
January 2018 | Volume 4 | Article 731

Code
published: 16 January 2018

doi: 10.3389/frobt.2017.00073

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Lorenzo Jamone,

Queen Mary University of London,
United Kingdom

Reviewed by:
Garrick Orchard,

National University of Singapore,
Singapore

Hanme Kim,
Imperial College London,

United Kingdom

*Correspondence:
Arren Glover

arren.glover@iit.it;
Chiara Bartolozzi

chiara.bartolozzi@iit.it

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 26 July 2017
Accepted: 12 December 2017

Published: 16 January 2018

Citation:
Glover A, Vasco V, Iacono M and

Bartolozzi C (2018) The Event-Driven
Software Library for YARP—With

Algorithms and iCub Applications.
Front. Robot. AI 4:73.

doi: 10.3389/frobt.2017.00073

The event-driven Software Library
for YARP—With Algorithms and
iCub Applications
Arren Glover*, Valentina Vasco, Massimiliano Iacono and Chiara Bartolozzi*

iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy

Event-driven (ED) cameras are an emerging technology that sample the visual signal
based on changes in the signal magnitude, rather than at a fixed-rate over time. The
change in paradigm results in a camera with a lower latency, that uses less power, has
reduced bandwidth, and higher dynamic range. Such cameras offer many potential
advantages for on-line, autonomous, robots; however, the sensor data do not directly
integrate with current “image-based” frameworks and software libraries. The iCub
robot uses Yet Another Robot Platform (YARP) as middleware to provide modular
processing and connectivity to sensors and actuators. This paper introduces a library
that incorporates an event-based framework into the YARP architecture, allowing event
cameras to be used with the iCub (and other YARP-based) robots. We describe the
philosophy and methods for structuring events to facilitate processing, while maintain-
ing low-latency and real-time operation. We also describe several processing modules
made available open-source, and three example demonstrations that can be run on
the neuromorphic iCub.

Keywords: iCub, neuromorphic engineering, event-driven vision, software, humanoid robotics

1. INTRodUCTIoN

Conventional vision sensors used in robotics rely on the acquisition of sequences of static images at
fixed temporal intervals. Such a sensor provides the most information when the temporal dynamics
of the scene match the sample-rate. If the dynamics are slower (e.g., a mostly static scene), only a
small percentage of pixels change between two consecutive frames, leading to redundant acquisi-
tion and processing. Alternatively, if the scene dynamics are much faster (e.g., a falling object),
information between images can be distorted by motion blur, or missed entirely.

A newly emerging technology, “event-driven” (ED) cameras, are vision sensors that produce
digital “events” only when the amount of light falling on a pixel changes. The result is that the
cameras detect only contrast changes (Lichtsteiner et al., 2008) that occur due to the relative motion
between the environment and the sensor. There is no fixed sampling rate over time, instead, the sen-
sor adapts to the scene dynamics. Redundant data are simply not produced in slow dynamic scenes,
and the sensor output still manages to finely trace the movement of any fast stimuli. Specifically,
the camera hardware latency is only 15 μs (Lichtsteiner et al., 2008) and the temporal resolution
at which an event can be timestamped is under 1 μs. Events are also produced asynchronously for
each pixel, such that processing operations can start without the need to read the entire sensor
array, and a low-latency processing pipeline can be realized.

ED cameras provide many potential advantages for robotics applications. The removal of redun-
dant processing can give mobile robots longer operating times and frees computational resources for
other tasks. Fast-moving stimuli can always be detected, and visual dynamics estimated with more
accuracy than with conventionally available cameras. This low-latency can enable extremely fast

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00073&domain=pdf&date_stamp=2018-01-16
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00073
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:arren.glover@iit.it
mailto:chiara.bartolozzi@iit.it
https://doi.org/10.3389/frobt.2017.00073
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00073/full
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00073/full
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00073/full
http://loop.frontiersin.org/people/269413
http://loop.frontiersin.org/people/270549
https://loop.frontiersin.org/people/509776
http://loop.frontiersin.org/people/21102

FIGURe 1 | The (A) iCub robot performing ball tracking and gazing toward
the ball position and (B) the corresponding stream of events over time
superimposed with approximate frame-captures for a hypothetical 10 Hz
frame-based camera.

