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Event-driven (ED) cameras are an emerging technology that sample the visual signal 
based on changes in the signal magnitude, rather than at a fixed-rate over time. The 
change in paradigm results in a camera with a lower latency, that uses less power, has 
reduced bandwidth, and higher dynamic range. Such cameras offer many potential 
advantages for on-line, autonomous, robots; however, the sensor data do not directly 
integrate with current “image-based” frameworks and software libraries. The iCub 
robot uses Yet Another Robot Platform (YARP) as middleware to provide modular 
processing and connectivity to sensors and actuators. This paper introduces a library 
that incorporates an event-based framework into the YARP architecture, allowing event 
cameras to be used with the iCub (and other YARP-based) robots. We describe the 
philosophy and methods for structuring events to facilitate processing, while maintain-
ing low-latency and real-time operation. We also describe several processing modules 
made available open-source, and three example demonstrations that can be run on 
the neuromorphic iCub.

Keywords: iCub, neuromorphic engineering, event-driven vision, software, humanoid robotics

1. INTRodUCTIoN

Conventional vision sensors used in robotics rely on the acquisition of sequences of static images at 
fixed temporal intervals. Such a sensor provides the most information when the temporal dynamics 
of the scene match the sample-rate. If the dynamics are slower (e.g., a mostly static scene), only a 
small percentage of pixels change between two consecutive frames, leading to redundant acquisi-
tion and processing. Alternatively, if the scene dynamics are much faster (e.g., a falling object), 
information between images can be distorted by motion blur, or missed entirely.

A newly emerging technology, “event-driven” (ED) cameras, are vision sensors that produce 
digital “events” only when the amount of light falling on a pixel changes. The result is that the 
cameras detect only contrast changes (Lichtsteiner et al., 2008) that occur due to the relative motion 
between the environment and the sensor. There is no fixed sampling rate over time, instead, the sen-
sor adapts to the scene dynamics. Redundant data are simply not produced in slow dynamic scenes, 
and the sensor output still manages to finely trace the movement of any fast stimuli. Specifically, 
the camera hardware latency is only 15 μs (Lichtsteiner et al., 2008) and the temporal resolution 
at which an event can be timestamped is under 1 μs. Events are also produced asynchronously for 
each pixel, such that processing operations can start without the need to read the entire sensor 
array, and a low-latency processing pipeline can be realized.

ED cameras provide many potential advantages for robotics applications. The removal of redun-
dant processing can give mobile robots longer operating times and frees computational resources for 
other tasks. Fast-moving stimuli can always be detected, and visual dynamics estimated with more 
accuracy than with conventionally available cameras. This low-latency can enable extremely fast 
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FIGURe 1 | The (A) iCub robot performing ball tracking and gazing toward 
the ball position and (B) the corresponding stream of events over time 
superimposed with approximate frame-captures for a hypothetical 10 Hz 
frame-based camera.
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reaction times between environmental change and the response 
of the robot. In addition, each pixel has a high dynamic range 
(143  dB (Posch et  al., 2011)) which allows robots to operate 
in both bright and dark environments, and in conditions with  
widely varying intra-scene lighting. The sensor is low-power, 
promoting longer operation times for untethered mobile robots.

The neuromorphic iCub (Bartolozzi et al., 2011) is a humanoid 
robot that has a vision system comprised of two event cameras. 
The iCub robot is supported, in software, by the Yet Another 
Robot Platform (YARP) middleware (Metta et  al., 2006), upon 
which the iCub low-level and application-level modules have 
matured using standard cameras, and also utilized other freely 
available algorithms (e.g., using OpenCV). However, due to the 
asynchronous nature of the event-stream, and its fundamental 
differences from 2D frame sequences (see Figure 1), traditional 
computer vision algorithms and image processing frameworks 
cannot be directly applied.

