d Y                                         (18) 

where d={d1  d2  d3  d4}
T
  is a vector of integration constants, W(x,) is a 4×4 matrix depending on the solution to the 

homogeneous equation associated with Eq.(16), while Y
f
(x,) is a 4×1 load-dependent vector. Elements in W and Y

f
 are 

available in an exact analytical form, see Appendix A. 

Vector d in Eq.(18) is obtained enforcing the beam B.C., i.e. 

1
     


  Bd r d B r                                                          (19) 

where B and r are a 4×4 matrix and a 4×1 vector, built from W and Y
f
 computed at x0 and xL.  

The inverse matrix B
1

 is available in a closed analytical form, as shown in ref. [15]. Hence, replacing Eq.(19) for d in Eq.(18) 

provides a closed analytical expression for the FRF Y(x,) of the beam in Fig.1. Remarkably, Eq.(18) for Y(x,) holds for any 

number of resonators along the beam. The frequency response Uj() in the jth resonator can be obtained from the deflection V(xj) 

of the application point, e.g. using Eqs.(2)-(3) for the resonator in Fig.2c.  

Eq.(18) holds for homogeneous B.C. Non-homogeneous B.C. associated with resonators applied at the beam end can be still 

treated as homogeneous, considering an end resonator as an internal resonator located at x0
+
 or xL


. 

It is noteworthy that Eq.(18) can be applied to calculate also the transmittance of the beam, which is typically used to assess 

effectiveness of band gaps in a LR finite beam [8,21]. For this, the reaction force of every resonator shall be set equal to 

    j j j gR V x U                                                            (20) 

where Ug is the displacement of the ground, while the B.C. are 
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being V(x) the deflection relative to the ground. 

3.2. Exact modal response 

Next, be the beam in Fig.1 subjected to an impulsive loading f(x)(t), where (t) is a Dirac’s delta in time and f(x) a space-

dependent function. Adopting the approach in ref. [13], the impulse response function (IRF) h(x,t){hv h hm hs}
T
 of the beam can 

be represented by modal superposition as 
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being ĝk a complex coefficient, while k and Yk(x) are eigenvalue and vector of eigenfunctions associated with the k
th

 mode. 

Namely, k and Yk are complex if damping is not proportional, real if damping is proportional. The eigenvalue problem is 

B()d0, i.e. Eq.(19) with r0. 

Based on ref. [13], ĝk can be obtained as 
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Terms in Eq.(26) depend on the type of resonator. Specifically, j(k) is obtained from the following limit that involves the 

frequency-dependent stiffness of the resonator 
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For instance, for the resonator in Fig.2c 
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Now it is known that, for typical damping levels in engineering applications, modes contributing to the beam response occur 

in complex conjugate pairs, i.e. gk(t) in Eq.(23) may be ĝke
ikt as well as ĝk

*
e
ikt, with ĝk

*
 complex conjugate of ĝk. The result is 

the following real form of the modal IRFs for the k
th

 mode in Eq.(22): 

         ,k k k k k kx t x z t x z t h φ ψ                               (30) 

where 

     2
1k k k k kx x x   φ ψ λ                                           (31) 

       ˆ ˆ2Re ;     2Imk k k k k kx g x x g x       ψ Y λ Y      (32a,b) 

    21
sin ;       1k k t

k Dk Dk k k

Dk

z t e t
 

   



       (33a,b) 

being k=Im[k]/k the modal damping ratio. Finally, the modal FRF Hk={Hv,k  H,k  Hm,k  Hs,k }
T
 of the beam is [13] 

         , ik k k k k kx x H x H     H φ ψ                    (34) 

 
2 2
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i2
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k k k
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                                         (35) 

Eq.(34) approximates the exact FRF (18) providing an insight into the single modal contributions, i.e.  

   
1

, ,
M

k

k

x x 


Y H                                               (36) 

where M is the number of modes retained for practical purpose. The IRF and FRF in every resonator follow from Eq.(22) and 

Eq.(36), provided that Yk is replaced with Uj,k, i.e. the vector of eigenfunctions associated with the k
th

 mode for the response in 

the j
th

 resonator. Specifically, Uj,k can be calculated from the deflection Vk(xj) of the application point (e.g. using Eqs.(2)-(3) for 

the resonator in Fig.2c).  

