
First Use of Model Predictive
Control in Outpatient Wearable
Artificial Pancreas

OBJECTIVE

Inpatient studies suggest that model predictive control (MPC) is one of the most
promising algorithms for artificial pancreas (AP). So far, outpatient trials have
used hypo/hyperglycemia-mitigation or medical-expert systems. In this study, we
report the first wearable AP outpatient study based on MPC and investigate
specifically its ability to control postprandial glucose, one of the major challenges
in glucose control.

RESEARCH DESIGN AND METHODS

A new modular MPC algorithm has been designed focusing on meal control.
Six type 1 diabetes mellitus patients underwent 42-h experiments: sensor-
augmented pump therapy in the first 14 h (open-loop) and closed-loop in the
remaining 28 h.

RESULTS

MPC showed satisfactory dinner control versus open-loop: time-in-target (70–180
mg/dL) 94.83 vs. 68.2% and time-in-hypo 1.25 vs. 11.9%. Overnight control was
also satisfactory: time-in-target 89.4 vs. 85.0% and time-in-hypo: 0.00 vs. 8.19%.

CONCLUSIONS

This outpatient study confirms inpatient evidence of suitability of MPC-based
strategies for AP. These encouraging results pave the way to randomized cross-
over outpatient studies.
Diabetes Care 2014;37:1212–1215 | DOI: 10.2337/dc13-1631

The reduction of postprandial glucose excursions is a major challenge for artificial
pancreas (AP) systems using subcutaneous insulin infusion due to delays associated
with this route, as discussed in Cobelli et al. (1). Numerous inpatient studies have
shown that model predictive control (MPC) is one of the most promising control
strategies to cope with this and other delays of glucose closed-loop control (1 and
references cited therein). Until now, MPC has not been used in outpatient settings.
Three successful outpatient studies with an AP have recently been reported, using
either a heuristic algorithm (hypo/hyperglycemia-mitigation system) (2,3) or a
medical-based expert system (4). The first two were 42-h studies in adults with type
1 diabetes using a wearable AP platform based on a smartphone, while the third
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study focused on overnight control in a
camp of a large pediatric population
using a laptop-based system. In this
study, we report for the first time an
outpatient study based on an MPC
strategy and investigate specifically its
ability to control postprandial glucose.

RESEARCH DESIGN AND METHODS

Protocol
This study followed the same protocol
as previous outpatient studies
presented in Cobelli et al. (2) and
Kovatchev et al. (3), to which we refer to
for details.

A total of six adults (aged 21–44 years)
with type 1 diabetes were studied, two
and four patients simultaneously. All
participants were experienced insulin
pump users, and their usual pump was
replaced by an Omnipod Insulin Pump
(Insulet Corp., Bedford, MA) for the
study. A DexCom Seven Plus sensor
(DexCom, Inc., San Diego, CA) was
inserted 2 to 3 days prior to trials.

Throughout the study, patients wore
the DiAs platform, a portable system
developed at the University of Virginia
allowing outpatient closed-loop control,
already used in Kovatchev et al. (3)
and Keith-Hynes et al. (5). The core of
the DiAs system is an off-the-shelf
smartphone running an Android
operating system modified for medical
use. The closed-loop controller
was implemented on this device.
Communications between DiAs and
pump/sensor were wireless, allowing
the patient to move around freely. Since
wireless communication is not available
on the pump or the sensor themselves,
the system included a connection device
that communicates wirelessly with DiAs.

The study started at 18:00 on day 1
and lasted for 42 h. Standard sensor-
augmented pump therapy was
performed with the DiAs set in open-
loop mode (i.e., patient-driven), for the
first 14 h of the study (day 1 at dinner
and night 1). From day 2 at breakfast
to day 3 at 12:00, the closed-loop
controller was active and challenged by
four meals and one night. Both in open-
loop and closed-loop modes, dinners
were consumed in a local restaurant.
Patients were asked to tell the system
the estimated meal carbohydrate
content. Both in open- and closed-loop

modes, they were assisted in the
estimation process by the attending
clinician, if needed, to avoid gross
estimation errors biasing the
comparison. In open-loop mode, meal
bolus was computed by the pump bolus
calculator formula using patient-specific
parameters (carbohydrate/insulin ratio
and correction factor). In closed-loop
mode, the DiAs-based controller
computed premeal bolus according to
the same patient-specific parameters
but also taking into account predicted
future glucose values. To avoid potential
learning of optimal bolus doses from the
first dinner that would have favored the
closed-loop intervention, the same
patient-specific carbohydrate/insulin
ratio and correction factors were used in
both open- and closed-loop dinners. In
both cases, premeal bolus was delivered
15 min ahead of the meal.

