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Abstract—This paper describes a novel BSN-based integrated
system for detecting, monitoring, and securely recording human
physical activities using wearable sensors, a personal mobile
device, and a Cloud-computing infrastructure supported by the
BodyCloud platform. An integration with a smart-wheelchair
system is also presented. BSNs are a key enabling technology for
the revolution of personal-health services and their integration
with Cloud infrastructure can effectively supports the diffusion
of such services in our daily life. Many of these personal-health
systems - regardless of their final aim - are based, use or are
supported by contextual information on user’s physical activity
(body posture, movement or action) being performed. This work,
hence, aims at providing a basic physical activity service that is
capable of supporting personal, mobile-Health applications with
real-time activity recognition and labeling both on the personal
mobile device and on the Cloud.
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I. INTRODUCTION

Body Sensor Networks (BSNs) [1] are Wireless Sensor
Networks (WSNs) specifically tailored for monitoring
human physiological signals. BSNs and their related smart
wearables are demonstrating to play a disruptive role in
several human-centric applications, such as mobile-Health,
e-Fitness and e-Sport, mass events/trends detection and
management. BSNs involves smart wearable sensor devices -
heterogeneous in terms of form factors, sensing, computation
and communication capabilities - that are designed to
acquire physiological signals such as electrocardiogram
(ECG), heart and respiratory rate, limb and full-body
movements, body temperature, blood oxygenation, glucose
level, and electromyography (EMG). In addition, such signals
are processed to obtain indirect measurements and infer
high level information that are used to build diversified
non-invasive, 24/7 application services, including activity
monitoring, early detection of heart conditions, emotion
detection, neuro-degenerative disease monitoring.

Although these technologies are quickly taking place in
the market and in our daily life, their actual potential is
still partially uncovered. Particularly referring to community-
awareness and crowd-sourcing opportunities, there is the need
to deal with management of a large number of cooperative and
non-cooperative BSNs, which is a hot research topic today.
Indeed, enabling pervasive systems based on large commu-
nities of users represents a critical success factor for these
technologies. The massive amount of data and information
that BSN networks can generate at different layers, require
efficient, scalable, distributed and interoperable platform for
their collection, secure storage, and management. Such tasks
simply cannot be achieved relying on the limited resources
provided by the BSN alone.

With the aim of providing a solution to this complex task,
we have realized, and released in open-source, the SPINE
(Signal Processing in Node Environment) framework [2], [3],
[4], [5] (a software platform to support BSN sensing and
processing management) and BodyCloud [6], [7], [8], a Cloud
computing infrastructure tightly integrated with BSN-based
platforms, which enables several important functionalities in
this context, such as:

• heterogeneous wearable sensing through personal mo-
bile devices acting as local coordinators;

• scalability in terms of processing power for diverse
medical analysis;

• scalability in terms of physiological signals collection
and data storage;

• global access to processing and storage functionalities;

• simple and authenticated sharing of results.

SPINE is a software framework for the design and fast
prototyping of Wireless Body Sensor Network (BSN) appli-
cations. It enables efficient implementations of signal process-
ing algorithms for analysis and classification of sensor data
through libraries of processing functionalities, and includes an
application-level communication protocol too.

BodyCloud is a Software-as-a-Service (SaaS) platform for
real-time storage, online and offline management of human vi-
tal signs and other physiological sensory signals. Additionally,
BodyCloud includes mining functionalities to enable high-level
decision-support from sensory data generated by the users’
BSNs.. Although our framework is independent from MAC
or network stacks, adopting specific solutions can help obtain
high performance and reliable communications [9].
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We adopted our technologies to realize several e-Health
services [10], [11], [12], so showing their effectiveness and
flexibility.

In this paper we describe another application of the Body-
Cloud middleware: an advanced human activity monitoring
system, namely Activity-aaService, extending our previous
work [13].

Activity-aaService is a full-fledged hardware/software sys-
tem to support real-time, non-invasive human activity recogni-
tion and monitoring. It also features an accurate and advanced
step-counter component. It uses two wearable motion sensors
and a personal mobile device where a graphical application
provides instantaneous feedbacks to the user; in addition, when
Internet connectivity is available, data are also sent to a cloud
back-end that serves as long-term, multi-user data storage and
processing. Finally, a web-based interface gives remote access
to such information at authenticated and authorized users.