This paper introduces the event-driven software libraries and 
infrastructure that is built upon YARP and integrates with the 
iCub robot. The library takes advantage of the YARP framework, 
which enables the distributed processing of events within multi-
ple interchangeable modules spread across multiple networked 
machines. Modules include pre-processing utilities, visualization, 
low-level event-driven vision processing algorithms (e.g., corner 
detection), and robot behavior applications. These modules can 
be run and used by anyone for purely vision-based tasks, without 
the need for an iCub robot by using: pre-recorded datasets, a 
“stand-alone” camera with a compatible FPGA, a “stand-alone” 
camera with the compatible USB connection, or by contributing 
a custom camera interface to the open-source library. As the 
processing is modular, the exact method of event acquisition 
is transparent to the remainder of the library. This paper also 
describes several iCub applications that have been built upon the 
ED cameras and library and highlights some recent experimental 
results. We begin with a brief description of the current state-of-
the-art in ED vision for robotics.

2. eVeNT-dRIVeN VISIoN FoR RoBoTS

Recent work using event cameras show promising results for fast, 
low-latency robotic vision. The latency of an event-based visual 
attention was two order less than frame-based one (Rea et  al., 

2013). Recognition of playing-card suit was achieved as a deck 
was flicked through (30 ms exposure) (Serrano-Gotarredona and 
Linares-Barranco, 2015). Detection of a moving ball by a moving 
robot was achieved at rates of over 500 Hz (Glover and Bartolozzi, 
2016). Visual tracking of features was shown at a rate higher than 
standard cameras (Vasco et al., 2016a) and also features position 
could be updated “between frames” of a standard camera (Kueng 
et al., 2016).

The extreme low-latency of event cameras enabled fast close-
loop control (e.g., inverse pendulum balancing (Conradt et al., 
2009) and goal keeping with 3  ms reaction time and only 4% 
CPU utilization (Delbruck and Lang, 2013)). High-frequency 
visual feedback (>1 kHz) enabled stable manipulator control at 
micrometer scale (Ni et al., 2012). On-board pose estimation dur-
ing flips and rolls of a quadrotor has been shown to be plausible 
using event-driven vision (Mueggler et al., 2015). Finally, robotic 
navigation and mapping systems include a real-time 2-DOF  
SLAM system for a mobile robot (Hoffmann et  al., 2013), and 
6-DOF parallel tracking and mapping algorithms (Kim et  al., 
2016; Rebecq et al., 2016).

Some of the above experiments used the Java-based jAER 
(Delbruck, 2008); however, Java is typically less suited to on-line 
robotics due to computational overheads. jAER is also designed 
to process events from a camera directly connected to a single 
machine; however, robotics platforms have come to rely on a 
middleware that distributes processing over a computer network.  
A middleware allows the modular connection of sensors, 
algorithms and controls, which are shared within the robotics 
community to more quickly advance the state-of-the-art. Perhaps 
the most well known is the Robot Operating System (ROS), in 
which some support for event cameras has been made available.1 
In this paper, we present the open-source libraries for event camera 
integration with the YARP middleware that is used on iCub.

3. THe eVeNT-dRIVeN LIBRARY

ED cameras encode information as a stream of asynchronous 
events with sub-μs resolution. When a pixel detects an illumi-
nation change beyond a threshold, it emits a digital pulse that 
can be assigned a timestamp and pixel address (using Address 
Event Representation (AER) (Mortara, 1998)) by a clock-based 
digital interface (e.g., FPGA or microcontroller). The entire visual 
information is, therefore, encoded within the relative timing and 
pixel position between events. An example event-stream is shown 
in Figure 1.

This event-driven library is designed to read events from the 
cameras, interface to communications for distributed processing, 
and provide event-based visual processing algorithms toward 
low-latency robotic vision. The library is written in C++, uses 
the ev namespace, and is integrated with the YARP middleware.

3.1. Representing an event
The basic element representing an event is a ev::vEvent, 
which only stores the timestamp, i.e., when an event occurred. The 

1 github.com/uzh-rpg/rpg_dvs_ros.
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FIGURe 2 | Event-types and inheritance, purple/dashed boxes show possible additions to the library to support the integration of other sensory modalities and 
information from additional computing modules.

