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Abstract Models that captures the common structure of an
object class have appeared few years ago in the literature
(Jojic and Caspi in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 212–219, 2004; Winn and Jojic in Proceedings
of International Conference on Computer Vision (ICCV),
pp. 756–763, 2005); they are often referred as “stel models.”
Their main characteristic is to segment objects in clear, often
semantic, parts as a consequence of the modeling constraint
which forces the regions belonging to a single segment to
have a tight distribution over local measurements, such as
color or texture. This self-similarity within a region in a sin-
gle image is typical of many meaningful image parts, even
when across different images of similar objects, the corre-
sponding parts may not have similar local measurements.
Moreover, the segmentation itself is expected to be consis-
tent within a class, although still flexible. These models have
been applied mostly to segmentation scenarios.

In this paper, we extent those ideas (1) proposing to cap-
ture correlations that exist in structural elements of an image
class due to global effects, (2) exploiting the segmentations
to capture feature co-occurrences and (3) allowing the use
of multiple, eventually sparse, observation of different na-
ture. In this way we obtain richer models more suitable to
recognition tasks.

A. Perina (�) · N. Jojic
Microsoft Research, Redmond, WA, USA
e-mail: alessandro.perina@gmail.com

A. Perina · M. Cristani · V. Murino
University of Verona, Verona, Italy

M. Cristani · V. Murino
Italian Institute of Technology, Genova, Italy

We accomplish these requirements using a novel ap-
proach we dubbed stel component analysis. Experimental
results show the flexibility of the model as it can deal suc-
cessfully with image/video segmentation and object recog-
nition where, in particular, it can be used as an alternative
of, or in conjunction with, bag-of-features and related clas-
sifiers, where stel inference provides a meaningful spatial
partition of features.
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1 Introduction

Understanding the semantics of an image is one of the most
challenging problems in computer vision. A useful object
recognition system needs to recognize thousands of objects
and learn about new object classes from a relatively small
number of examples. It is also essential that learning does
not require any human involvement in annotating training
images. Image models thus need to encode invariances that
would hold across all images, as this reduces the amount of
training data.

One of the greater problems in recognizing object classes
is that there can be significant changes in appearance from
one object instance to another. Real-world imaging condi-
tions and the characteristics of the sensing devices often re-
sult in strong fluctuations of pixel intensities, even for sim-
ilar objects. In addition, the changes in appearance may be
due to the variation in material properties among instances
of an object. For all these reasons, images are often repre-
sented by indices referring to a set of possible local features,
more or less invariant to illumination conditions, e.g. SIFT
(Lowe 1999), Harris affine regions (Harris and Stephens
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Fig. 1 (a) Bag of words models extract features from the whole im-
ages disregarding the spatial information; an histogram of expected
feature distribution is then calculated pooling together the features
from all the samples. Bag of words is equivalent to stel component
analysis with S = 1. (b) The adaptive-learned feature organization pro-
vided by Stel Component Analysis

1988), Maximally Stable Extremal Regions (Matas et al.
2002), and SURF (Bay et al. 2006) to name a few.

In most of the cases, the spatial configuration of the fea-
tures is not considered: this is the case of bag of words
(BoW) models (Fei-Fei and Perona 2005; Dance et al.
2004). In such models, each image class has a distinctive
distribution of features, sometimes called “palette”. This
distribution is typically found in most instances of the class,
although the image locations in which these features are
found may substantially vary. In any case, the distribution
over the feature indices describes an entire image class.
Examples of such models are the generative Naive Bayes
classifier (Dance et al. 2004), or the generative hierarchical
models presented in Fei-Fei and Perona (2005), Hofmann
(1999).

An improvement over the bag of words models are the
index map models (Jojic and Caspi 2004; Winn and Jo-
jic 2005). Their basic assumption is that within an object
class, each image exhibits local intensity patterns that are
repeated in nearby image locations in a similar relative ge-
ometric layout (Alexe et al. 2010). In other words, although
the intra-class appearances of the objects may vary, the ob-
ject shape is consistent, and the variability of color/texture
within a single instance of an object is limited. The literature
refers to this assumption as “self-similarity”. Beside object
class modeling (Jojic and Caspi 2004; Winn and Jojic 2005;
Bagon et al. 2010), it has also found its way into object
recognition in the form of local (Shechtman and Irani 2007)
or global (Deselaers and Ferrari 2010) descriptors.

Under this assumption, another approach to invariance to
appearance variation can be used: palette invariance through
index map modeling.

We formally define index maps as ordered sets of indices
si ∈ 1, . . . , S, linked to spatially distinct areas i ∈ 1, . . . ,N

of images where N is the number of such image areas, e.g.,
pixels (see Fig. 2a). We define an area of an image with the
same assigned index s as a structure element.

These indices point to a table of S possible local mea-
surements, referred to as palette. In such model the feature
palette is pertinent only to a single instance of a class, while
the indexing configuration is assumed to be relevant to the
entire class of images.

While the index map models has the advantage over BoW
models in terms of capturing the spatial structure of images,
it does not deal with (1) the possibility of estimating con-
sistent palettes across images of the class (e.g., in a video
sequence, subsequent images do have similar palettes), and
(2) possible dependencies among the indices si .

We address both problems by proposing a new model,
named Stel Component Analysis (SCA). The model of index
variations described above is so enriched by this analysis
which, inspired by principle component analysis and other
subspace methods, captures correlated variations in discrete
indices through a model of blending of several component
index maps based on real valued weights y. This is visually
described in Fig. 2c, where three components (k = 1,2,3)
are shown and where the blending of them allows for a better
agreement of the observed facial image with the model.

In more complex categories, the proposed model benefits
from learning a prior over individual image palettes, which
is similar to what is achieved in the BoW models, except
that these appearance models can now be part-specific. In
Fig. 1b, the SCA model is applied to the more complex cat-
egory of roof images, where the prior over individual image
palettes is represented by different histograms over image
features in the three different stels. This example illustrates
the advantages of the model presented here over both BoW
and index models. Where the image class does indeed have
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Fig. 2 (a) Illustration of an index map. (b) Probabilistic index map
with a palette of size S = 5—a special case of Stel Component Anal-
ysis with K = 1. (c) Stel component analysis, Bayesian network and
inference illustration. SCA with K = 3 components allows modeling
spatially correlated changes in discrete stels. On the bottom, the in-
ferred stels q(s), the image palettes, as well as the component strengths

yk for three different faces with varying poses. The strengths yk turn
out to be linearly correlated with the pose angle and outperform PCA
as pose estimators. Site-specific blending variables a allow nonuni-
form mixing of components. Their posterior distributions q(a) are also
shown

consistent features across its instances, our model, captures
this property through a prior over the palettes. But, unlike
BoW models, it keeps separated the features typical of dif-
ferent image parts, and the more consistent segmentation for
modeling the image class is inferred jointly with these fea-
ture distribution through learning of an SCA model.

In summary, this paper proposes a novel generative
model, Stel Component Analysis (SCA), built upon the
probabilistic index map (Jojic and Caspi 2004). By means of
its components, SCA captures correlations of pixels, placing
an image in the simplex defined by its component mixing
strengths yt , so allowing a dramatic increase of the model-
ing capability.

Stel component analysis, and in particular the effect of its
components, is tested on several image parsing tasks prov-
ing its capabilities and flexible usages. In particular, (1) we
analyze object class modeling power of SCA, (2) we use
the image partitions to group features into meaningful sets

for a better use with discriminative classifiers, (3) we group
the stels to perform a foreground extraction or segmentation
tasks, (4) we use the stel partitions q(st ) as feature to capture
the global self-similarity of objects.

A previous version of this paper has appeared in Jojic
et al. (2009), this paper extends it in several aspects. We
extend the experimental section using Caltech 101 instead
of an handmade dataset. We compared SCA on image seg-
mentation with (Winn and Jojic 2005; Alexe et al. 2010;
Rother et al. 2004) and we evaluated SCA in independent
one-vs-all classification tasks.

As technical novelty, we introduce here the derivation for
the conjugate priors on the three kind of palette considered
and we added a Dirichlet prior on the components yk , an
overall prior on the stels useful to automatically select the
number of stels, and a Markov Random Field prior to prefer
that near pixels had the same label. The benefits of these pri-
ors will be discussed in the following. Moreover, as further
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novelty, we introduce the Stel Kernel, which represents the
missing piece of research between the “S-Bags of words”
paradigm introduced in Jojic et al. (2009), and our follow-
ing work (Perina et al. 2010).