In addition, we integrated Activity-aaService with a smart-
wheelchair system.

The rest of the paper is structured as follows. Section II
discusses related work on BSN-based human activity recog-
nition and monitoring. Section III focuses on the proposed
physical activity application service. In Section IV an advanced
step-counter algorithm is proposed and described in detail.
Section V describes the integration of Activity-aaService with
a smart-wheelchair system. Finally, in Section VI conclusive
remarks are drawn and directions of future work are briefly
outlined.

II. RELATED WORK

Automatic physical activity monitoring has attracted
tremendous interest and the topic is being studied under very
diversified point of views. The problem is addressed with
different approaches in terms of sensor types and recognition
strategies. One of the most relevant and cited work is [14].
Here, several supervised learning algorithms are used and
evaluated to detect physical activities using accelerometer data
from sensors placed on different body locations. In [15],
authors compared the activity classification accuracy by vary-
ing the number and the location of sensor nodes on the
human body. In [16] an activity recognition system based
on just a single motion sensor node worn at the waist is
proposed. In [17], authors investigate the benefits of dynamic
sensor selection to achieve the best trade-off between power
consumption and activity recognition accuracy and propose
an activity recognition method that is associated with an
underlying run-time sensor selection scheme. In the last years,
thanks to the significant improvements of commercial smart-
phones (particularly in terms of sensing opportunities), many
researchers [18], [19] are highlighting the convenience of
implementing physical activity monitoring uniquely relying
on users’ mobile phones, so to significantly improve user
acceptance and reduce economic costs. Interesting surveys on
human activity recognition have been published too [20], [21].
For broader reference, interested readers can consult additional
interesting survey works on the e-Health domain [22], [23].

III. ACTIVITY-AASERVICE

Activity-aaService takes advantage of the related work
targeting a better trade-off among classification accuracy, wear-
ability, power requirements, and programming complexity. It
is able to recognize both postures (lying down, sitting, and
standing still) and a few movements (walking, running and
jumping); furthermore, it includes a convenient guided pro-
cedure to extend its recognition capabilities with user-defined
activities. Finally, it embeds a simple yet effective accidental
fall detection widget that uses the activity classification to
determine if a person is unable to stand up after having
fallen. Our system uses two wearable accelerometer sensor
units based on the Shimmer2R [24] platform (with a pre-
installed instance of the SPINE framework) and an Android-
based personal mobile device (e.g. a commercial smartphone
or tablet) where most of the service logic is actually running.
The end-user mobile application is hence written in Android
and programmed atop the SPINE-Android framework and
assisted by the BodyCloud middleware. Sensor nodes and
mobile device communicate over standard Bluetooth.

In particular, BodyCloud has been used for integrating the
service with a web application dashboard. Using BodyCloud,
all relevant activity-related data are sent to a BodyCloud-based
back-end along with time and geo-localization (when available
and if granted by the user) references. In addition, with the
intent of providing a degree of flexibility in terms computing
power demand of the service on the mobile device, we chose
to implement three different modes of operation, that can be
selected upon application launch.

1) Full Cloud: the mobile application will only collect
the raw data, and send this straight to the cloud. The
cloud will then do all needed processing (i.e. feature
extraction and classification).

2) Mix Cloud: the mobile application will be responsible
for raw data collection and feature extraction. These
features will then be sent to the cloud for classifica-
tion.

3) Full Local: all processing will be done on the mobile
device. Specifically, raw data collection, feature ex-
traction, and feature classification. The cloud is there-
fore used only for long-term storage and graphical
visualization of statistics (see Fig. 1).

In particular, to reduce network usage, the last operating
mode is programmed to communicate with the cloud only after
transitions between an activity/posture and another.

According to the BodyCloud programming paradigm based
on XML scripting, we defined the following entities for the
Activity-aaService:

• The ActivityMonitoring group, which represents the
group of monitored users.

• The RawAccelerationDataFeed, FeatureDataFeed, and
ActivityDataFeed modalities. These modalities reflect
the three different operating modes described above.