LISTING 1 | Instantiating events using shared pointer wrappers and dynamic casting. The outcome of the code-snippet will be the allocation of v1 as an 
ev::AddressEvent and (an identical) v2 as a ev::labelledAE, while v3 and v4 will be pointers to v2, but interpreted as ev::AddressEvents.
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information about what occurred is instead stored in the member 
variables of classes that are inherited from a ev::vEvent, 
see Figure 2. Events produced by the event cameras are called 
ev::AddressEvent, which consist of pixel location (x,y) and 
pixel polarity (p: darker/lighter) in addition to the camera chan-
nel (c: left/right). Algorithmic processing of events can be used 
to append additional information to an event, such as adding the 
velocity from an optical-flow algorithm. Currently used additional 
event-types include optical-flow events (ev::FlowEvent), 
class-labeled events (ev::LabelledAE), and events with a 
spatial distribution (ev::GaussianAE).

An instantiated ev::vEvent is wrapped in a C++11 
shared_ptr such that memory is automatically managed, 
and events can be referenced in multiple threaded environments 
without duplicated memory allocation. The event-driven library 
provides a set of wrapper functions to ensure the shared_ptrs 
are correctly handled (see Listing 1).

These event-types can be easily extended through inherit-
ance, and by defining the required additional member variables. 
Packet encoding and decoding methods are also required for 
transmission (described below). The framework is designed to 
be fully future compatible with the integration of different event-
driven sensors (e.g., tactile and audio) by extending the base 
ev::vEvent class.

3.2. event-Packets in YARP
On the iCub robot, a Linux driver reads the events from the camera 
FPGA interface and the zynqGrabber module exposes the data 
on a YARP port. A packet of events is sent in a ev::vBottle 
(a specialized type of yarp::os::Bottle) such that the bit-
coding of the AER is preserved: to retain data-compression and 
compatibility with other AER-based hardware. A module that 
receives a ev::vBottle can decode the AER and instantiate 
a ev::vEvent easily, as event decoding is provided by each 
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LISTING 2 | An example class for reading, decoding, and structuring events. This code will produce a small “surface” of events decoded from the AER 
representation automatically using the ev::vBottle::get() command, and the ev::vBottle is read asynchronously as the packets arrive.
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event class. Encoding/decoding typically involves bit-shifts and 
a typecast to interpret a specific range of bits as the correct data 
type. The decoded events are stored in a ev::vQueue which 
wraps a std::deque<event<vEvent>>. The procedure to 
obtain the event-stream is, therefore, transparent to the process-
ing module. Reading ev::vBottle from a port is typically 
done using callback functionality (i.e., only where data is present) 
as the event-stream is asynchronous. An example code-snippet is 
provided in Listing 2.

Events can be saved and loaded from a file using the stand-
ard tools in YARP as an event-packet is fully interpretable as a 
standard yarp::os::Bottle. Therefore, it is easy to save a 
dataset using the yarpdatadumper and replay it using the 
yarpdataplayer. This is done externally to the event-driven 
library, simply by connecting the event-stream to/from the afore-
mentioned modules using YARP connections.

3.3. Structuring the event-Stream
The desired approach to ED processing is to perform a small, 
lightweight computation as each event is received; however, a 
single event (a single pixel) does not provide sufficient infor-
mation on its own for many complex visual algorithms. Often 
it is necessary to store a sequence of events in order to extract 
useful information from their spatiotemporal structure. The 
type of structure used depends on the conditions, limitations 

and assumptions of the task or algorithm. For example, the 
length (in time) of a ev::Temporal Window can be tuned to 
respond to a target object moving at a certain velocity, but 
may fail if the target’s velocity cannot be constrained. A 
ev::Fixed Surface of N events will be invariant to the speed of 
an object, but can fail if the target size and shape are unknown, 
a ev::Surface can access a spatial region-of-interest faster than 
a ev::Temporal Window, as long as the temporal order of events 
is not important. The event-driven library includes a range of 
methods to organize and structure the event-stream; an exam-
ple code-snippet that combines port-callback functionality, 
event-packet decoding and event data structuring is shown 
in Listing 2.