The remainder of the paper is organized as follows. Sec-
tion 2 presents the related work. The details of the architec-
ture of the method and the learning algorithm are presented
in Sect. 3. Subsequently, in Sect. 4, experimental results are
illustrated. Finally, a critical discussion concludes the paper
in Sect. 5.

2 Related Work

Previous probabilistic approaches to learning and under-
standing object classes can be divided based on how they
deal with spatial arrangement of local features.

In recent years, bag of words models (Blei et al. 2003),
have been successfully used for vision tasks (Fei-Fei and
Perona 2005; Bosch et al. 2006; Dance et al. 2004; Willam-
owski et al. 2004; Jojic et al. 2003; Cristani et al. 2008).
These models are particularly attractive due to the computa-
tional efficiency and simplicity achieved by ignoring spatial
relationships of the image patches or object parts. After ex-
tracting the features from images, the features are clustered
and a discrete “codewords” is assigned to each feature de-
scriptor. An image is then described by a histogram over the
codebook entries.

Topic models (Blei et al. 2003; Hofmann 2001), probably
the most famous example among BoW approaches, assign a
topic to each codeword based on their co-occurrence in im-
ages. A representation that lies between the template and the
BoW is the epitome (Jojic et al. 2003, 2010; Ni et al. 2009).
It is learned by compiling patches drawn from input images
into a condensed image model. The balance between visual
resemblance and generalization of image video can be ad-
justed by the sizes of epitome and patch. Subsequently, Chu
et al. (2010), Cheung et al. (2007) present improved epitome
models which combined the patch appearance information
with some spatial information.

Finally, in Perina and Jojic (2011) the authors present the
Counting Grids. The paper shows how much of the variabil-
ity in vision datasets is better modeled in terms of multidi-
mensional thematic shifts, rather than outright topic mixing
proper of topic models (LDA, Blei et al. 2003). Similarly to
epitomes, the features are arranged in a window, which is
then embedded in some hypothetical bigger scene; certain
features are dropped and others added as a consequence of
movement in this scene.

In contrast other models explicitly encode spatial infor-
mation, often at a considerable computational cost. Among
these methods, we can identify methods that keep spatial re-
lationships between feature locations and method that spa-
tially organize the features.

In Sivic et al. (2005) is presented a strategy aimed at
forming vocabularies from pairs of nearby features called
“doublets” or “bigrams”. This method, beside taking co-
occurrences into account, captures some geometric invari-
ance, but it is too demanding since many doublets have to
be estimated. The approach proposed in Leibe et al. (2004)
learns a codebook of local appearances that contains in-
formation about which local structure may appear on ob-
jects of a particular class. It also specifies where a particu-
lar codeword may occur on the object. Despite being invari-
ant to rigid transformations, it needs additional supervision
through human-supplied object positions and ground truth
segmentations.

Generative part-based models (Quattoni et al. 2004; We-
ber et al. 2000; Savarese and Fei-Fei 2007; Su et al. 2009;
Sun et al. 2009; Sudderth et al. 2005), are very nice con-
ceptually and learnable from unsegmented images, but they
require a computationally demanding combinatorial hypoth-
esis search. The most famous example is the constellation
model (Weber et al. 2000) which attempts to represent an
object class by a set of different parts under mutual geomet-
ric constraints. The same idea was later used to represent
and learn generic 3D object categories (Savarese and Fei-
Fei 2007; Su et al. 2009; Sun et al. 2009).

In Sudderth et al. (2005), it is argued that multi-object
recognition systems should be based on models which con-
sider the relationships between different object categories.
The approach builds upon the constellation model and it
demonstrates that objects classes can be described in terms
of shared parts without increasing the size (hence, the com-
plexity) of the representation.

It is also possible to model where the features are present
in terms of absolute image locations (Cao and Li 2007;
Marszałek and Schmid 2006; Winn and Jojic 2005; Lazeb-
nik et al. 2006; Vogel and Schiele 2007; Perina et al. 2010;
Jojic and Caspi 2004; Jojic et al. 2004). In Cao and Li (2007)
propose a generative model, called Spatial-LTM, which as-
signs topics to an images by incorporating meaningful spa-
tial coherency among the patches. The idea is that pixels
should share the same latent topic assignment if they are in
a neighboring region with similar appearance.

The well-known Spatial Pyramid Kernel (Lazebnik et al.
2006), extends the BoW paradigm providing a locally or-
derless representation at several levels of resolution. This is
obtained by grouping the features following a hierarchical
fixed partition of the images.

Marszałek and Schmid (2006) describe a method to infer
the object-background segmentation of test images, starting
from labeled training images (i.e., the object extraction mask
is known). It classify objects with SVM by weighting the
features according to the segmentation.

Index map models (Jojic and Caspi 2004; Winn and Jo-
jic 2005; Jojic et al. 2004) also fall in this category. These
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models aim at capturing the consistent spatial layout of the
classes (see Fig. 2, bottom). The probabilistic index map
(PIM) approach (Jojic and Caspi 2004; Jojic et al. 2004) re-
laxes the hard assumption of the index maps that indices that
model the same location across the images should be equal,
by allowing them instead to following the same distribution.
For an example see Fig. 2a (index map).

In this model, each image location i is associated with a
distribution over indices p(si = s) and each image has its
own index map q(st

i )
1 governed by p(si = s). These indices

point to a table of S possible local measurements, referred
to as palette.

The PIM model allows for complete freedom of choos-
ing in image-specific color palettes, and thus full palette-
invariance of the indexing model. Figure 2b illustrates a PIM
model and it emphasizes the difference between the prior
over stels p(s) and the inferred indices for individual images
q(st

i ), which depend on both the prior and the self-similarity
properties of an individual image.

In Winn and Jojic (2005), the authors build their model,
called LOCUS, on the same palette invariance assumption
of PIM (Jojic and Caspi 2004), proposing the use of a more
expressive color distribution in the entries of the palette, ex-
ploiting both appearance and shape (edges), and learning
complex priors that capture appearance, edge and color dis-
tribution of a class.

Another example of index map model is Perina et al.
(2010), where a Latent Dirichlet Allocation model is learned
in each segment.

The ideas behind Stel Component Analysis which we
present in this paper extend the literature on object class
probabilistic models in several respects. First, SCA deals
with multiple and sparse features generalizing (Winn and Jo-
jic 2005; Jojic and Caspi 2004) which only relies on dense
discrete edge/color and continuous appearance, respectively.
We also extended the basic appearance models (palettes) of
PIM, presenting much more complex palettes that can cap-
ture segments with a multi-modal feature distribution. In
contrast to Jojic and Caspi (2004), we cope with the full
color invariance, learning the appropriate conjugate priors,
that serve to capture interesting co-occurrence of features in
the stels. For example, see in Fig. 1b how the third stel for
the chimney class models the sky, and many (all) images
will present a “bluish” palette in Λs=3.

Second, we consider the index maps more broadly than
several previous techniques for modeling spatial correla-
tions in index map-like approaches (Shotton et al. 2006;
Fei-Fei and Perona 2005; Lazebnik et al. 2006; Jojic and
Caspi 2004; Winn and Jojic 2005). Previous models have
mostly been limited by three basic characteristics. In one

1This modeling is due to the variational inference that has been em-
ployed, see Sect. 2.

class of approaches, a Markov random field is used to de-
fine several potentials governing spatial local correlations
among few image features (e.g., Shotton et al. 2006). In
the second class of methods, a spatial distribution in the
image is given for each feature, and this imposes prob-
abilities of seeing a particular index in a particular spot
(Fei-Fei and Perona 2005; Lazebnik et al. 2006). In the
third one, site-specific distribution over indices, assuming
independence in index variation across image locations, are
enriched with transformation and deformation models or
are used within a mixture model (Jojic and Caspi 2004;
Winn and Jojic 2005). Stel component analysis is more flex-
ible than these models, as it captures higher-order statistics
than Markov random fields, and can adapt, through its com-
ponents to a variety of image deformations without param-
eterizing them ahead of time, as in Jojic and Caspi (2004),
Winn and Jojic (2005).