• The ActivityMonitoring workflow, which models a
three sequential nodes workflow able to read body
motion data collected by the reader node, extract the
features out of it, and apply the activity classification



TABLE I. POSTURE/MOVEMENT RECOGNITION ACCURACY.

Sitting Standing Lying Walking Falling

96% 92% 98% 94% 100%

algorithm. Note that this workflow is specifically ac-
tivated when Activity-aaService runs in “Full Cloud”
mode.

• The Activity View, which is used to model the we-
based graphical representation of the various activities
being performed by the user (currently a simple pie
chart for statistics visualization).

The activity recognition relies on a classifier that takes
accelerometer data features (max, min and average; see above)
and recognizes the movements defined in a training phase. A
K-Nearest Neighbor (KNN) classifier [25] has been chosen
for recognition. The significant feature set has been identified
using an off-line sequential forward floating selection algo-
rithm [26]. Experimental results have shown that, given a
certain training set, the classification accuracy is not much
affected by the K value or the type of distance metric. This
is because our target activity classes present high inter-class
correlation as well as high inter-class separation. Therefore, K
set to 1 and the Manhattan distance are used as parameters of
the KNN-based classifier.

The overall recognition accuracy (see Table I) reached by
the recognition system is considerably high, reaching an aver-
age value of 97%. The ground truth used to measure the system
accuracy has been obtained by manual, online annotation of the
actual activities being performed. In synthesis, during system
evaluation, we asked subjects to wear our system and to
freely perform any of the four target activities in a laboratory
setting (a 150m2 room furnished with desks, sofas, chairs).
We enabled a dedicated panel on the mobile application with
a radio button to let us selecting the actual activity being
performed by the subject and we programmed the application
to store activity classification outputs on file a simple CSV
file with two label columns, one for the actual activity (as
indicated using the radio button) and the other for the activity
classified by the system. Finally, we analyzed offline this file
by counting the number of recorded classifications for each
activity and comparing each estimated activity class against
the corresponding ground truth value, so to detect classification
errors. Therefore, the accuracy percentage of a given activity is
obtained as the number of correct classifications divided by the
total number of samples recorded on the file for that activity.

Fig. 1 depicts a statistics web-based dashboard of the
activities performed by the user. The time period for statistics
generation can be freely selected by the user. Specifically,
the dashboard currently consists of a pie chart indicating the
time percentage spent for each performed activity. If a certain
activity is not performed at all within the selected time interval,
it will not be show in the chart. In addition, a table reports the
same information as the pie chart plus the total time spent
(expressed in days.hours.minutes.seconds) within the selected
time interval.

IV. STEP-COUNTER ALGORITHM

This section describes an innovative step-counter algo-
rithm, whose main design requirements are the followings:

• Use of accelerometer data from a body worn sensor;

• Energy and computation efficient design to support
embedded implementations;

• Use of a single sensor node, placed on the waist;

• General-purpose algorithm, to fit walking patterns of
healthy people as well as elderly and/or people with
disabilities;

• No need for user-specific calibration;

• High average accuracy (precision).

This algorithm has been integrated in Activity-aaService
to provide additional information to the user and caregivers,
allowing for accurate step detection and distance covered.

Several real walk data on different subjects have been
collected and studied before starting the algorithm design.
Subjects were asked to walk naturally, and to increase/decrease
the walking speed occasionally. In particular, a single three-
axis accelerometer sensor node was placed on the waist while
recording. The sensor has been sampled at 40Hz.

Preliminary conclusions from this analysis include that:

• Off-line downsampling to 20Hz showed that the signal
is still well characterized;

• Lateral acceleration presents a poor SNR (Signal-to-
Noise Ratio) as the waist swing during walking is
heavily influenced by noise;

• Frontal (horizontal) and vertical acceleration present
very useful signals; they looks roughly sinusoidal,
because the waist is interested by vertical acceler-
ations/decelerations when the feet hit the ground,
and by horizontal accelerations/decelerations when the
body swings frontally while walking;

• Horizontal acceleration signal is generally less af-
fected by noise than the vertical acceleration signal.