2

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

reaction times between environmental change and the response
of the robot. In addition, each pixel has a high dynamic range
(143 dB (Posch et al., 2011)) which allows robots to operate
in both bright and dark environments, and in conditions with
widely varying intra-scene lighting. The sensor is low-power,
promoting longer operation times for untethered mobile robots.

The neuromorphic iCub (Bartolozzi et al., 2011) is a humanoid
robot that has a vision system comprised of two event cameras.
The iCub robot is supported, in software, by the Yet Another
Robot Platform (YARP) middleware (Metta et al., 2006), upon
which the iCub low-level and application-level modules have
matured using standard cameras, and also utilized other freely
available algorithms (e.g., using OpenCV). However, due to the
asynchronous nature of the event-stream, and its fundamental
differences from 2D frame sequences (see Figure 1), traditional
computer vision algorithms and image processing frameworks
cannot be directly applied.

This paper introduces the event-driven software libraries and
infrastructure that is built upon YARP and integrates with the
iCub robot. The library takes advantage of the YARP framework,
which enables the distributed processing of events within multi-
ple interchangeable modules spread across multiple networked
machines. Modules include pre-processing utilities, visualization,
low-level event-driven vision processing algorithms (e.g., corner
detection), and robot behavior applications. These modules can
be run and used by anyone for purely vision-based tasks, without
the need for an iCub robot by using: pre-recorded datasets, a
“stand-alone” camera with a compatible FPGA, a “stand-alone”
camera with the compatible USB connection, or by contributing
a custom camera interface to the open-source library. As the
processing is modular, the exact method of event acquisition
is transparent to the remainder of the library. This paper also
describes several iCub applications that have been built upon the
ED cameras and library and highlights some recent experimental
results. We begin with a brief description of the current state-of-
the-art in ED vision for robotics.

2. eVeNT-dRIVeN VISIoN FoR RoBoTS

Recent work using event cameras show promising results for fast,
low-latency robotic vision. The latency of an event-based visual
attention was two order less than frame-based one (Rea et al.,

2013). Recognition of playing-card suit was achieved as a deck
was flicked through (30 ms exposure) (Serrano-Gotarredona and
Linares-Barranco, 2015). Detection of a moving ball by a moving
robot was achieved at rates of over 500 Hz (Glover and Bartolozzi,
2016). Visual tracking of features was shown at a rate higher than
standard cameras (Vasco et al., 2016a) and also features position
could be updated “between frames” of a standard camera (Kueng
et al., 2016).

The extreme low-latency of event cameras enabled fast close-
loop control (e.g., inverse pendulum balancing (Conradt et al.,
2009) and goal keeping with 3 ms reaction time and only 4%
CPU utilization (Delbruck and Lang, 2013)). High-frequency
visual feedback (>1 kHz) enabled stable manipulator control at
micrometer scale (Ni et al., 2012). On-board pose estimation dur-
ing flips and rolls of a quadrotor has been shown to be plausible
using event-driven vision (Mueggler et al., 2015). Finally, robotic
navigation and mapping systems include a real-time 2-DOF
SLAM system for a mobile robot (Hoffmann et al., 2013), and
6-DOF parallel tracking and mapping algorithms (Kim et al.,
2016; Rebecq et al., 2016).

Some of the above experiments used the Java-based jAER
(Delbruck, 2008); however, Java is typically less suited to on-line
robotics due to computational overheads. jAER is also designed
to process events from a camera directly connected to a single
machine; however, robotics platforms have come to rely on a
middleware that distributes processing over a computer network.
A middleware allows the modular connection of sensors,
algorithms and controls, which are shared within the robotics
community to more quickly advance the state-of-the-art. Perhaps
the most well known is the Robot Operating System (ROS), in
which some support for event cameras has been made available.1
In this paper, we present the open-source libraries for event camera
integration with the YARP middleware that is used on iCub.