Eq.(22) for IRF and Eq.(36) and FRF hold for any number of resonators along the beam. Every modal contribution (30) and 

(34) is exact and readily obtainable in analytical form once the eigenvalues are calculated. For practical purposes, a sufficient 

number of modes M shall be retained in Eq.(22) and Eq.(36) to obtain accurate expressions for IRF and FRF. 

Finally, it is noteworthy that Eq.(22) for IRF and Eq.(36) for the FRF hold a similar form also for proportional damping [15] 
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where k is the modal damping ratio, Dk is given by Eq.(33b) and Hk() by Eq.(35) on replacing k with the real frequency k 

of the k
th

 mode. 

4. Numerical application 

4.1. Example A 

Consider the cantilever aluminum beam in Fig.3 carrying the laterally-resonant 2-DOF resonators in Fig.2c [10]. Parameters 

are: E70 GPa, I7.85×10
-9

 m
4
 (corresponding to a circular cross section of radius 0.01 m), =0.88 kgm

1
, N8, a0.02 m, 

HD0.01 m, m10.01 kg, m20.005 kg, k1 k210
5
 Nm

1
, c1 c20.1 Nsm

1
 (see Fig.2c). The beam may be thought of as the 

elastic support for a machinery/structure exerting transverse loads. 
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Fig.3 Elastic LR beam with resonators in Fig.2c 

In order to have a preliminary insight into the elastic wave attenuation properties, the band gaps of the infinite beam with no 

damping are calculated using Eq.(14). Fig.4 shows that two band gaps exist in the frequency ranges 426-480 Hz and 840-933 Hz, 

where no real wave vectors are found. 

Next, Fig.5 shows the transmittance of the cantilever beam in Fig.3. It is noticed that the wave attenuation properties of the 

infinite beam hold also for the finite beam, as indeed the transmittance within the band gaps is lower than that over the remaining 

frequency domain by more than one order of magnitude. Notice that the transmittance is equal to 1 for zero frequency, as 

expected for a static unit ground displacement. For comparison, Fig.5 shows the transmittance of the beam without resonators, 

which exhibits a single peak but larger than the peaks of the beam with resonators. 

 

Fig.4 Band gaps of the LR beam in Fig.3. 

 

Fig.5 Transmittance of the beam in Fig.3: with resonators (blue) and without resonators (red). 

For a further insight into the dynamics of the beam in Fig.3, Fig.6 shows the FRF for the tip deflection under a unit harmonic 

force applied at the free end, obtained by the exact Eq.(18) and the approximate Eq.(36) using M7 modes (pertinent complex 

eigenvalues are in Table 1). The modal FRFs (34) are also reported in Fig.6 to highlight the contribution of every mode. 

a

L Na

i
1

t
e
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Table 1. Eigenvalues and damping ratios for modes of beam in Fig.3. 

Mode Eigenvalue Damping Ratio 

1  2143.994 + 1.076253i 0.000502 

2  2672.508 + 3.545824i 0.001326 

3  3570.584 + 4.171392i 0.001168 

4  5229.014 + 13.43045i 0.002568 

5  6338.494 + 17.59552i 0.002776 

6  21786.56 + 6.095178i 0.000279 

7  60345.95 + 5.750229i 0.000095 

 

Fig.6 FRF for tip deflection of beam in Fig.3, under a unit harmonic force applied at the free end: Eq.(18) (blue); Eq.(36) with M=7 modes 

(black dots); Eq.(34) for modal FRFs (color dashes); beam without resonators (red). 

 

Fig.7 FRF for displacement of lateral mass within resonator at free end of beam in Fig.3, under a unit harmonic force applied at the free end: 

Eq.(18) (blue); Eq.(36) with M=7 modes (black dots); Eq.(34) for modal FRFs (color dashes). 

Further, Fig.7 shows the FRF for the displacement of the lateral masses within the resonator placed at the free end. 