A number of step detection approaches were considered
and evaluated, eventually converging to the proposed solution.
To simplify the development, debugging, and evaluation, the
implementations have been initially programmed in Matlab.
Only integer-math computations were used, so allowing for a
more straightforward embedded implementation (as the target
embedded platform is based on a micro-controller with no
hardware support for floating point operations).

A very simple “fixed threshold-range” technique has been
studied at the beginning. The thresholds were empirically
determined. In this approach, a step is detected if the instan-
taneous raw acceleration stays within the defined range. To
remove multiple detections of the same step, the algorithm
sleeps for the shortest “step-time”, measured from the available
observations. Although the algorithm is very simple, it showed
high precision (> 90% in lab experiments) while applied
to healthy people, regardless the gender, weight, height, and



Fig. 1. The main dashboard of the Activity-aaService web-app module.

walking speed. However, when applied to elderly people,
results were significantly poorer, with almost no steps detected.
Intuitively, that is due to less pronounced movements of
walking elderly people that lead to lower accelerations of the
waist.

An enhanced algorithm followed a different approach.
Rather than defining a priori the threshold range, it is possible
to determine the best threshold for the monitored subject by
running a search algorithm that requires a set of walking data
of that subject, the number of steps inside that recording,
and the required accuracy. The threshold search is performed
iterating the step-counter algorithm previously described on
the walking data, with a decreased threshold (initially set to
the upper accelerometer scale value) at each iteration and
comparing the number of detected steps against the actual
number. The search stops when the required accuracy has
been reached or the number of detected steps exceeds the
actual number, and the threshold found is returned. This
implementation performs overall better than the first one, but
requires a training phase and the manual counting of the steps
during the training. If the counting is incorrect and/or during
the recording a significant number of data packets get lost, the
threshold search can be compromised.

The first algorithm does not recognize effectively the steps
of elderly people. On the other hand, the second algorithm
needs a preliminary training phase. Furthermore, they both
work on the raw accelerometer data.

To overcome these limitations, a third algorithm has been
defined, borrowing some ideas from the previous ones. At
the same time, additional real walk data have been recorded
from hospitalized subjects (elderly and people with motor
disabilities).This latter algorithm attempts at detecting steps
by identifying the decreasing segment (falling edge) which

corresponds to the last fraction of a step movement.

A step is characterized by time constraints (i.e. it cannot
be “too” fast or “too” slow). However, walk patterns vary
from people to people and even for the same person it might
change from time to time; hence, the amplitude and slope of
the acquired signal can vary significantly.

To simplify the pattern recognition, the raw acceleration is
first processed with a smoothing filter which removes the high
frequency components. Then, it looks for local maximums.
When a local max is found, it looks for a local minimum. After
the local min is found, the candidate segment (i.e. a potential
step) is also identified. Two features are then extracted and
used to determine whether the candidate belongs to a real
step or not. The candidate is classified as step if (i) it has
an acceleration drop within a certain range (specified by a
“tolerance” parameter around a threshold), and (ii) its time
duration is within a certain interval. More specifically, the
pre-processing is a 9-point windowed smoothing filter using
Gaussian kernels. Because they are applied to a digital signal,
the sum of the kernels must be 1. However, because the
algorithm works on integer-math, they have been scaled so
that decimal factors are removed.

The following Gaussian kernels have been selected:

• { 5, 30, 104, 220, 282, 220, 104, 30, 5 }

The threshold is coarsely initialized, but it is automatically
adapted while steps are recognized. In particular, it is contin-
uously updated with the average of the last 10 acceleration
drops that were classified as steps.

Since the threshold is just coarsely initialized at the begin-
ning and because even following steps can occasionally present
significant variance in their vigor, the updated threshold is
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Fig. 2. Block diagram of the step-counter algorithm.

adjusted with parametric coefficients to specify the amplitude
range in which a candidate must fall.

Finally, to reduce “false positive” recognitions, e.g. due
to sudden shocks or slow tilts of the sensor, the time elapsed
between the local max and min (which it is simply determined
as the product between the number of samples composing
the segment and the sampling period) must be longer than
the “minimum step time” and shorter than the “maximum step
time”. Both values have been determined empirically from the
available observations. In particular, based on the available
walking data, the following values have been identified:

• minimum step time = 350ms

• maximum step time = 2000ms.