3. THe eVeNT-dRIVeN LIBRARY

ED cameras encode information as a stream of asynchronous
events with sub-μs resolution. When a pixel detects an illumi-
nation change beyond a threshold, it emits a digital pulse that
can be assigned a timestamp and pixel address (using Address
Event Representation (AER) (Mortara, 1998)) by a clock-based
digital interface (e.g., FPGA or microcontroller). The entire visual
information is, therefore, encoded within the relative timing and
pixel position between events. An example event-stream is shown
in Figure 1.

This event-driven library is designed to read events from the
cameras, interface to communications for distributed processing,
and provide event-based visual processing algorithms toward
low-latency robotic vision. The library is written in C++, uses
the ev namespace, and is integrated with the YARP middleware.

3.1. Representing an event
The basic element representing an event is a ev::vEvent,
which only stores the timestamp, i.e., when an event occurred. The

1 github.com/uzh-rpg/rpg_dvs_ros.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/uzh-rpg/rpg_dvs_ros

FIGURe 2 | Event-types and inheritance, purple/dashed boxes show possible additions to the library to support the integration of other sensory modalities and
information from additional computing modules.

LISTING 1 | Instantiating events using shared pointer wrappers and dynamic casting. The outcome of the code-snippet will be the allocation of v1 as an
ev::AddressEvent and (an identical) v2 as a ev::labelledAE, while v3 and v4 will be pointers to v2, but interpreted as ev::AddressEvents.

3

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

information about what occurred is instead stored in the member
variables of classes that are inherited from a ev::vEvent,
see Figure 2. Events produced by the event cameras are called
ev::AddressEvent, which consist of pixel location (x,y) and
pixel polarity (p: darker/lighter) in addition to the camera chan-
nel (c: left/right). Algorithmic processing of events can be used
to append additional information to an event, such as adding the
velocity from an optical-flow algorithm. Currently used additional
event-types include optical-flow events (ev::FlowEvent),
class-labeled events (ev::LabelledAE), and events with a
spatial distribution (ev::GaussianAE).

An instantiated ev::vEvent is wrapped in a C++11
shared_ptr such that memory is automatically managed,
and events can be referenced in multiple threaded environments
without duplicated memory allocation. The event-driven library
provides a set of wrapper functions to ensure the shared_ptrs
are correctly handled (see Listing 1).

These event-types can be easily extended through inherit-
ance, and by defining the required additional member variables.
Packet encoding and decoding methods are also required for
transmission (described below). The framework is designed to
be fully future compatible with the integration of different event-
driven sensors (e.g., tactile and audio) by extending the base
ev::vEvent class.

3.2. event-Packets in YARP
On the iCub robot, a Linux driver reads the events from the camera
FPGA interface and the zynqGrabber module exposes the data
on a YARP port. A packet of events is sent in a ev::vBottle
(a specialized type of yarp::os::Bottle) such that the bit-
coding of the AER is preserved: to retain data-compression and
compatibility with other AER-based hardware. A module that
receives a ev::vBottle can decode the AER and instantiate
a ev::vEvent easily, as event decoding is provided by each

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

LISTING 2 | An example class for reading, decoding, and structuring events. This code will produce a small “surface” of events decoded from the AER
representation automatically using the ev::vBottle::get() command, and the ev::vBottle is read asynchronously as the packets arrive.

4

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

event class. Encoding/decoding typically involves bit-shifts and
a typecast to interpret a specific range of bits as the correct data
type. The decoded events are stored in a ev::vQueue which
wraps a std::deque<event<vEvent>>. The procedure to
obtain the event-stream is, therefore, transparent to the process-
ing module. Reading ev::vBottle from a port is typically
done using callback functionality (i.e., only where data is present)
as the event-stream is asynchronous. An example code-snippet is
provided in Listing 2.