3 Stel Component Analysis

3.1 The Generative Model

To make image models invariant to changes in local mea-
surements, while sensitive to changes in image structure, a
measurement zt

i (e.g. pixel intensity or feature) at location
i = (i, j) in the t-th image of a certain class (object category
or a video clip, for instance), is considered to depend on a
hidden index st

i ∈ {1, . . . , S}, Fig. 2b:

p
(
zt

i |st
i = s

) = p
(
zt

i |Λt
s

)
. (1)

The s-th structure element (stel) indicates pixels i|st
i = s

which follow a shared distribution over local measurements
(palette) with parameters Λt

s . In the example in Fig. 2c,
each palette entry defines a single Gaussian model with its
mean and variance over intensity levels, Λt

s = {μt
s,φ

t
s}, as

was previously done in Jojic and Caspi (2004). The inferred
means μt

s of such palette entries for several facial images
are shown in the lower part of each stel. Palettes Λt

s are
considered hidden variables in the model, each defining a
limited diversity of local measurements within each image.
However, the stels are generated from a single distribution
shared among all images of the class p({si}):
p
({si}

) =
∏

i

p(si). (2)

To visualize the class stel distribution, in Fig. 2b we show
the estimated p(si = s) for s ∈ {1,2,3,4,5} as five images
where in the s-th image each location indicates the proba-
bility of that pixel being mapped to index s for the face pose
dataset. The image locations that tend to have similar colors
within each individual single image (but not across images)
are grouped into stels.
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The pixel intensity zi tends to be uniform within a stel in
a single image, and can be inconsistent across different im-
ages, as they may be darker or brighter, for instance. How-
ever, the stels are relatively consistent over facial images and
they represent interesting image structure beyond intensity
levels. For example, stel s = 2 captures parts of forehead
and cheek that have similar surface normals, while the eye-
brows and the hair are grouped into stel s = 3, despite the
variability in hair color across images.

The PIM model assumes independence of distributions
over indices across different image locations, ignoring the
correlations in index variation which often arise even from
simple structural variation in the image, such as variation
in face proportions, or out of plane head rotation. In mod-
els of variation in real valued, rather than discrete, arrays,
such correlations are often captured using a subspace model,
e.g. PCA, which achieves this through a linear combination
of several components. Since we are concerned here with
modeling a distribution over discrete indices, we develop a
discrete analogue to eigen images, similar in spirit to multi-
nomial PCA (Buntine 2002), non-negative matrix factoriza-
tion (Lee and Seung 1999), latent Dirichlet analysis models
(Blei et al. 2003; Lee and Seung 1999) or the generalization
of PCA presented in Collins et al. (2001), but with some im-
portant distinctions. Our model is a full probability model
of the observed data, meant to capture spatial structure, and
thus it is designed for ordered index sets, and it also allows
spatially nonuniform mixing of the components.

In stel component analysis the components rk , k ∈
{1, . . . ,K} are of the same form as (2), that is

rk
({si}

) =
∏

i

rk(si). (3)

An example of learned components is shown in Fig. 2c.
These components are combined to define the distribution
p({st }) using component strengths yt

k ∈ [0 . . .1], so that∑
k yt

k = 1. The components strengths are real valued hid-
den variables for image t , rather than component priors in a
mixture model as in a mixture of probabilistic index maps.
Each image is thus defined by a hidden point in the simplex
defined by

∑
k yt

k = 1, and this point will rarely fall in a ver-
tex as illustrated in the two inference examples of Fig. 2c,
whereas in a mixture model, each image will have a discrete
pointer to a single component. In other words, while stel
component analysis blends the K components, a mixture of
K-PIMs would chooses one of the K components.

To achieve this, as well as to allow spatially nonuni-
form mixing of components based on real valued compo-
nent strengths, we add a layer of discrete hidden variables
ai ∈ {1, . . . ,K} which act as mixture component indica-
tors, but only locally for their corresponding image loca-
tions i (see the Bayesian network of SCA in Fig. 2c). Hid-
den component strengths yk , shared across the pixels of an

image, then act as prior probabilities in these local mixture
models:

p
({

st
i

}|{at
i

}) =
∏

i

p
(
st

i |at
i

)

p
(
st

i |at
i = k

) = rk
(
st

i

); p
(
at

i = k|yt
k

) = yt
k.

(4)

By summing over hidden variables a, a desired mixing of
components with real valued weights yt

k is achieved to form
a differently mixed stel distribution for each image. Since
different hidden variables ai can have different values (and
thus choose different components rk in different parts of the
image), the mixing is spatially nonuniform, and each vari-
able yk influences only the total number of image locations
i that choose rk(si) as the local prior on the index. This al-
lows dramatically more flexible mixing than in PCA models,
making object part alignment across images much easier to
achieve without global image transformations.

Again, the use of the layer of hidden variables ai makes
the model different from a simple mixture of site-specific
models. Index probabilities from different components are
blended differently in different parts of the image, which
simple mixture models do not allow. This gives the model
more flexibility in parsing images, and, as desired, allows
for variable mixing of the components for different images
to model smooth geometric changes (see Fig. 2c).

The joint distribution over all observed variables z = {zt
i },

and hidden variables h = {{yt
k}, {at

i , s
t
i }, {Λt

s}} is

p(z,h) =
∏

t

(
p
({

yt
k

}K

k=1

)
p
({

Λt
s

})∏

i

p
(
zt

i |st
i ,

{
Λt

s

})

×
∏

k

(
yt
krk

(
st

i

))[at
i =k])

)
(5)

where [·] is the indicator function. The prior on yk can be
kept flat (as in our experiments), or learned in a Dirichlet
form.

3.2 Inference

Following the variational inference recipe, we (i) intro-
duce a tunable distribution q(h) over the hidden vari-
ables/parameters, (ii) define as a bound on the log likeli-
hood − logp(z), the negative free energy −F = ∑

h q(h) ×
log q(h)

p(z,h)
, and (iii) pursue the strategy of minimizing this

free energy iteratively. We used the simplest of the algo-
rithms from this family, where the approximate posterior
distribution q(h) is fully factorized

q(h) =
∏

k

q(rk)
∏

i,t

q
(
at
i

)
q
(
st
i

)∏

t

q
(
yt
k

)
q
({

Λt
s

})
(6)

with q(rk), q(yt
k) and q(Λt

s) being Dirac functions centered
at the optimal values (or vectors) r̂k , ŷk

t , {Λ̂t
s}. As a result,
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Fig. 3 (a) Illustration of the learning process across the iterations; we
show the posterior distributions (q(s), q(a), yk and Λs , we used black
text), the “addends” that compose them (blue text) and the model pa-

rameters. (b) Several images (z) and their components strength (yk ).
The final parameters are boxed in the right-bottom most corner of
part (a)

the (approximate) inference reduces to minimizing the fol-
lowing free energy,

F =
∑

t

p
({

Λ̂t
s

}) +
∑

t,i,s

q
(
st
i = s

)
logp

(
zt

i |st
i ,

{
Λ̂t

s

})

+
∑

t,i,k

q
(
at
i = a

)
log ŷt

a

+
∑

t,i,a,s

q
(
at
i = a

)
q
(
st
i = s

)
log r̂k

(
st
i = a

)
, (7)

which is reduced by the following steps, also illustrated in
Fig. 3a:

1. The palettes for different stels in a single image t are
assigned so as to balance the need to agree with the
prior p(Λ) with the statistics of the local measurements
within a (probabilistic) stel in the image:

Λ̂t
s = arg max logp

({
Λ̂t

s

})

+
∑

i,s

q
(
st
i = s

)
logp

(
zt
i |st

i = s,
{
Λ̂t

s

})
. (8)

More details will be given below, when we will introduce
complex palettes.