In a distributed processing network, network latency, packet 
loss, and module synchronization become relevant issues, 
especially when it is desirable to take advantage of the intrinsic 
low-latency of the sensor. Processing needs to be performed in 
real-time to ensure robot behavior is decided from an up-to-date 
estimation of the world. The ATIS cameras will produce ≈10 kV/s 
when a small object is moving in the field of view but will produce 
>1,000 kV/s if the camera itself is rotated quickly (e.g., when the 
iCub performs a saccade). These numbers double for a stereo 
camera set-up. Real-time constraints can be broken if processing 
algorithms are dependent on processing every single event and 
the processing power is not sufficient.

http://www.frontiersin.org/Robotics_and_AI
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A B

FIGURe 3 | The (A) tracking/detection accuracy of ev::vCircle (blue) and ev::vParticleFiler (green) compared to ground truth (black). Both algorithms 
can be used to control the iCub in gaze and grasping demonstrations. The (B) computation performance comparison between ev::vCorner and hypothetical 
frame-based Harris corner detection (red dashed line). A lower computational requirement is beneficial to resource contained on-line robotics. These figures can be 
generated using the scripts found in the datasets section.
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In the YARP event-driven library, a multi-threaded event 
structure is provided to de-couple the process of reading events 
into a data structure from that of running the algorithm. Modules 
are constructed such that the entire history of events is accounted 
for, but the processing algorithm runs only at the rate at which 
it maintains real-time operation. The result is that chunks of 
events are not randomly lost within the communication pipeline; 
instead the rate at which the algorithm can output a result is 
reduced under high event-load. Our algorithms still typically 
run at rates of 100 to 1,000 s of Hertz; higher than the frame-rate 
of a standard camera. Importantly, the algorithm update-rate is 
not bottlenecked by the sensor update-rate (e.g., a frame-based 
camera), and the update-rate can be increased by adding compu-
tational power. The library classes ev::queueAllocator, 
ev::tWinThread and ev::hSurfThread manage real-
time operation, and examples can be found in the documentation.

“Event-by-event” processing is also always possible in the YARP 
event-driven library and can be used to enforce a deterministic 
result to evaluate algorithm performance off-line, without the 
need to consider real-time constraints.

3.4. Low-Level Processing
Processing modules take the raw AER data and extract useful, 
higher-level information. The output of the modules will be a 
stream of events augmented with the additional information, as 
in Figure 2. The modules currently available in the event-driven 
repository are:

• Optical Flow—an estimate of visual flow velocity is given 
by the rate at which the position of events change over time. 
Local velocity can be extracted by fitting planes to the resulting 
spatiotemporal manifolds (Benosman et al., 2014). The vFlow 
module converts the ED camera output ev::AddressEv-
ent to ev::FlowEvent.

• Cluster Tracking—The movement of an object across the visual 
field of an ED camera produces a detailed, unbroken trace of 
events. This module tracks clusters of events that belong to 
the same trace (Valeiras et  al., 2015). The cluster center and 

distribution statistics is output from the vCluster module 
as a ev::GaussianAE event.

• Corner Detection—using an event-driven Harris algorithm, 
the event-stream is filtered to leave only the events on the 
corners of objects (Vasco et al., 2016a). Corner events provide 
unique features that can be tracked over time. Compared to a 
traditional camera, the ED corner algorithm requires less pro-
cessing, as shown in Figure 3B. Corner events are represented 
by ev::LabelledAEs.

• Circle Detection—detection of circular shapes in the event-
stream can be performed using an ED Hough transform. As the 
camera moves on a robot, many background events clutter the  
detection algorithm. The vCircle module reduces the 
false positive detections by incorporating optical-flow 
information (Glover and Bartolozzi, 2016). The detection 
results are shown in Figure 3A. Circle events are described by 
ev::GaussianAEs.

• Particle filtering—the particle filter achieves tracking that is 
robust to variations in the speed of the target, by also sampling 
within the temporal dimension (Glover and Bartolozzi, 2017). 
Ball tracking is implemented and the results are shown in 
Figure 3A.