Events can be saved and loaded from a file using the stand-
ard tools in YARP as an event-packet is fully interpretable as a
standard yarp::os::Bottle. Therefore, it is easy to save a
dataset using the yarpdatadumper and replay it using the
yarpdataplayer. This is done externally to the event-driven
library, simply by connecting the event-stream to/from the afore-
mentioned modules using YARP connections.

3.3. Structuring the event-Stream
The desired approach to ED processing is to perform a small,
lightweight computation as each event is received; however, a
single event (a single pixel) does not provide sufficient infor-
mation on its own for many complex visual algorithms. Often
it is necessary to store a sequence of events in order to extract
useful information from their spatiotemporal structure. The
type of structure used depends on the conditions, limitations

and assumptions of the task or algorithm. For example, the
length (in time) of a ev::Temporal Window can be tuned to
respond to a target object moving at a certain velocity, but
may fail if the target’s velocity cannot be constrained. A
ev::Fixed Surface of N events will be invariant to the speed of
an object, but can fail if the target size and shape are unknown,
a ev::Surface can access a spatial region-of-interest faster than
a ev::Temporal Window, as long as the temporal order of events
is not important. The event-driven library includes a range of
methods to organize and structure the event-stream; an exam-
ple code-snippet that combines port-callback functionality,
event-packet decoding and event data structuring is shown
in Listing 2.

In a distributed processing network, network latency, packet
loss, and module synchronization become relevant issues,
especially when it is desirable to take advantage of the intrinsic
low-latency of the sensor. Processing needs to be performed in
real-time to ensure robot behavior is decided from an up-to-date
estimation of the world. The ATIS cameras will produce ≈10 kV/s
when a small object is moving in the field of view but will produce
>1,000 kV/s if the camera itself is rotated quickly (e.g., when the
iCub performs a saccade). These numbers double for a stereo
camera set-up. Real-time constraints can be broken if processing
algorithms are dependent on processing every single event and
the processing power is not sufficient.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

A B

FIGURe 3 | The (A) tracking/detection accuracy of ev::vCircle (blue) and ev::vParticleFiler (green) compared to ground truth (black). Both algorithms
can be used to control the iCub in gaze and grasping demonstrations. The (B) computation performance comparison between ev::vCorner and hypothetical
frame-based Harris corner detection (red dashed line). A lower computational requirement is beneficial to resource contained on-line robotics. These figures can be
generated using the scripts found in the datasets section.

5

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

In the YARP event-driven library, a multi-threaded event
structure is provided to de-couple the process of reading events
into a data structure from that of running the algorithm. Modules
are constructed such that the entire history of events is accounted
for, but the processing algorithm runs only at the rate at which
it maintains real-time operation. The result is that chunks of
events are not randomly lost within the communication pipeline;
instead the rate at which the algorithm can output a result is
reduced under high event-load. Our algorithms still typically
run at rates of 100 to 1,000 s of Hertz; higher than the frame-rate
of a standard camera. Importantly, the algorithm update-rate is
not bottlenecked by the sensor update-rate (e.g., a frame-based
camera), and the update-rate can be increased by adding compu-
tational power. The library classes ev::queueAllocator,
ev::tWinThread and ev::hSurfThread manage real-
time operation, and examples can be found in the documentation.

“Event-by-event” processing is also always possible in the YARP
event-driven library and can be used to enforce a deterministic
result to evaluate algorithm performance off-line, without the
need to consider real-time constraints.

3.4. Low-Level Processing
Processing modules take the raw AER data and extract useful,
higher-level information. The output of the modules will be a
stream of events augmented with the additional information, as
in Figure 2. The modules currently available in the event-driven
repository are:

• Optical Flow—an estimate of visual flow velocity is given
by the rate at which the position of events change over time.
Local velocity can be extracted by fitting planes to the resulting
spatiotemporal manifolds (Benosman et al., 2014). The vFlow
module converts the ED camera output ev::AddressEv-
ent to ev::FlowEvent.

• Cluster Tracking—The movement of an object across the visual
field of an ED camera produces a detailed, unbroken trace of
events. This module tracks clusters of events that belong to
the same trace (Valeiras et al., 2015). The cluster center and

distribution statistics is output from the vCluster module
as a ev::GaussianAE event.