2. Stel segmentation of image t is based on the similarity
of observed local measurements to what is expected in a
particular stel s according to the estimated palette Λ̂t

s in
this particular image, as well as the expected stel assign-
ment based on mixed components rk(s). These mixed
components are mixed differently in different parts of the
image, and the mixing is defined by q(a):

q
(
st
i = s

) ∝ p
(
zt
i |st

i ,
{
Λ̂t

s

})
e
∑

a q(at
i =a)r̂a(st

i =s). (9)

To avoid numerical underflow, it is useful compute
log q̃(s) in the log-domain and then normalize. This re-



248 Int J Comput Vis (2012) 100:241–260

duces to

log q̃
(
st
i = s

) = logp
(
zt
i |st

i ,
{
Λ̂t

s

})

+
∑

a

q
(
at
i = a

)
r̂a

(
st
i = s

)
. (10)

3. The spatially nonuniform component mixing, defined by
q(a), is updated so as to balance the agreement with the
overall strength yt

a of the component a in the particular
image t , with the agreement of the stel assignment with
the stel component ra :

q
(
at
i = a

) ∝ yt
ae

∑
s q(st

i =s) log ra(st
i =s). (11)

As for the previous update rule, to keep numerical preci-
sion, one should work in the log-domain.

4. The stel component strengths ya are assigned proportion-
ally to their use in the image:

yt
a ∝

∑

i

q
(
at
i = a

)
. (12)

5. The stel components ra are updated to reflect the assign-
ment statistics over all images:

ra(s) ∝
∑

t

q
(
at
i = a

)
q
(
st
i = s

)
. (13)

Iterating these updates results in learning the model param-
eters, as well as inferring the hidden variables, e.g., the con-
sistent parsing of images from a class into its stels. With
consistent we mean that the same stel represent the same
semantic concept in all the images; for example stel 3 in
Fig. 2b represent the hair, stel 3 in Fig. 1 always represent
the sky, etc.

Figure 3a, also shows the behavior of the learning al-
gorithm; palettes and segmentations (q(s)) are immediately
learnt, and they converge in few iterations (see posterior at
iteration 10 in Fig. 3). After that the model separates and
learns the K components to better fit with the data; during
this time, the segmentations are slightly refined to capture
finer details, until convergence which usually occurs in 60–
100 iterations. Note in fact, how in Fig. 3 the two compo-
nents are nearly identical after 10 iterations, while they look
very different at convergence.

The energy minimization procedure is illustrated with Al-
gorithm 1. To speed-up the inference process, we performed
Eint = 2,3 internal iterations of the E-step to gain confi-
dence about q(s) and the palettes. If palette priors are learnt,
re-initializing every 10–20 iterations the palettes, possibly
using the prior as initial guess, also speeds-up the learning
procedure.

To avoid local minima, the palette variances/probabilities
and the prior and posterior probabilities on the random vari-
ables s, a and yk were not allowed to drop below a small
constant (10−2/10−100).

Algorithm 1: Free energy minimization

Input: Images of a class of objects, zt

Output: Class description rk(s), p(Λ)

while Convergence do
% E-Step;

foreach Sample t = 1 . . . T do
foreach n = 1 . . .Eint do

1. Update q(s) (24);
2. Update the palette Λs (Sect. 3.3);

3. Update q(a) (22);
4. Update yk (12);

% M-Step;
5. Update rk(s) (13);
6. Update the priors (See Sects. 3.3 and 3.4);
7. Compute the Free Energy F (7);
8. Check for convergence;

10. Return rk(s) and p(Λ);

3.3 Local Measurements zt , Palette Models p(zt |Λt
s) and

Palette Priors p(Λs)

The local measurements zi may vary depending on the ap-
plication, and can be scalar or multidimensional, discrete
or real valued. To obtain the face model in Fig. 2, as
in (Jojic and Caspi 2004), we assumed that (i) the local
measurements are simply the real valued image intensities,
(ii) the palette model Λs = (μs,φs) is Gaussian, p(zt

i |st
i =

s, {Λ̂t
s}) = N (zt

i;μs,φs), (iii) the prior on the palette Λs is
kept flat. The palette update is therefore based on sufficient
statistics over intensities within stels in individual images,
that is

μt
s ∝

∑

i

q(si = s) · zt
i

φt
s ∝

∑

i

q(si = s) · (zt
i − μt

s

) · (zt
i − μt

s

)T
.

(14)

Alternative local measurements include color, disparity,
flow, SIFT or some other local features (Mikolajczyk and
Schmid 2004). As more expressive palette models, we in-
troduce here the histogram representation for discrete local
measurements, and the mixture of Gaussians for the real
valued measurements.

For the case of discrete measurements, we define the
palette as a histogram over C possible observations {ζj }, j ∈
{1, . . . ,C}. The observation distribution is multinomial with
parameters uj = p(z = ζj ), and the palettes Λs = {us,j } are
defined by using these probabilities. With a flat prior on Λ,
(14) reduces to

ut
s,j ∝

∑

i

q(si = s)
[
zt
i = ζj

]
. (15)

When measurements consist of different modalities, which
are generally uncorrelated at the local level when viewed
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without regard for the high level context, they are combined
by setting

p(zi |s) =
∏

m

p(zm,i |Λm,s) =
∏

m

∏

j

u
[zm,i=ζm,j ]
m,s,j (16)

where m denotes different modality, for example available
pixel label and discrete texture features associated with each
pixel.

To avoid complete palette invariance, we also add a
Dirichlet prior on the histogram palette models:

p(Λ) = p
({uj }

) = 1

Z({αj })
∏

j

u
αj −1
j , (17)

which is estimated from the data iteratively together with
other updates. The effect of this prior on the palette updates
in (15) for different modalities m is ut

m,s,j ∝ αm,s,j − 1 +
∑

i q(si = s)[zt
m,i = ζm,j ], and the appropriate update on

palette priors αj can be shown to be:

{α̂s,m,j } = arg max
∑

t

(αs,m,j − 1) logum,s,j ,

subject to
∑

u

1

Z({αj })
∏

j

u
αj −1
j = 1.

(18)

The addition of the (learnable) prior over palette entry al-
lows the model to discover and exploit consistency of local
measurements across instances of a class, if there is any.

In case of real valued measurements of arbitrary dimen-
sionality, the palette entry is defined by a mixture of C Gaus-
sians, and the appropriate palette priors are added similarly
as in the case of discrete measurements. Being a mixture,
each palette entry Λs,c = {πs,c,μs,c, φs,c}, and thus the gen-
erative model, has a hidden variable ct

i pointing to one of
the C Gaussians, which is linked to the observation in the
Bayesian network.

With a flat prior on Λ, (8) reduces to

μt
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∑

i
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∑
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∑
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q
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i = s, ct

i = c
)

(19)

where q(st
i = s, ct

i = c) can be further factorized like in (6),
and πt

s,c are the mixing proportions.
The appropriate priors in this case are Gaussians with pa-

rameters μ0s,c ,ψ0s,c over the means, scaled inverse Gammas
of parameters as,c,bs,c over the variances and Dirichlet dis-
tributions βs,c over the mixing proportions. The effect of the

prior on the palette update rules turns to be
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(20)

Like in the previous cases, each prior is estimated from the
data; μ0s,c ,ψ0s,c are equal to the mean and the variance
of the palette mean μs,c respectively, as,c,bs,c can be esti-
mated fitting a Γ -function, and the update for β is the same
as in (18).

An example of this learned prior can be found in Fig. 5,
together with the results related to the video segmentation.

When raw local measurements are real valued we can use
both discrete and real valued models. The former is achieved
by discretizing the measurements by a separate clustering
of local measurements to create a codebook. In our exper-
iments, mixture modeling within palette entries was supe-
rior to a forced discretization of features outside the full
model (as also confirmed by Boiman et al. 2008), but this
increased the computational cost. Finally discrete and real
valued modalities can be combined, in the same way the
multiple discrete modalities are (see for example Ni et al.
2009).

It is worth mentioning that the use of high dimensional
features (e.g. filter bank responses) may cause the observa-
tion likelihood to overwhelm the model rk(s). This is due to
the fact that so derived features tend to be correlated, and so
the model’s treatment of them as independent variables leads
to over-counting the evidence. The remedy to this is to either
use dimensionality reduction (PCA, pLSA or LDA depend-
ing on the nature of the observation) or to scale the likeli-
hood terms as is often done in speech research. Actually, in
the latter case, it is a standard practice to raise the observa-
tion likelihood in HMMs to a power less than 1, before infer-
ence is performed on the test sample, as the acoustic signal
would otherwise overwhelm the hidden process modeling
the language constraints (Deng and O’Shaughnessy 2003).