The subjects spent the night in a hotel
near the Padova University Hospital,
and during the study, the subjects were
free to move around the facility and its
vicinity.

The subjects interacted with DiAs
using a Graphical User Interface, which
allows sensor calibrations, meal
announcement, etc.

To enhance patient safety, patient data
were streamed by DiAs in real time to a
telemonitoring website (6). Accessing to
thewebsite via an ordinary PC, the study
team was able to monitor from remote
location the status of the patient and
check the correct functioning of the
system throughout the trial without
interfering/interacting with the
experiment unless requested by
protocol safety measures or for system
troubleshooting.

The study was approved by the local
ethics committee and registered with
ClinicalTrials.gov as NCT1447992.
Written consent was obtained.

Methods
The implemented control algorithm is a
modular MPC, presented in Soru et al.
(7) and Patek et al. (8). It is an evolution
of a previous algorithm exposed in
Magni et al. (9), used in an inpatient
study, as described in Breton et al. (10).
A key improvement concerns meal
control. The standard basal/bolus
therapy is used as reference in the

optimization problem, so that MPC can
adapt meal bolus using information
about the patient status.

Data Analysis
Data portions affected by system
malfunctioning have been removed
(overall, the system worked successfully
90.27% of the time). We focus on meals,
particularly on dinner.

RESULTS

Overall, the system worked successfully
94.5% during open-loop and 88.3%
during closed-loop. No hypoglycemia
requesting a third-party assistance andno
episode with b-ketones.1.0 mmol/L or
HemoCue.400 or.300mg/dL for.1 h
were recorded, and no experiment had to
be discontinued due to adverse events.

The study was not designed nor
powered to statistically compare open-
loop versus closed-loop, but certain post
hoc comparisons for a preliminary
assessment of effect size can be made.

Figure 1, top panel, shows the results of
meal control: percent time-in-target
(70–180 mg/dL, top left) and percent
time-in-hypoglycemia (,70 mg/dL, top
right) evaluated in the 4-h postprandial
period of each meal of the study. Dinner
closed-loop control was better than
open-loop control of the same meal on
the previous day: time-in-target
increased from 68.17 to 94.84% and
time-in-hypoglycemia was reduced
;10-fold (11.95 vs. 1.25%). Lunch
average control achieved by closed-loop
was similar to the one achieved at
dinner. No hypoglycemia was observed
after lunch (12:00–16:00).

Breakfast confirmed itself as the most
difficult meal to control: both breakfasts
had less time-in-target than dinner and
lunch (84.80 and 78.27 vs. 94.84 and
95.68%, respectively). In the first day
breakfast, time-in-hypoglycemia was
slightly higher than after dinner and
lunch (2.44 vs. 1.25 and 0%,
respectively), while no hypoglycemia
was observed after the second day
breakfast.

A similar picture emerges from the
other meal-related metrics, reported in
the bottom panel of Fig. 1.

Overnight controlwasalsobetter onclosed-
loopversusopen-loop: time-in-target, 89.40
vs. 84.97%; time-in-tight-target (80–140
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mg/dL), 59.07 vs. 48.53%; and time-in-
hypoglycemia, 0.00 vs. 8.19%. Although
the closed-loop was challenged with
more meals than open-loop, in terms of
overall performance, percent time-in-
target was on average .75% with both
treatments (82.05 open-loop vs. 84.66%
closed-loop), and a sevenfold reduction
of time-in-hypo was observed with
closed-loop (8.56 open-loop vs. 1.15%
closed-loop).

CONCLUSIONS

Effective postprandial glycemic control
is one of the major challenges to AP
systems based on subcutaneous insulin

infusion. To respond to this challenge,
we used a meal-informed MPC strategy.
In this report, we provide data on the
first wearable AP outpatient study
based on meal-informed MPC, showing
its ability to reduce postprandial
glycemic excursions. These results
confirm inpatient findings of the
effectiveness of MPC-based strategies
and pave the way to randomized
crossover outpatient studies of longer
duration. The encouraging results of this
report for a single meal (dinner) control
needs to be confirmed in future long-
term randomized studies with
numerous meals, proving sustained

superiority of MPC versus the
commonly used bolus calculator
(as those provided by pumps or
meter). Because improvements in the
power handling of the mobile AP
platform are needed for around-the-
clock experiments, the initial step may
have to follow a hybrid closed-loop
mode (i.e., closed-loop treatment
from dinner to wake-up time and
standard open-loop therapy during
daytime).
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