Fig. 2 shows the block diagram of the proposed algorithm.

The proposed algorithm has been initially evaluated on
the computer using Matlab, and eventually implemented on
a wireless sensor node running SPINE. For this application,
the node-side of SPINE has been extended with the proposed
algorithm. Every time the node detects a step, it communicates
to its coordinator the total number of steps taken so far (this
to avoid counting errors in case of lost packets). On the
coordinator side, only minor additions were required.

As a running example of the algorithm, Fig. 3 shows
the raw data of the frontal waist acceleration during normal
walking of a healthy subject, sampled at 20Hz. The “end” of
each step (which then brings to the beginning of the following
one with the other foot), corresponds roughly to the sharp
lower spikes in the plot.

Fig. 4 shows instead the result of the Gaussian filtering;
the small black dots in Fig. 4 correspond to the points where
the step-counter algorithm has detected steps. It is worth
noting that although the strength of the steps sometime change
significantly, the algorithm still detects properly all the steps.

The proposed step-counter algorithm has been tested on
several subjects, from healthy young people to elderly and/or
with motor disabilities. An experimentation consisting of 40
walking sessions from 8 healthy subjects (both males and
females, with different height and weight) and 6 hospitalized
subjects (with post-stroke disabilities, walking using crutch or

Fig. 3. Raw Data of the frontal (horizontal) acceleration of the waist during
normal walking.

Fig. 4. Result of the Gaussian filtering of the data shown in Figure 3.

wheels walkers, or simply elderly) has been carried out and
our step-counter obtained an average precision of 91%.

The worst under-estimation was 27%, while the worst over-
estimation was 18%. It is worth noting, however, that the
subjects were not video recorded during their walking data
collection; hence, it was sometimes difficult to validate the
number of reported steps (manually counted by direct obser-
vation during walking) in each experiment. Furthermore, we
detected limited packet loss that caused discrepancy between
the number of reported steps and the recorded ones.

In conclusion, the main contribution of the proposed al-
gorithm is the ability to provide a good estimate of the steps
taken by people with disabilities and/or using crutch or wheels
walkers. To the best of our knowledge, this is the only system
being able to work properly for the latter category of users.

V. INTEGRATING ACTIVITY MONITORING ON A SMART
WHEELCHAIR

A non-motorized wheelchair has been enhanced with four
main functionalities: wheelchair overturn detection, activity
recognition, body posture recognition, and location tracking.
Activity recognition is carried out with our BSN-based system
described in Section III, while we designed a customized
hardware platform for supporting the other functionalities.

This platform is composed of a sensor module, a signal
processing module and a wireless communication module. The
signal processing module is based on Arduino, it features low
energy consumption, high sampling rate and high processing
capabilities. The wireless communication module uses Blue-
tooth to support full interoperability with Activity-aaService.
The sensor module uses accelerometers and pressure sensors to
detect wheelchair overturns and user posture on the wheelchair
cushion, as described in detail in the next subsections.

A. Overturn Measurement

To detect wheelchair overturns we equipped the smart-
wheelchair system with a three-axis, low-power capacitive
micro machined accelerometer (Freescale MMA8451). We
sample the accelerometer at fs = 20Hz, we compute the
instantaneous cross-axial acceleration signal energy as follows:

Etot =
√
a2x + a2y + a2z (1)



Fig. 5. Wheelchair operating regularly (left) and during four overturn events
(right).

and we eventually compute second-by-second averaged
Etot values. Finally, we perform a threshold-based wheelchair
overturn detection over the absolute value of the difference be-
tween consecutive Etot values. Specifically, we extract another
feature, Ev (signal energy variation), calculated as follows:

Evt = |Etot,t − Etot,t−1| (2)

The threshold value has been obtained empirically, by
monitoring acceleration data of our smart wheelchair moving
regularly and occasionally let overturn intentionally (see the
plots depicted in Fig. 5).

From Fig. 5, we can see that overturns determine Ev values
significantly higher than 1.5g; it is therefore appropriate to set
the Ev threshold to 1.5g to detect wheelchair overturn events.