3.4 Stel and Components Priors

The selection of the number of components K and the num-
ber of stels S is the first choice to do before learning a
SCA’s model. Despite this choice is intuitive and not critic,
we introduce some prior to help; the idea is to overestimate
S and K , and let the priors annihilate some of the unused
stels/components.
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The number of components K depend on the variability
of the viewpoints/scales in the images of the objects. Nev-
ertheless also using 2 components, we are guarantee to do
better than Winn and Jojic (2005), Jojic and Caspi (2004).
Empirically, to avoid overtrain, at least 10–20 images per
component are needed.

When a larger training set is available, we can introduce
a Dirichlet prior on yk , similar in spirit to LDA (Blei et al.
2003).

p
({

yt
k

}) = 1

Z({ωk})
∏

k

(
yt
k

)ωk−1
. (21)

At this point, if SCA has sufficient components to model
the data well, it becomes relatively invariant to an increase
in K i.e., the additional components should be seldom used
(Wallach et al. 2009). The update (12) turns to be

q
(
at
i = a

) ∝ (
yt
ae

∑
s q(st

i =s) log ra(st
i =s)

)ωk−1
. (22)

Differently from K , the number of stels S, also depends
on the particular object class. Before discussing the pri-
ors, it is important to note that since objects have differ-
ence appearance from their surroundings (Alexe et al. 2010;
Liu et al. 2007); this is the same assumption upon which re-
lies (Winn and Jojic 2005). Therefore choosing S = 2 will
always segment the image in background and foreground.2

Nevertheless one may capture finer details in the object
class and want to set S > 2. This is not always possible; for
example pedestrian images can be broken several stels one
for each leg, one for each arm, one for the head and so on
(Jojic and Caspi 2004), but on the other hand, for less com-
plex classes, like Caltech’s barrels, chandeliers or Joshua
trees, we can only expect to segment the object from the
background.

We can solve this issue learning an overall prior on the
stel usage and letting it kill some unused stels.

πs ∝
∑

t

∑

i

q
(
st
i = s

)
. (23)

The prior looks very similar to yks but it works at class level;
it represent how much an object class uses a particular stel.
The new update rule for (9) becomes

q
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})
e
∑

a q(at
i =a)r̂a(st

i =s). (24)

Finally we can also introduce a Markov Random Field
(MRF) which enforce smoothness across pixel labels; this
has proven to be very useful when the final application is im-
age segmentation (Winn and Jojic 2005; Yang et al. 2010).

2Choosing S = 2 was not possible for Jojic and Caspi (2004) because
of its unimodal palette.

3.5 Relationship to Other Models

We can express many other models frequently used in vision
and elsewhere as special cases of SCA by assuming an ap-
propriate number of stels S, components K , and palette en-
try size C. The color histogram model and the bag of words/
features model (Blei et al. 2003; Fei-Fei and Perona 2005;
Dance et al. 2004) are achieved with S = 1. On the other
hand, when S > 1, a single component rk(s) is used, K = 1,
and each palette entry represents a single Gaussian, C = 1,
and the prior over palettes is fixed to flat, our model reduces
to a probabilistic index map (PIM) (Jojic and Caspi 2004).
Finally, we get the basic ingredient of LOCUS (Winn and
Jojic 2005) when we set S = 2 (foreground/background),
and use a large C to represent color histograms in each
palette entry.

Both LOCUS and PIM contained transformation vari-
ables, which capture correlations due to a given set of simple
2D geometric transformations, while stel component anal-
ysis learns (approximately) arbitrary correlations in possi-
ble index assignments across an image. The palette choices
we discuss here apply to all three models. Finally if we fix
the stel partition q(st

i ) to a manual division of the image
into square regions, rather than let them be estimated from
images themselves, the model becomes similar to Lazebnik
et al. (2006).

In contrast to histogram/bag-of-words models, our model
parses the images so that the such models are applied only
in appropriate parts of different images (thus ignoring the
variable background (Marszałek and Schmid 2006), for ex-
ample). In addition, the likelihood depends on the structure
of the image, i.e., the extent to which the parsing of an im-
age into stels is consistent with such parsing of other images
in the same category. In this way our model is similar to the
PIM model, as it can identify structural similarities among
images even in presence of high variations in local measure-
ments across images (but not within a single stel in a single
image). But, in addition, stel component analysis allows for
a more powerful modeling of these structural characteris-
tics, as well as capturing, if any, feature co-occurrences in
the same stel across all images.

4 Experiments

The experimental section is divided in three parts. In the
first, it is shown how pixels’ correlations are captured and
how components are blended to better describe an object
class. The second part shows how SCA deals with image and
video segmentation. In the third part, SCA is used for object
classification. We reported classification accuracies on the
Caltech 28 dataset (Cao and Li 2007) showing how increas-
ing the components helps the recognition. More important,
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Fig. 4 SCA component strengths yk , K = 2, for a set of images of
faces with varying pose, have a single degree of freedom (y1 + y2 = 1)
and this degree of freedom captures the pose angle well. Below the
yk strengths, we show images generated from the model using the yk

inferred from the input. The rest of the figure illustrates the PCA recon-
struction, which does not manage to separate pose from other causes
of variability

on Catlech 101 (Fei-Fei et al. 2007), we used q(st ) directly
as features and we defined the “Stel Kernel” (SK) showing
how SCA partitions q(st ) can be used in to organize other
classifiers.

Before each test we show a table to indicate which
modality/ies we used, their domain (discrete/continuous),
and if we learned (�) or not (×), the overall prior on the
stels πs , the Markov Random Field prior on s and the palette
prior P(Λs).

In all the tests, we assume the presence of one object
in the image and a bounding-box annotation which can be
coarse (i.e. not precisely cropped).

4.1 Evaluation of the Components

4.1.1 How Components Capture Pixels’ Correlations

Modality Domain P (Λs) πs MRF
Gray Cont. × × ×

In this experiment, we used a database (Graham and
Allinson 1997) of 250 images of 18 subjects, each acquired
at 25 different head poses (see some views in Figs. 2 and 4).
The poses in the images were manually labeled with the esti-
mated out-of-plane rotation angle (from 0 to 45 deg). In five-
fold cross-validation, we trained both PCA and SCA models
(K = 2, S = 7, Gaussian palettes), and chose and tested the
optimal predictor of the pose angle based on the component

strengths of PCA and SCA. In the case of PCA, the predic-
tors we considered used up to the 6 components with high-
est eigenvalues, and, furthermore, to allow for some illumi-
nation invariance, we considered sparse variants discarding
the first, the first two, or the first three components, result-
ing in the total of 12 different sets of top eigen-images used
for prediction (i.e., [1 2], [2 3], [3 4], [4 5], [5 6], [1 2 3],
[2 3 4], [3 4 5], [4 5 6], [1 2 3 4], [2 3 4 5], [3 4 5 6]).

For both PCA and SCA angle prediction, the cross-
validation included linear regressor, robust linear regressor,
and the nonlinear regressor.

SCA components outperformed the PCA projection as
the input to regressors in this test, as the average test er-
ror for the optimal PCA-based regressor was 9.2 deg, and
the optimal SCA-based regressor had a test error of 7.8 deg.
Moreover, the standard deviation over the folds was twice
lower for SCA, and the difference between methods was sta-
tistically significant.

As illustrated in Fig. 4, SCA does not use the single de-
gree of freedom in the subspace to model the illumination
differences, since it is palette-invariant. Rather, stels capture
facial parts of relatively uniform color (therefore, uniform
surface normal quite often), and the variations in y1 captures
the changes of these parts as they undergo significant geo-
metric changes (see also Fig. 2c). Instead, the PCA model
captures small geometric transformations as well as large il-
lumination changes, but fails to capture significant structural
changes, and no single PCA component captures the major-
ity of the angle variations. In fact, the strength of the most
predictive component yielded a prediction error of 13.0 deg
vs 7.8 deg of SCA, and instead the angle has to be inferred
from multiple components, and this results still lies behind
SCA’s single component inference.

4.1.2 A Comparison Between SCA’s Components and the
Centers of a Mixture Model

Modality Domain P (Λs) πs MRF
Gray Cont. × × ×

To illustrate that SCA captures the variability in the data
in a substantially different way than a mixture of PIMs
(MPIM, Jojic and Caspi 2004) of the same complexity, we
considered the Daimler dataset (Munder and Gavrila 2006).
The full dataset is composed by 10200 gray levels images at
a resolution of 18 × 36 pixels. It is used for pedestrian clas-
sification. Pedestrian images were obtained from manually
labeling and extracting the rectangular positions of pedes-
trians in video images. The dataset is challenging because
the negative samples (non-pedestrians) present an elongated
structure, easily confusable with a pedestrian. For our ex-
periments we randomly chose a subset of 1000 positive and
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1000 negative images using half of them to train the models,
the rest for testing. We repeated this process 5 times.

