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Abstract

A formal approach for the speci�cation and analysis of concurrent systems is pro-

posed which integrates two di�erent orthogonal aspects of time: (i) real-time,

concerning the expression of time constraints and the veri�cation of exact time

properties, and (ii) probabilistic-time, concerning the probabilistic quanti�cation

of durations of system activities via exponential probability distributions and the

evaluation of system performance. We show that these two aspects, that led to

di�erent speci�cation paradigms called timed automata and Markovian process al-

gebras, respectively, can be expressed in an integrated way by a single language: a

process algebra capable of expressing activities with generally distributed durations.

In particular, we consider the calculus of Interactive Generalized Semi-Markov Pro-

cesses (IGSMPs) and we present formal techniques for compositionally deriving,

from an IGSMP speci�cation, (i) a pure real-time model (called Interactive Timed

Automaton), by considering the support of general distributions, and (ii) a pure

probabilistic-time model (called Interactive Weighted Markov Chain), by approxi-

mating general distributions with phase-type distributions.

1 Introduction

The importance of considering the behavior of concurrent systems with respect

to time during their design process has been widely recognized [17,3,9,2,20,21].

In particular two di�erent approaches for expressing and analyzing time prop-

erties of systems have been developed which are based on formal description

paradigms.

A �rst approach is devoted to the evaluation of the performance of concur-

rent systems (see e.g. [17,3,15]). According to this approach the time spent by

a system in a certain activity is expressed probabilistically through a distribu-

tion of duration. Performance measures of systems can then be evaluated via
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Fig. 1. Stochastic Time (Markovian) Activity
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Fig. 2. Real-Time Activity

mathematical or simulative techniques. This approach has led to the de�nition

of stochastic process algebras, an extension of standard process algebras [19]

(concurrent speci�cation languages which allow us to represent concurrent sys-

tems compositionally by specifying the behavior of individual processes and

the way they interact) where a distribution of duration is associated with

each action of a process. In most cases, as in [3], the expressiveness of such

algebras is limited to exponential distributions of time, because this causes

the passage of time to be \memoryless". As a consequence it is possible to

completely avoid explicitly representing durations in semantic models. More-

over the limitation to exponential distributions allows for a straightforward

transformation of the semantic model of a system into a Continuous Time

Markov Chain (CTMC), a stochastic process which is easily mathematically

analyzable for deriving performance measures. For this reason they are called

Markovian process algebras. It is worth noting that the limitation imposed

over durations is very strong because not even deterministic (�xed) durations

can be expressed.

A second approach concentrates on the aspect of real-time, i.e. the ex-

pression of time constraints and the veri�cation of exact time properties

(see [2,20,21] and the references therein). By this approach the parts of the

system that are critical from the viewpoint of time bounds can be validated

during the design phase through techniques such as e.g. model checking [2]. In

this view timed automata have been developed by extending standard labeled

transition systems with the representation of time by means of clocks. The

time value assumed by a clock in a timed automata increases as time passes. In

timed automata we have transitions representing the setting of a clock with a

certain time value and transitions which can be executed provided that clocks

satisfy a certain time constraint (see e.g. [2,20,21]).
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Fig. 4. Generally Distributed Activity

1.1 The Basic Idea

The di�erent aspects of time expressed by the Stochastic Time and Real-Time

approaches can be seen as being orthogonal.

According to the �rst approach the possible values for the duration of

an activity are quanti�ed through probabilistic (exponential) distributions,

but no time constraint is expressible: all duration values are possible with

probability greater than zero. In Fig. 1 we depict the probability density for

the duration values of an activity with an exponentially distributed duration.

According to the second approach some interval of time is de�nable for

doing something, but the actual time the system spends in-between interval

bounds is expressed non-deterministically. For instance, in Fig. 2 we depict

an activity whose duration must be between 2 and 4 time units. Note that

activities with a deterministic (�xed) duration are expressed when interval

bounds coincide. For instance, in Fig. 3 we depict an activity whose duration

is certainly 3.