The library also includes additional tools for:

• Camera Calibration—the intrinsic parameters of the camera 
can be estimated using a static fiducial and standard visual 
geometry techniques.

• Pre-processing—this module can apply a salt-and-pepper 
filter, flipping horizontal/vertical axes, applying camera dis-
tortion removal, and splitting a combined stereo event-stream 
into a left stream and a right stream.

• Visualization—the event-stream is asynchronous and does not 
inherently form “images” that can be viewed in the same way 
as a traditional camera. The vFramer uses a ev::Tempo-
ralWindow to accumulate events over time and produce a 
visualization of the event-stream. Different drawing methods 
exist for different event-types, which can be overlaid onto a 
single image (as shown in Figure 1).
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4. deMoNSTRATIoNS, Code,  
ANd dATASeTS

The neuromorphic iCub and event-driven library have been 
used for several studies and robot demonstrations that can be 
run using yarpmanager. The modules are designed such that 
the robot begins performing the task once all required modules 
are running and the port connections have been made. Detailed 
instructions on how to run the demonstrations are provided in 
the online documentation2 available with the code3 on GitHub. 
An xml file is provided for each application to correctly launch 
and connect modules in yarpmanager. Known issues with the 
applications can also be found online. An overview of some of the 
applications is given below:

• Ball Gazing and Grasping—The module vCircle (desribed 
more in Glover and Bartolozzi (2016)) or vParticleFil-
ter (described more in Glover and Bartolozzi (2017)) can be 
used to produce events describing the visual position of a ball, 
e.g., see Figure 3A. The vGazeDemo uses the iKinGazeC-
trl (Roncone et al., 2016) to calculate the 3D position of the 
ball and the focus of the iCub’s gaze can be directed to the loca-
tion using the head and eye motors. Alternatively, the output 
of the ball position can be sent to the classic DemoRedBall4 
application to have the robot also move the arm to grasp the 
ball.

• Stereo Vergence—Automatic control of stereo vergence of 
the iCub to focus on an object within the field of view was 
implemented using biologically inspired methods (Vasco et al., 
2016b). The vVergence application accepts stereo ev::Ad-
dressEvents and moves the vergence to minimize the response 
of stereo Gabor filters.

• Attention and Micro-saccade—A simple, yet effective, atten-
tion module is demonstrated that only requires the presence 
of events to perform a saccade to gaze at an external stimulus. 
If the event-rate is instead below a threshold, the autosac-
cade application generates small eye movements to visualize 
the static scene.

The documentation includes a project overview, instructions 
to run demonstration applications, descriptions and parameters 
of processing modules, and class and function descriptions. The 
code is only dependent on YARP and uses the iCubContrib to 
install the project in a manner compatible with YARP and iCub 
environment.

2 http://robotology.github.io/event-driven/doxygen/doc/html/index.html.
3 https://github.com/robotology/event-driven.
4 https://github.com/robotology/icub-basic-demos.

Datasets of event-driven data can be found in the tutorials 
section of the online documentation. The datasets consist of the 
event-streams used in several of the experiments presented in 
this paper. The datasets enable the processing of event-driven 
algorithms if a physical camera is not available.

5. CoNCLUSIoN

This paper presents the YARP-integrated event-driven library, 
specifically toward enabling ED robotics using a robot middle-
ware. The data structures, multi-threaded approach and algorithm 
design are aimed toward real-time operation under a wide range 
of conditions and in uncontrolled environment, toward robust 
robotic behavior. The paper has presented the YARP interface, 
the low-level vision algorithms, and the applications on the iCub 
robot.

Event cameras are now available as an add-on plug-in and  
new iCub robots can potentially come equipped with neuromor-
phic hardware; alongside traditional cameras, or as the sole form 
of vision. Alternatively, the software package can be used through 
a USB interface to the ATIS camera, or through off-line datasets. 
The contribution of alternative camera interfaces is possible (and 
welcome) as the processing modules are transparent to the source 
of the events, and the package is provided as an open-source 
project.
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