We learned a SCA and MPIM models with S = 5, which
broke image patches into five stels, and K ∈ 1,2,3 which
represents the number of centroids for MPIM, and the num-
ber of components for SCA.

An increase in K improved performances for both:
MPIM, that assumes that each image is modeled by only
one of the K components, and the SCA model, which mixes
the components differently for each image placing it in a
simplex of dimension K , to achieve a better and spatially
nonuniform blend of components.

However, SCA outperforms MPIM model, with statis-
tical significance in several aspect. First, at the maximum
complexity (K = 3), we obtained an area under the curve,
AUC, of 0.9334 vs 0.9122 in favor of SCA. Second, MPIM
has not improved significantly from K = 2 to K = 3, AUC
was 0.9110 and 0.9122, respectively, whereas SCA has
reached an AUC of 0.9221 at K = 2 and of 0.9331 at K = 3.
This further illustrates the benefits of spatial mixing of com-
ponents in SCA—expressive power of the model grows
much faster with K , despite the same number of model pa-
rameters.3

Finally we want to highlight how our way of mixing dif-
ferent components is very different from linear mixing, as
the latter reduces to a mixture model. Linear combination
of probability maps is just a mixture. But it is too rigid a
model, and so the learned probability maps, in order to ac-
commodate for the variation in the data, end up too uncer-
tain (blurred). A better mixing model allows more freedom
in mixing, which is now spatially varying, but this then re-
sults in more certain components. Overall, the latter is better
as seen in the experiments.

4.2 Segmentation

Using SCA for segmentation, allows one to extract an object
only assuming its presence in the image. We show how an
increase of the number of components K yields to better
segmentation results.

4.2.1 Foreground Extraction from Videos

Modality Domain P (Λs) πs MRF
Color Cont. � × �

Opt.Flow Disc. � × �

To show at which extent, SCA can deal with rigid trans-
formation we extracted the foreground from the same video

3SCA has an extra layer of variables, a, but these are integrated out.

sequence used to test the hierarchical model selection strat-
egy of Jojic et al. (2006). This sequence is composed by
220 frames and contains significant illumination changes,
background clutter, various and confusing foreground and
background motion, as well as dramatic changes in the size
and pose of the foreground object (Fig. 5a). To analyze the
frames of this video using our model, we used two modali-
ties for the local pixel measurements: real valued color (mix-
ture of Gaussians palette) and optical flow (discrete observa-
tion) for each pixel. The model complexity was set to S = 3,
K = 3, C = 3 turning off the priors on s. The compari-
son is based on the manual segmentation into foreground
(FG) and background (BG) of one frame out of 10. The in-
ferred parameters concerning real valued color for the Larry
video are shown in Fig. 5 where βs,c is the Dirichlet prior on
the mixing coefficients πt

s,c, μ0s,c and φ0s,c is the Gaussian
prior on the palette means μt

s,t , and Γ is the inverse gamma
prior on the palette variance φt

s,t . Note how in this case
the prior avoids the full color invariance helping the seg-
mentation as adjacent frames have similar color. The pars-
ing of our model agrees with the ground truth in 95 % of
pixels, result comparable with that achieved by the algo-
rithm in Jojic et al. (2006), which is based on a much more
complex hierarchical model with multiple components spe-
cialized for video processing. We also show the segmenta-
tion that SCA achieves if temporal correlations among com-
ponents yk are modeled using a simple Brownian motion
model (see Fig. 5, rows D at right). In this case, our model
achieves an accuracy of 96 %, outperforming (Jojic et al.
2006).

To further test the SCA ability to deal with misalignments
of the object in video frames, in order to allow to track it,
exploiting the ability of the transformed PIM model (TPIM)
(Jojic and Caspi 2004) to do the same.

The latter approach is much more computationally inten-
sive, as it requires a search over many possible image trans-
formations (Frey and Jojic 2003). Even when this search is
sped up in case of image translations by reducing many op-
erations to efficiently compute convolutions, the computa-
tional burden of TPIM is significantly higher than that of
SCA, whose computational cost grows only linearly with
the number of components K , and typically only a handful
of components is used to manage a wide variety of geomet-
ric changes in stels. In addition to Larry video, the two ap-
proaches were compared on other 2 video sequences: one,
MSRiu, has been used in Yin et al. (2007), the other one,
anaivana, is available upon request (see some frames in
Fig. 5). MSRiu video is characterized by a relevant FG (ob-
ject) translation; instead, in anaivana, there is significant
change of the FG scale.

In all cases, the FG segmentation using SCA is at least as
good as the one achieved by a more expensive search over
alignments performed by TPIM. For TPIM, we considered
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Fig. 5 Video segmentation using SCA. Left: the learned components
and the color priors. Right: video segmentation results for three videos
larry, MSRiu, and anaivana. For the larry video, the rows

represent: (A) Frames, (B) Ground truth masks, (C) (Jojic et al. 2006)
results, (D) SCA with temporal smoothing of yk

Table 1 Video segmentation results. The difference between our result
and (Jojic et al. 2006) is not statistical significant. FG and BG values
represent agreement with ground truth of foreground and background
pixels. OV stands for the overall segmentation accuracy

Video Method FG BG OV

MSRiu TPIM
(Jojic and Caspi 2004)

97.9 % 92.7 % 96.1 %

MSRiu SCA 97.2 % 94.7 % 96.6%

anaivana TPIM
(Jojic and Caspi 2004)

96.1 % 92.5 % 95.1%

anaivana SCA 95.7 % 91.5 % 94.8 %

larry SCA 95.7 % 90.5 % 95.3 %

larry SCA Smoothed 96.7 % 92.5 % 96.1%

larry (Jojic et al. 2006) 96.3 % 89.2 % 95.4 %

larry (Jojic and Caspi 2004) 73.1 % 81.6 % 80.0 %

larry (Perina et al. 2008) 82.0 % 95.0 % 92.0 %

three different scales and nine possible shifts, making the
algorithm 27 times slower than the basic PIM, and around
9 times slower than SCA. Results are shown in Fig. 5, and
numerically reported in Table 1.

4.2.2 Image Segmentation

Modality Domain P (Λs) πs MRF
Color Cont. × � �

To test the ability of SCA to extract objects from im-
ages we considered Caltech 101 annotations (101 Classes,
more than 30 exemplars per class, Fei-Fei et al. 2006) and

the Weizmann horses dataset (327 horses, Borenstein and
Ullman 2004). This is a standard benchmark to evaluate
an algorithm segmentation accuracy (Alexe et al. 2010;
Cao and Li 2007; Rother et al. 2004). LOCUS (Winn and
Jojic 2005) reports only results on the Weizmann horses.

To compute the accuracy, we segmented one class at
time: we learned a model using the training set and we in-
ferred the posterior distribution q(s) for the test set.

Given the ground truth data, there is one out of two pos-
sible labels for each pixel lij ∈ {0,1}, where 0 refers to
background (BG) and 1 refers to foreground (FG). After the
learning phase, we have also S labels for each pixel based on
the model sij ∈ {1, . . . , S}. These labels are probabilistic, so
we have q(sij = s) rather than just a discrete sij . To create a
correspondence between s and l, we need a mapping s → l

to evaluate the segmentation. Since a small value for S is
used by the algorithm (2, 3 or 4), it is reasonable to consider
as result the best mapping.4

Figure 6 shows the learned model for the Weizmann
horses. Note how components capture the salient poses;
many other poses are obtained by blending them. Segmenta-
tion accuracies are reported in Table 2; they are measured by
the percentage of pixels in agreement with the ground truth
segmentation.

On Caltech 101, SCA outperforms (Alexe et al. 2010;
Cao and Li 2007; Rother et al. 2004) setting the new state of
the art on segmentation using pixels. On Weizmann horses
SCA does not reach the LOCUS performance (93.2 %).