Interestingly, the peak values of the FRF are all outside the band gaps. This is evidence that the resonators ensure wave 

attenuation properties vibrating within a limited displacement range, which is obviously desirable for a consistent design of the 

LR beam. 

Next, consider again Fig.6. It is noticed that the FRF, within the band gaps, is generally well lower than the corresponding one 

of the beam without resonators. The only exception is at the right end of the second band gap, where the FRFs of the beam with 

and without resonators are very close to each other. This behavior is essentially attributable to the 3
rd

 and 5
th

 modes, whose 

modal FRFs are significant within that frequency range (see pink and yellow lines in Fig.6).  
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Fig.8 Time response for tip deflection of beam in Fig.3 under a 920-Hz unit sine force at the free end, for increasing number of modes M in 

Eq.(22): M=1 (blue dashes), M=3 (yellow dashes), M=5 (pink dashes) M=7 (black). 

 

Fig.9 Time response for tip deflection of beam in Fig.3 without resonators, under a 920-Hz unit sine force at the free end. 

To further investigate this issue, Fig.8 and Fig.9 report the time responses for tip deflection under a 920-Hz unit sine force 

applied at the tip, for the beam in Fig.3 with and without resonators (920 Hz is chosen as a forcing frequency close to the right 

end of the second band gap in Fig.6). Consistently with the results in Fig.7, it is found that the beam response is mainly 

dominated by 3
rd

 and 5
th

 modal contributions and, due to these modes, the responses of the beam with resonators (black line in 

Fig.8) and without resonators (Fig.9) have almost the same order of magnitude. This is a crucial information for design purposes 

because, e.g., once mass and stiffness of the resonators are calibrated, damping coefficients might be selected so as to minimize 

the contribution of the 3
rd

 and 5
th

 modes. 

4.2. Example B 

Next, it is of interest to investigate the cantilever aluminum beam in Fig.3 of Example A, when the laterally-resonant 2-DOF 

resonators in Fig.2c are replaced with the 2-DOF resonators in Fig.2b, as shown below:  
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Fig.10 Elastic LR beam with resonators in Fig.2b 

The resonators in Fig.10 are given the same mass/stiffness/damping properties of those in Fig.3, with the aim of assessing 

whether and to which extent the different arrangement of masses/springs/dashpots within the two types of resonators may affect 

band gaps and dynamics of the beam. Therefore, following Example A, N=8, a=0.02 m, m10.01 kg, m20.005 kg, k1k210
5
 

Nm
1

 and c1c20.1 Nsm
1

 (see Fig.2b). 

For the infinite beam with no damping, Fig.11 shows two band gaps in the frequency ranges 386-516 Hz and 930-942 Hz. It is 

apparent that the band gaps of the beam with resonators in Fig.2b, see Fig.11, are very different from those of the beam with 

resonators in Fig.2c, see Fig.4. Indeed, position as well as width of the band gaps are very different, demonstrating that various 

arrangements of masses/springs/dashpots may result in very different elastic wave attenuation properties of the LR beam. 

 

Fig.11 Band gaps of the LR beam in Fig.10. 

The proposed method is now applied to calculate transmittance and FRF of the cantilever beam in Fig.10. Fig.12 shows that, 

as expected, the transmittance is below 1 within the band gaps; however, values within the first band gap are significantly smaller 

than those within the second band gap and, in this respect, the behavior of the beam in Fig.10 proves quite different from the 

behavior of the beam in Fig.3.  

a

L Na

i
1

t
e
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Fig.12 Transmittance of the beam in Fig.10: with resonators (blue) and without resonators (red). 

Further, Fig.13 demonstrates that the FRFs for the tip deflection under a harmonic load at the free end, as computed by the 

exact Eq.(18) and the approximate Eq.(36) using M=7 modes, are in a perfect agreement (pertinent complex eigenvalues are in 

Table 2), confirming once again the accuracy of the proposed method. 