• Corner Detection—using an event-driven Harris algorithm,
the event-stream is filtered to leave only the events on the
corners of objects (Vasco et al., 2016a). Corner events provide
unique features that can be tracked over time. Compared to a
traditional camera, the ED corner algorithm requires less pro-
cessing, as shown in Figure 3B. Corner events are represented
by ev::LabelledAEs.

• Circle Detection—detection of circular shapes in the event-
stream can be performed using an ED Hough transform. As the
camera moves on a robot, many background events clutter the
detection algorithm. The vCircle module reduces the
false positive detections by incorporating optical-flow
information (Glover and Bartolozzi, 2016). The detection
results are shown in Figure 3A. Circle events are described by
ev::GaussianAEs.

• Particle filtering—the particle filter achieves tracking that is
robust to variations in the speed of the target, by also sampling
within the temporal dimension (Glover and Bartolozzi, 2017).
Ball tracking is implemented and the results are shown in
Figure 3A.

The library also includes additional tools for:

• Camera Calibration—the intrinsic parameters of the camera
can be estimated using a static fiducial and standard visual
geometry techniques.

• Pre-processing—this module can apply a salt-and-pepper
filter, flipping horizontal/vertical axes, applying camera dis-
tortion removal, and splitting a combined stereo event-stream
into a left stream and a right stream.

• Visualization—the event-stream is asynchronous and does not
inherently form “images” that can be viewed in the same way
as a traditional camera. The vFramer uses a ev::Tempo-
ralWindow to accumulate events over time and produce a
visualization of the event-stream. Different drawing methods
exist for different event-types, which can be overlaid onto a
single image (as shown in Figure 1).

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

6

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

4. deMoNSTRATIoNS, Code,
ANd dATASeTS

The neuromorphic iCub and event-driven library have been
used for several studies and robot demonstrations that can be
run using yarpmanager. The modules are designed such that
the robot begins performing the task once all required modules
are running and the port connections have been made. Detailed
instructions on how to run the demonstrations are provided in
the online documentation2 available with the code3 on GitHub.
An xml file is provided for each application to correctly launch
and connect modules in yarpmanager. Known issues with the
applications can also be found online. An overview of some of the
applications is given below:

• Ball Gazing and Grasping—The module vCircle (desribed
more in Glover and Bartolozzi (2016)) or vParticleFil-
ter (described more in Glover and Bartolozzi (2017)) can be
used to produce events describing the visual position of a ball,
e.g., see Figure 3A. The vGazeDemo uses the iKinGazeC-
trl (Roncone et al., 2016) to calculate the 3D position of the
ball and the focus of the iCub’s gaze can be directed to the loca-
tion using the head and eye motors. Alternatively, the output
of the ball position can be sent to the classic DemoRedBall4
application to have the robot also move the arm to grasp the
ball.

• Stereo Vergence—Automatic control of stereo vergence of
the iCub to focus on an object within the field of view was
implemented using biologically inspired methods (Vasco et al.,
2016b). The vVergence application accepts stereo ev::Ad-
dressEvents and moves the vergence to minimize the response
of stereo Gabor filters.

• Attention and Micro-saccade—A simple, yet effective, atten-
tion module is demonstrated that only requires the presence
of events to perform a saccade to gaze at an external stimulus.
If the event-rate is instead below a threshold, the autosac-
cade application generates small eye movements to visualize
the static scene.

The documentation includes a project overview, instructions
to run demonstration applications, descriptions and parameters
of processing modules, and class and function descriptions. The
code is only dependent on YARP and uses the iCubContrib to
install the project in a manner compatible with YARP and iCub
environment.

2 http://robotology.github.io/event-driven/doxygen/doc/html/index.html.
3 https://github.com/robotology/event-driven.
4 https://github.com/robotology/icub-basic-demos.

Datasets of event-driven data can be found in the tutorials
section of the online documentation. The datasets consist of the
event-streams used in several of the experiments presented in
this paper. The datasets enable the processing of event-driven
algorithms if a physical camera is not available.