4This operation is performed only once, for all the images and the same
happens in LOCUS for example, were a prior one cannot know which
one of the 2 segments represent the foreground.
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Fig. 6 Image segmentation
using SCA. We show the
parameters for the Weizmann
horses on the left, and some
segmentation results on the
right. Note how the components
capture the characteristic poses
of the object class

Table 2 Image segmentation
results

SCA
K = 1

SCA
K = 2

LOCUS
(Winn and Jojic
2005)

ClassCut
(Alexe et al.
2010)

GrabCut
(Rother et al.
2004)

SCTM
(Cao and Li
2007)

Caltech segmentation

84.71 % 88.35 % n.a. 83.60 % 81.50 % 67.00 %

Weizmann horses

86.54 % 90.21 % 93.10 % 86.20 % 85.80 % 81.80 %

Nevertheless LOCUS (1) cannot recognize horses facing
opposite directions (in Winn and Jojic (2005) images have
been preprocessed to solve this issue). SCA, like (Cao and
Li 2007), does not need to make such assumption, it only
needs an appropriate number of components K > 1, so that
the various poses of the objects can be captured by one
component rk(s). Moreover (2) LOCUS also uses the edges
and (3) it deals explicitly with deformations and transfor-
mation and it is characterized by several submodules spe-
cialized for image segmentation making it very complex.
Please also note how SCA’s component could also be em-
ployed by LOCUS probably further increasing its effective-
ness.

The last consideration is on the components. As Table 1
shows, increasing the number of components K also in-
creases the accuracy as the model becomes more expressive.
The difference is statistically significant at p ≤ 0.05.

4.3 Object Recognition

4.3.1 Generative Classification and “S-Bags of Words”

Modality Domain P (Λs) πs MRF
Color Cont. � × ×
SIFT Disc. � × ×

To test the performance of our model, we have trained
a variety of SCA models (S ∈ {1,3,5}, K ∈ {1,2}), for the
2117 images of the Caltech 28 dataset.

Caltech 28 was introduced in Cao and Li (2007), and it
is composed by 28 object classes, selected among the sub-
set of Caltech 101 categories that contain more than 60 im-
ages per class. These categories contain objects with thin

regions (e.g., flamingo, lotus), peripheral structures (e.g.,
cup), not well centered objects (e.g., leopards, dalmatians,
Joshua trees) and, most important, it does not contain classes
characterized by background artefact that makes them easily
identifiable.

For each class, we randomly select 30 images for training
and 30 images for testing. SIFT features were extracted from
15×15 pixel windows computed over a grid spaced 5 pixels.
At the end, these features were mapped to 300 codewords.

We learnt a model for each class and we assigned a sam-
ple to the class that provides the lowest free energy. The pro-
cess is illustrated in Fig. 7 were for two classes (trees and
faces) we show, the inferred parameters, the prior and the
posterior of a negative and a positive sample.

Results are reported in Table 3: once again it is evident
how the increasing the components help recognition. The
number of stels does not affect the accuracy, being it more
related to the particular object class. Cao and Li (2007)
seems to outperform SCA’s generative classification, but it
requires the foreground masks for each training object.

As second test we only used discretized SIFT features
as observation (zsift, in Fig. 7). As visible in Table 3 (Row
SCAsift ), the accuracy raises of more than 10 %. Moreover
the model now is more efficient as the images are smaller
(SIFT are computed on a grid, every 5 pixels). We repeated
the test only using color but the accuracy got worse.

As further test, we illustrate the value of spatial pars-
ing of the categories into stels. Therefore, for support vector
machines without any spatial structure, we show the results
obtainable by utilizing the inferred stel segmentation to re-
learn separate models in meaningful image parts.

We performed 1-vs-All classification using support vec-
tor machines with linear kernel (Lin.) and histogram inter-
section kernel (HI), concatenating all the entries of the SIFT
palettes and using them as image signature:
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Fig. 7 Object recognition
illustration. Top: Model
parameters for the face and the
tree categories (S = 4, K = 3)
are compared with the BoW
model (S = 1). The learned
Dirichlet priors for color, and
SIFT (αsift) are illustrated with
bars whose height is
proportional to the strength αj

of the different words ζj . The
rich histogram priors for the
standard BoW model (special
case of our model with s = 1)
are broken into tighter priors for
appropriately estimated stels
s = 1, . . . ,5. Bottom: Inferred
hidden variables under the
learned models for two images

Table 3 Object recognition
results. We report SCA
generative classification
accuracies varying S and K .
Note that for S = 1 we have a
bag-of-word generative
classifier. SCAsift only uses
discretized sift as observations

S = 1 S = 3 S = 5

SCA K = 1 12.31 % (Dance et al. 2004) 49.30 % 45.54 %

SCA K = 2 n.a. 54.34 % 61.39 %

SCAsift K = 2 n.a. 70.12 % 73.23 %

SPK (Lazebnik et al. 2006) 65.40 % n.a. n.a.

SCTM (Cao and Li 2007) 69.30 % n.a. n.a.

LDA (Fei-Fei and Perona 2005) 12.32 % (Fei-Fei and Perona 2005) 34.98 % 32.21 %

S-Bag of Words, HI Kernel 56.40 % (Dance et al. 2004) 65.12 % 68.21 %

S-Bag of Words, Lin. Kernel 51.21 % (Dance et al. 2004) 61.07 % 64.64 %

xt → [
u

t,c
s=1,sift, u

t,c
s=2,sift, . . . , u

t,c
s=S,sift

]
(25)

Note that since the descriptor 〈ut
s,sift〉 depends on the pa-

rameters of the class in hand, when we are computing the
c-th test, e.g., “class c”-vs-All, we must infer the poste-
rior distributions q(st |θc) under the parameters of the c-th
class θc (see Algorithm 2). As visible, organizing the fea-
ture in stels (we called this organization “S-Bags of words”),
helps recognition by improving the performance of the bag
of word classifier of more than 10 % and matching (Cao and
Li 2007).

4.3.2 The Stel Kernel

Modality Domain P (Λs) πs MRF
Color Disc. × � ×

When we tried to classify all the 101 classes of Caltech
(Fei-Fei et al. 2007) using the “S-Bags of words” approach,
the accuracy dropped to 25.93 % and 33.52 % respectively
for the linear and histogram intersection kernels.
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Fig. 8 On the left comparisons between the one-vs-all tests on Cal-
tech 101. SCA outperforms with a large margin the competitors and
an increase of the components yield to an increase in accuracy. On
the right the four feature matching schemes considered to compute the

kernels. We are considering the histogram intersection therefore we are
counting the number of feature matches in each segment. Two features
match if they have the same index (symbol in the figure)

While these results are far from the state of the art,5 the
performance of each one-vs-all classifier, was found to be
optimal. To assess this, we performed an Anova one-way
test to compare SCA (S ∈ {3,5}, K ∈ {1,2}), the Spatial
Pyramid Kernel (two levels, L = 2, SPK Lazebnik et al.
2006), the Bag of Words approach (BOW, Dance et al. 2004)
and the kernels obtained considering separately level 1 and
2 of (Lazebnik et al. 2006) (SPK L = 1, SPK L = 2). We
deemed the accuracies of all the classifiers as mutually in-
dependent observations.

The computation of the similarity between two images is
illustrated in Fig. 8b; for SPK we used the original formula-
tion (Lazebnik et al. 2006) while for the rest we summed
the histogram intersections computed separately in each
segment. The boxplot in Fig. 8a summarizes the results of

Algorithm 2: S-bags of words
Input: Image descriptors, {θc} (a model for each object

class)
Output: Classification Labels
foreach Class c = 1 . . .C do

foreach Sample t = 1 . . . T do
Infer q(st |θc);
Compute the feature histogram in each stel ut

s ;
Compute the kernel Kc;
Learn a Support Vector Machine using Kc;
dc ← Classify the test data storing the decisions;

Combine the decisions {dc}Cc=1;

5We used 15 training images.

the Anova tests; the central red mark is the median, the edges
of the box are the 25th and 75th percentiles, the whiskers ex-
tend to the most extreme data points not considered outliers,
and outliers are plotted individually with a red cross. As vis-
ible, in separate one-vs-all tests, “S-Bags of words” outper-
forms with a very large margin the other methods. These
differences are statistically significant (p-values lower than
0.05).