 

Fig.13 FRF for tip deflection of beam in Fig.10 under a unit harmonic force applied at the free end: Eq.(18) (blue); Eq.(36) with M=7 modes 

(black dots); Eq.(34) for modal FRFs (color dashes); beam without resonators (red). 

Table 2. Eigenvalues and damping ratios for modes of beam in Fig.10. 

Mode Eigenvalue Damping Ratio 

1  1835.184 + 0.822309i 0.000448 

2  2404.434 + 2.852372i 0.001186 

3  4386.564 + 5.289262i 0.001206 

4  6029.053 + 17.46516i 0.002897 

5  21692.93 + 3.865147i 0.000178 

6  60314.17 + 3.808406i 0.000063 

7  118101.2 + 3.891800i 0.000033 

 

Considering again Fig.13, it is recognized that, within the band gaps, the FRF is generally well lower than the corresponding 

one of the beam without resonators. However, the FRFs of the beam with and without resonators are very close to each other at 

the right end of the second band gap. This behavior appears similar to that of the beam in Fig.3 but, in this case, is essentially 

attributable to the 3
rd

 and 4
th

 modes.  

This conclusion is confirmed by Fig.14 showing the time response of the beam to a unit sine force at the free end, with 

frequency equal to 942 Hz, i.e. the frequency at the right end of the second band gap. In accordance with the results in Fig.13, the 

beam response is found to be mainly dominated by 3
rd

 and 4
th

 modal contributions, which cause the response of the beam with 
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resonators (black line in Fig.14) to attain the order of magnitude of the beam response without resonators (Fig.9). In this case, 

therefore, the damping coefficients of the resonators should be appropriately selected so as to minimize the contribution of the 3
rd

 

and 4
th

 modes. The conclusion is that the insight provided into the contribution of single modes to the beam response, in both 

frequency and time domain, is a most relevant advantage of the proposed method. 

 

Fig.14 Time response for tip deflection of beam in Fig.10 under a 942-Hz unit sine force at the free end, for increasing number of modes M in 

Eq.(22): M=1 (blue dashes), M=3 (yellow dashes), M=5 (pink dashes) M=7 (black). 

5. Conclusions 

This paper has presented a comprehensive framework for the dynamic analysis of elastic LR infinite and finite beams. On 

demonstrating that the reaction force of a typical resonator depends on the deflection of the application point via a proper 

frequency-dependent stiffness, a transfer matrix method has been used to calculate the band gaps of the infinite beam, while for a 

finite beam the exact frequency response and exact modal responses have been derived in analytical form by a generalized 

function approach. The solutions hold for any number of resonators, proportional and non-proportional damping, providing a 

valuable tool to calculate the beam response to arbitrary loads and modal contributions for design purposes.  

6. Appendix 

Following ref. [14], matrix W in Eq.(18) is given as (-dependence is omitted for brevity): 
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   (A.1) 

where ℕq
(j)

 is the set including all possible q-ples of indexes (j, m, n, r, s) such that j>m>n>r>s, being 2 ≤ q ≤ j.  

In Eq.(A.1), J(x,xj)  is the 4×1 vector 
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J                                                  (A.2) 

while J(xj,xk) denotes the scalar function J(xj,xk)j()JV,P(xj,xk). Terms in J are derived using the beam equations 
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                                     (A.3c,d) 

starting from the following particular integrals for deflection associated with a unit force at arbitrary x=x0:  

          , 0 0 0 0, sinh sinV PJ x x x x x x H x x         (A.4) 

where  ()2
1

(EI)
1/43/43/2

 and () (EI)
1/41/41/2

. Again in Eq.(A.1), (x) depends on the solution to the 

homogeneous equation associated with Eq.(16), i.e.  
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Ω   (A.5) 

while (xs) in Eq.(A.1) is the row vector (xs)j()((xs))1, with ( )l indicating the l
th

 row of the matrix within 

parenthesis. 

Finally, in Eq.(18) 
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 (A.6) 

where 
(f)

(xs) is the scalar function 
(f)

(xs)j()F1(x,), with F1 denoting the 1
st
 component of vector 

     
0

, ,
L

x x y f y dy  F J                                                     (A.7) 
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