B. Body Posture Measurement

Wheelchair users might feel uncomfortable to retain the
same sitting posture for a long time; yet they might have diffi-
culties to change posture. In addition, sitting on the wheelchair
for long periods might lead to serious illness such us sores.

We instrumented our wheelchair with a smart cushion [27]
that can measure pressure applied by the body weight from
multiple points. Specifically, three pressure sensors are placed
respectively on the two side and the center of the cushion.
We adopted a Force Sensing Resistor (FSR) pressure sensor
produced by Interlink Electronics. It is ultra-thin, lightweight,
and highly accurate. Its size is approximately 45x38mm. This
FSR can sense applied force anywhere in the range of 100g−
10kg (g = 9.8N/kg). This pressure sensor is very convenient
for our purposes as it can be easily embedded into the cushion
textile or foam filling, as shown in Fig. 6. The cushion also
includes a 3-color LED indicator and a speaker.

Fig. 6. Smart cushion equipped with FSR pressure sensors (left) and
representation of pressure sensors data in coordinate system (right).

TABLE II. WHEELCHAIR USER’S POSTURE RECOGNITION ACCURACY.

No one
Sitting Sit straight Lean to left Lean to

right

100% 98% 96% 95%

The smart cushion is placed on the chair and it is unobstruc-
tive for users. When the user sit on the chair, pressure sensory
data are collected by the smart cushion and sent to processing
module to recognize whether the user is comfortably sit or
leans on a side. The user can set a sitting time alarm and
when it is reached, the indicator light will change the color
and a sound warning is played.

According to the pressure distribution among the three FSR
sensors determined by the body weight, we can analyze the
sitting posture, detecting whether the user is sitting upright
or swinging from side to side. To perform such analysis, we
set the FSR sensors sampling rate at fs = 20Hz. The output
of each pressure sensor is an integer number in the range of
[0, 1023]. When the user is not sitting, the output value is
zero; the pressure value increases as more weight insists on
the sensor. We extract the feature vector of pressure sensor
Fpr = [PF1, PF2, PF3] and use a Support Vector Machine
(SVM)-based classifier to detect four different body postures.
Experiments have been carried out in a laboratory setting with
10 subjects having different height and weight and the results
of the performance evaluation are reported in Table II.

C. User location tracking

The smart wheelchair communicates via Bluetooth with the
user’s personal mobile device where a customized version of
Activity-aaService is running so to integrate the information
coming from the wheelchair and take them in account. An
useful functionality that has been implemented directly on the
mobile device regards user’s geo-localization, as shown with
the screenshot in Fig. 7. We know that, if the wheelchair user
is in danger (e.g. in case of wheelchair overturn), it is better to
know his/her location accurately to give immediate rescue. For
this purpose, we use the geographic coordinates provided by
the assisted GPS sensor of the mobile device. When the system
detects a dangerous situation, user’s location is recorded and
sent remotely to relatives and caregivers (see Fig. 1).

VI. CONCLUSIONS

In this paper we presented Activity-aaService, a hard-
ware/software system to support real-time, non-invasive human
activity recognition and monitoring that is based on the SPINE
framework and the BodyCloud middleware. The service can
run stand-alone on a personal mobile device, but can also be
connected to a cloud back end so to enable remote access to
collected data. Another significant contribution of this work is
an advanced step-counter algorithm that has been integrated
in Activity-aaService to allow for accurate step detection
on healthy users and most notably on users with several
types of motor disabilities, obtaining an average precision of
91%. Finally, we proposed an integration of Activity-aaService
with a smart-wheelchair system to better assist and monitor
wheelchair users. The smart wheelchair is able to detect and
report to the cloud overturns, specific user sitting postures,



Fig. 7. Activity-aaService customized with user’s geo-localization panel.

and geo-localization. Ongoing works are currently devoted to
improving our system to monitor not only users individually,
but to jointly infer mobility and activity patterns of those they
usually interact with (such as family members, friends, and
collaborators). We in fact believe that combining BSN data
with large-scale awareness can represent a drastic improvement
to current (standalone) m-Health systems. Finally, we plan to
introduce a different activity recognition method [28] as it
appears promising to improve classification accuracy.
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