The problem in combining the classifiers decisions is
probably due to the fact that each support vector machine,
is learned with a different kernel: this results in scaling
problems. This not happens for (Lazebnik et al. 2006;
Dance et al. 2004) where the partition is fixed, the kernel
is computed just once and only the labels are changed to
learn the SVMs.

Fortunately we can improve the results employing the
same technique of the Hierarchical Stel Kernel (HSK,
Perina et al. 2010). Here the authors, firstly presented the
hierarchical stel model (hSM), a relative of PIM based on
a linked hierarchy of stel segmentations. Each level of the
stel-hierarchy is characterized by a different number of stels.
Exploiting those hierarchical segmentations, they defined a
kernel Kc as the weighted sum of the histogram intersec-
tions in each stel (see Fig. 8). As in Lazebnik et al. (2006)
they added the level 0 (Bag of Words), and they weighted
differently each level to reward more the similarities in
the higher, finer ones. Being based on stel models, each
class induces a kernel; the hierarchical stel kernel (HSK)
is defined as the sum of all the kernels induced by the
classes.

The most surprising finding of Perina et al. (2010) is that
this sum of kernels yields to a pixel-wise weighting scheme.
A feature match between the i-th pixel in one image and j -th
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Table 4 Stel Kernel Results (15
training images) S = 1 S = 3 S = 5

SCA K = 1 33.02 % (Dance et al. 2004) 53.99 % 54.05 %

SCA K = 2 n.a. 54.12 % 55.03 %

SPK (Lazebnik et al. 2006) 53.41 % n.a. n.a.

HSK (Perina et al. 2010) 58.92 %

Table 5 Caltech 101 Dataset:
best multikernel results based on
(Lazebnik et al. 2006)

Method No. features No. kernels Best accuracy

Gehler and Nowozin (2009) 8 39 70.4 %

Bosch et al. (2007) 4 4 70.4 %

Vedaldi et al. (2009) 6 7 71.1 %

Yang et al. (2009) 5 10 73.2 %

Algorithm 3: Stel kernel
Input: Image descriptors, {θc} (a model for each object

class)
Output: Classification Labels
foreach Class c = 1 . . .C do

foreach Sample t = 1 . . . T do
Infer q(st |θc);
Compute the feature histogram in each stel ut

s ;
Compute the kernel Kc using the histogram
intersection (26);

K = ∑
c Kc;

Learn a Support Vector Machine using K;
Classify the test data;

pixel in the other, is weighted by how many times the two
locations share the same stel across the hierarchy of classes.

As Perina et al. (2010) we have that each class induces a
kernel Kc defined as

Kc(A,B) =
∑

s

∑

k

min
(
uA

s (k), uB
s (k)

)
. (26)

The final kernel, named the “Stel Kernel” (SK) is defined as
the sum of the kernels.

KSK =
∑

c

Kc(A,B). (27)

The classification procedure is also shown in Algorithm 3.
It is straightforward to understand how all the properties

of the HSK are valid also for the present case.
The differences between HSK and SK are that SK do not

consider the level 0 (bag of words), and it presents a single
segmentation for each class. On the other hand, HSK does
not capture correlations and therefore it is computed from
poorer segmentations.

Recognition accuracies for the full Caltech dataset are
shown in Table 4; for the sake of comparison, we re-run

the algorithm of Lazebnik et al. (2006) with our features.6

We randomly select 30 images from each category: 15 of
them are used for training and the rest are used for testing.
We repeated this process 5 times and we averaged the re-
sults.

It is evident that each partition improves over the bag of
features by over 20 %. Surprisingly also SVMs benefit from
the components showing how a better segmentation helps
recognition. As noted in Perina et al. (2010) for Caltech 28,
the difference between SPK and SK is not statistically sig-
nificant.

The algorithms which produces the best accuracies on
Caltech dataset, use multiple feature and/or multikernel ap-
proaches, e.g., Bosch et al. (2007), Gehler and Nowozin
(2009), Vedaldi et al. (2009), Yang et al. (2009). In Table 5
we report some statistic. All of them use the Spatial Pyra-
mid Kernel feature organization Lazebnik et al. (2006); Ta-
ble 4 demonstrates that kernels based on stel partitions out-
perform Lazebnik et al. (2006) with a large margin therefore
it would be interesting using the stel kernel in conjunction
with such methods.

4.3.3 q(s) as Feature

Modality Domain P (Λs) πs MRF
Color Cont. × × ×

To investigate further the capability of SCA to identify
discriminant features, we considered Caltech 101, for which
the best features, used discriminatively, provide classifica-
tion rates of 40–59 % as shown in Table 6. We compare
our model with several others on this dataset. In Berg and

6The result reported in Lazebnik et al. (2006) (56.40 %) is slightly
better than our result (53.41 %).
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Table 6 Feature comparison on Caltech 101 dataset. We used 30 training samples

Shape
GB 1
(Berg and
Malik 2001)

Shape
GB 2
(Berg and
Malik 2001)

Self
Sim.
(Shechtman and
Irani 2007)

Shp
180
(Zhang et al.
2006)

Shp
360
(Zhang et al.
2006)

Sift
Col.
(Bosch et al.
2006)

Sift
Gray
(Lowe 1999)

q(s)

SCA

57 % 59 % 55 % 48 % 50 % 40 % 52 % 50.60 %

Malik (2001), GB features correspond to geometric blur
which captures some of the spatial configurations in the fea-
ture distributions, and App. Color and Gray are SIFT fea-
tures calculated from color and gray-level images utilized
in Bosch et al. (2006), Lowe (1999), and Self Similarity is
introduced in Shechtman and Irani (2007). The rest of the
features capture gradient orientations, so mostly represent-
ing local shape features (Zhang et al. 2006).

Here we only used color as a local measurement, but we
performed classification using only the inferred stel segmen-
tation, q(st ), without parts of the likelihood that have to do
with matching of image measurements to those expected for
the category. This corresponds to dropping out the first two
terms from the free energy in (7), which deal with evalu-
ating the uniformity of the observed features zi and their
agreement with the prior over the entire class defined by Λ.
Therefore, the only terms kept are the last two terms con-
cerned with the KL distance between the prior rk(s) and the
inferred stel tessellation for the image q(st ). Such classifica-
tion yields accuracy of 24.7 % (18.9 % at K = 1) against the
17.3 % obtained by Fei-Fei et al. (2007), which represents
the only reported result obtained by a generative model.

However, the discriminative use of the inferred stel,
through SVM classification using only inferred stels as fea-
tures resulted in classification accuracy of 50.62 %, mak-
ing the global shape features defined by stel segmentation of
comparable quality to the top features used in object classi-
fication. This is rather encouraging as these features capture
rather different aspects of the images.

It is also important to note here that for an already trained
SCA model, inference of stels q(st ) for any new given im-
age consists of only a 4–5 iterations of (8)–(12), as the SCA
components rk , and palette priors are linked to the entire
category, not to a single image. Thus, inference for a single
image is linear in the number of pixels, and is in fact more
computationally efficient than the computations involved in
methods that require a large number of filter banks or SIFT
extraction. SCA does not require it when the image mea-
surement considered is just color.

5 Conclusions

In this paper, we have proposed a novel model able to sum-
marize a class of object (1) segmenting images in meaning-
ful parts (stels), (2) capturing the correlations of the spatial

structure, (3) identifying interesting co-occurrences of local
measurements among the images of the same class.

Instead of relying on consistency of image features across
images from the same class, the model mines self similarity
patterns within individual images, which helps in the infer-
ence of a consistent segmentation of images into structural
elements (stels), shared across the entire class, even when
the images differ dramatically in local colors and features.

Significant variations in stels can be tolerated by a
subspace modeling framework, Stel Component Analysis
(SCA), which captures correlated changes in image struc-
ture and thus avoids over-generalization whose the PIM
model (a SCA ancestor) is prone when faced with signifi-
cant structural variations. The model can be inferred from
the data in only with a bounding box annotation (eventually
coarse), so affording significant advantages to this image
representation in a variety of computer vision tasks, some of
which have been illustrated above.

SCA demonstrated good performances in modeling ob-
ject classes thanks to its capability to organize and select the
related features, also coping with severe different aspects of
the same object, in increasing the performances of discrimi-
native methods when applied to SCA outcomes, and in seg-
menting images and video sequence of a certain complexity.
In all these applications, it has been shown how the compo-
nents helped to improve the accuracy.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.
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