5. CoNCLUSIoN

This paper presents the YARP-integrated event-driven library,
specifically toward enabling ED robotics using a robot middle-
ware. The data structures, multi-threaded approach and algorithm
design are aimed toward real-time operation under a wide range
of conditions and in uncontrolled environment, toward robust
robotic behavior. The paper has presented the YARP interface,
the low-level vision algorithms, and the applications on the iCub
robot.

Event cameras are now available as an add-on plug-in and
new iCub robots can potentially come equipped with neuromor-
phic hardware; alongside traditional cameras, or as the sole form
of vision. Alternatively, the software package can be used through
a USB interface to the ATIS camera, or through off-line datasets.
The contribution of alternative camera interfaces is possible (and
welcome) as the processing modules are transparent to the source
of the events, and the package is provided as an open-source
project.

AUTHoR CoNTRIBUTIoNS

All authors contributed to the writing and proofing of the
article, as well as documentation of the code. CB was the major
contributor to the hardware interfaces and AG was the major con-
tributor to the libraries and applications. VV and MI contributed
to modules and applications.

ACKNoWLedGMeNTS

The authors would like to thank Ugo Pattacini, Charles Clerq,
and Francesco Rea for early contributions to the event-driven
libraries, and Francesco Diotalevi, Marco Maggiali, and Andrea
Mura for hardware and FPGA development, and for the integra-
tion of event cameras on the iCub.

FUNdING

This research has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 231467 (eMorph) and no. 284553 (SICODE).

ReFeReNCeS

Bartolozzi, C., Rea, F., Clercq, C., Hofstätter, M., Fasnacht, D., Indiveri, G.,
et al. (2011). “Embedded neuromorphic vision for humanoid robots,”
in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (Colorado Springs, CO: IEEE),
129–135.

Benosman, R., Clercq, C., Lagorce, X., Ieng, S.-H., and Bartolozzi, C. (2014).
Event-based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25, 407–417.
doi:10.1109/TNNLS.2013.2273537

Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R. J., and Delbruck, T.
(2009). “A pencil balancing robot using a pair of AER dynamic vision sensors,”
in IEEE International Symposium on Circuits and Systems (Taipei, Taiwan),
781–784.

Delbruck, T. (2008). “Frame-free dynamic digital vision,” in Proceedings of
International Symposium on Secure-Life Electronics, Advanced Electronics for
Quality Life and Society (Tokyo, Japan), 21–26.

Delbruck, T., and Lang, M. (2013). Robotic goalie with 3 ms reaction time at 4%
CPU load using event-based dynamic vision sensor. Front. Neurosci. 7:223.
doi:10.3389/fnins.2013.00223

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://robotology.github.io/event-driven/doxygen/doc/html/index.html
https://github.com/robotology/event-driven
https://github.com/robotology/icub-basic-demos
https://doi.org/10.1109/TNNLS.2013.2273537
https://doi.org/10.3389/fnins.2013.00223

7

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

Glover, A., and Bartolozzi, C. (2016). “Event-driven ball detection and gaze fixa-
tion in clutter,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Daejeon, South Korea), 2203–2208.

Glover, A., and Bartolozzi, C. (2017). “Robust visual tracking with a freely-moving
event camera,” in IEEE International Conference on Intelligent Robots and
Systems (Vancouver, Canada: IEEE).

Hoffmann, R., Weikersdorfer, D., and Conradt, J. (2013). “Autonomous indoor
exploration with an event-based visual SLAM system,” in European Conference
on Mobile Robots, ECMR 2013 – Conference Proceedings (Barcelona, Spain),
38–43.

Kim, H., Leutenegger, S., and Davison, A. J. (2016). “Real-time 3D reconstruc-
tion and 6-DoF tracking with and event camera,” in European Conference on
Computer Vision, Amsterdam, 349–364.

Kueng, B., Mueggler, E., Gallego, G., and Scaramuzza, D. (2016). “Low-latency
visual odometry using event-based feature tracks,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (Daejeon, South Korea).

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). An 128x128 120dB
15μs-latency temporal contrast vision sensor. IEEE J. Solid State Circuits 43,
566–576. doi:10.1109/JSSC.2007.914337

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 043–048. doi:10.5772/5761

Mortara, A. (1998). “A pulsed communication/computation framework for analog
VLSI perceptive systems,” in Neuromorphic Systems Engineering, ed. T. Lande
(Norwell, MA: Kluwer Academic), 217–228.

Mueggler, E., Gallego, G., and Scaramuzza, D. (2015). “Continuous-time trajectory
estimation for event-based vision sensors,” in Proceedings of Robotics: Science
and Systems, Rome. doi:10.15607/RSS.2015.XI.036

Ni, Z., Bolopion, A., Agnus, J., Benosman, R., and Régnier, S. (2012). Asynchronous
event-based visual shape tracking for stable haptic feedback in microrobotics.
IEEE Trans. Robot. 28, 1081–1089. doi:10.1109/TRO.2012.2198930

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB dynamic
range frame-free PWM image sensor with lossless pixel-level video
compression and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275.
doi:10.1109/JSSC.2010.2085952

Rea, F., Metta, G., and Bartolozzi, C. (2013). Event-driven visual attention for the
humanoid robot iCub. Front. Neurosci. 7:234. doi:10.3389/fnins.2013.00234

Rebecq, H., Horstschaefer, T., Gallego, G., and Scaramuzza, D. (2016). EVO: a
geometric approach to event-based 6-DoF parallel tracking and mapping in
real-time. IEEE Robot. Autom. Lett. 2, 593–600. doi:10.1109/LRA.2016.2645143

Roncone, A., Pattacini, U., Metta, G., and Natale, L. (2016). “A cartesian 6-DoF gaze
controller for humanoid robots,” in Proceedings of Robotics: Science and Systems,
AnnArbor. doi:10.15607/RSS.2016.XII.022

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-DVS and
MNIST-DVS. Their history, how they were made, and other details. Front.
Neurosci. 9:481. doi:10.3389/fnins.2015.00481

Valeiras, D. R., Lagorce, X., Clady, X., Bartolozzi, C., Ieng, S.-H., and Benosman, R.
(2015). “An asynchronous neuromorphic event-driven visual part-based
shape tracking,” in IEEE Transactions on Neural Networks and Learning
Systems, 1–15. Available at: http://ieeexplore.ieee.org/document/7063246/

Vasco, V., Glover, A., and Bartolozzi, C. (2016a). “Fast event-based Harris cor-
ner detection exploiting the advantages of event-driven cameras,” in IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS) (Daejeon,
South Korea), 4144–4149.

Vasco, V., Glover, A., Tirupachuri, Y., Solari, F., Chessa, M., and Bartolozzi, C.
(2016b). “Vergence control with a neuromorphic iCub,” in IEEE-RAS
International Conference on Humanoid Robots (Humanoids) (Cancun, Mexico:
IEEE), 732–738.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Glover, Vasco, Iacono and Bartolozzi. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.5772/5761
https://doi.org/10.15607/RSS.2015.XI.036
https://doi.org/10.1109/TRO.2012.2198930
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.3389/fnins.2013.00234
https://doi.org/10.1109/LRA.2016.
2645143
https://doi.org/10.15607/RSS.2016.XII.022
https://doi.org/10.3389/fnins.2015.00481
http://ieeexplore.ieee.org/document/7063246/
http://creativecommons.org/licenses/by/4.0/

	The Event-Driven Software Library for YARP—With Algorithms and
iCub Applications
	1. Introduction
	2. Event-Driven Vision for Robots
	3. The Event-Driven Library
	3.1. Representing an Event
	3.2. Event-Packets in YARP
	3.3. Structuring the Event-Stream
	3.4. Low-Level Processing

	4. Demonstrations, Code, and Datasets
	5. Conclusion
	Author Contributions
	Acknowledgments
	Funding
	References