A speci�cation paradigm capable of expressing both aspects of time should

be able of expressing both time constraints and a probabilistic quanti�cation

for the possible durations which satisfy such constraints. We obtain such

an expressive power by considering stochastic models capable of expressing

general probability distributions for the duration of activities. In this way time

constraints are expressible via probability distribution functions that associate

probability greater than zero only to time values that are possible according to

the constraints. Technically, the set of possible time values for the duration of

an activity is given by the support of the associated duration distribution. This

idea of deriving real-time constraints from distribution supports, that we have

introduced in [6], was subsequently applied also in [10] and [12]. For instance,

in Fig. 4 we depict an activity with a distribution whose support is the interval

of Fig. 2. Note that with this approach we can also represent deterministic

durations via trivial distribution functions that give all the probability to a
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single value of time.

1.2 An Integrated Approach

Representing the real-time and probabilistic-time in a single speci�cation

paradigm allows us to model a concurrent system more precisely by expressing

and analyzing the relationships between the two aspects of time. Moreover,

the capability of expressing general distributions gives the possibility of pro-

ducing much more realistic speci�cations of systems. System activities which

have an uncertain duration could be represented probabilistically by more

adequate distributions than exponential ones (e.g. Gaussian distributions or

experimentally determined distributions).

The price to pay by using general distributions is the complexity of the

stochastic process representing the system behavior: a Generalized Semi-

Markov Process (GSMP). Only for very restricted cases we can derive per-

formance measures from a GSMP by means of exact mathematical analysis.

As a consequence it is important that, besides developing a new stochastic

real-time speci�cation language by using generally distributed time and some

new (usually complex and limited in power) analysis methodologies for such a

language, we also develop formal automatizable procedures for deriving, from

an integrated stochastic real-time speci�cation, a traditional pure stochastic-

time speci�cation and a traditional pure real-time speci�cation.

More in the details, in Fig. 5 we show how process algebra with generally

distributed time can o�er the possibility of such an integrated approach for

the modeling and analysis of Stochastic Real-Time concurrent/distributed sys-

tems. Speci�cations (terms of such a process algebra) can be directly analyzed

through standard discrete event simulation (see e.g. [13]), state space mini-

mization (via a e.g. a notion of bisimulation based congruence), and deriva-

tion of the underlying performance model in the form of a GSMP. Besides the
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possibility of performing direct analysis, we can have formal techniques for

compositionally deriving, from a system speci�cation:

� A pure stochastic-time (Markovian) speci�cation in the form of a term of

a Markovian process algebra, by approximating general distributions with

combinations of exponential distributions (the so called phase-type distri-

butions). A consequence of this transformation is that all duration values

for delays get probability greater than 0. Hence the information about time

constraints (related to the real-time behavior of the system) is lost.

� A pure real-time speci�cation in the form of a net (a parallel composition)

of Timed Automata, by considering the support of general distributions,

i.e. the set of time values that are given probability (density) greater than

0, and by turning probabilistic choices into non-deterministic choices. As

a consequence the information related to the probabilistic-time behavior of

the system is lost.

In this way whenever a user is interested in evaluating system properties which

are related to the stochastic-time or real-time aspect only of the speci�ed sys-

tem, the analysis can be done automatically by deriving the speci�c traditional

pure (stochastic-time or real-time) model and by analyzing it. This is very im-

portant from a practical viewpoint in that it gives the opportunity of reusing

existing techniques and tools already developed for performance evaluation

and model-checking of non-probabilistic real-time properties. Moreover, the

advantage of deriving a traditional pure stochastic-time and real-time model

from the same initial integrated speci�cation (w.r.t. generating them inde-

pendently) is that they are guaranteed to be consistent, in that they represent

di�erent aspects of the same initial system speci�cation.

Example 1.1 Let us consider the following speci�cation of a rail-road cross-

ing. When a train is arriving at the railroad crossing, it sends a signal to

the gate. When the gate receives the signal, it immediately starts emitting

the stop signal to stop cars and (after a while) it closes. Then the gate waits

for the train passage and opens up again. The time it takes for the train

to arrive at the railroad crossing since it sends the approaching signal can

be modeled by a probability distribution f (e.g. a distribution similar to a

Gaussian distribution possibly with a lower and/or upper bounded support),

the time it takes for the traÆc to be stopped since the stop signal is displayed

can be modeled by a probability distribution g (e.g. a distribution similar

to an exponential distribution possibly with an upper bounded support) and,

�nally, the time between the passage of a train and the arrival of the next

one can be modeled by a probability distribution h (e.g. a distribution similar

to an exponential distribution). Given a formal algebraic speci�cation of the

railroad crossing, we could, e.g., evaluate it w.r.t. the following properties:

we would like to be sure that it can never happen that the train traverses the

railroad crossing before the traÆc is stopped (safety real-time property) and

we would like to evaluate the percentage of time in which the traÆc is stopped
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(performance property). The former property can be evaluated by turning the
initial stochastic real-time speci�cation into a net of Timed Automata where
only distribution supports are taken into account: it is easy to see that the
unsafe \crash state" (where the train is traversing the railroad crossing while
the traÆc is not yet stopped) is reachable only if the upper bound of the
support of distribution g is greater than the lower bound of the support of
distribution f . On the other hand, the latter property can be evaluated by
turning the initial speci�cation into a Markovian algebraic speci�cation where
general distributions are approximated by phase types (e.g. we could use an
Erlang distribution with 4,8 or more phases to approximate f , and exponen-
tial distributions to approximate g and h): the percentage of time in which
the traÆc is stopped is obtained by summing up the steady state probability
of all the states of the resulting Markov chain in which the system is waiting
for the delay f to expire but is not waiting for the delay g to expire (because
it already expired). The more phases we use in the approximation, the more
precise gets the percentage we get.

1.3 Implementing the Integrated Approach by means of Interactive Systems

In this paper we implement the integrated approach of Fig. 5 by using, as
a process algebra with generally distributed time, the calculus of Interactive
Generalized Semi-Markov Processes (IGSMPs) introduced in [9,7,5]. When
considered at the level of transition systems, IGSMPs are basically an exten-
sion of GSMPs with action transitions, representing the ability of the process
to interact with other processes. A concurrent/distributed system is, there-
fore, speci�ed by a process algebraic term of the calculus of IGSMP by means
of basic mechanisms like: parallel composition, internal probabilistic choices
(not inuenced by the environment), probabilistic time delays with a general
distribution, non-determinism and interaction events (represented by actions).

Besides using discrete event simulation, systems speci�cations (terms of
the calculus of IGSMPs) can be directly analyzed by means of the techniques
introduced in [9]: minimization via a notion of bisimulation based congruence
which abstracts from internal system activities (� actions), and derivation of
the underlying performance model in the form of a GSMP for IGSMPs which
are complete both from the interactive and from the performance viewpoints.
As far as the stochastic-time and real-time projections of Fig. 5 are concerned,
we use the following speci�cation paradigms:

� A pure stochastic-time (Markovian) speci�cation is a term of the calculus
of Interactive Weighted Markov Chains (IWMCs). Interactive Weighted
Markov Chains are basically an extension of Continuous Time Markov
Chains with action transitions, representing the ability of the process to in-
teract with other processes, and probabilistic transitions, representing prob-
abilistic choices internally performed by the process. In particular Inter-
active Weighted Markov Chains extend Interactive Markov Chains of [15]
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with the capability of representing probabilistic choices through transitions

labeled with weights [23].

� A pure real-time speci�cation is a net of Interactive Timed Automata (ITA).

Interactive Timed Automata are a variant of classical Timed Automata [2,21],

where action executions, events enabled on the basis of clock constraints

and clock reset events are expressed by means of separate transitions. The

advantage of ITA with respect to existing Timed Automata is that action

transitions can be dealt with separately from time-related transitions, hence

making it easy to de�ne, e.g., a notion of weak bisimulation.

The technique leading to the derivation of the IWMC is particularly signif-

icant in that: (i) it shows process algebra to provide exactly the machinery

necessary for approximating GSMPs with CTMCs through phase-type dis-

tributions, and (ii) it con�rms ST semantics to be the adequate semantics

for generally distributed time (as claimed e.g. in [9,5]) in that approxima-

tion of activity durations with phase-type distributions is a form of action

re�nement [1,8]. From the practical viewpoint the approximation of general

distributions with phase-type distributions will cause an approximation on the

obtained performance measures. In particular the measures obtained will tend

to the exact measures as the approximating phase-type durations tend to the

exact duration distributions (by increasing the number of phases considered

in the approximating phase-types). The problem of evaluating the error in-

troduced in the measures depending on the level of approximation is a very

diÆcult and known problem of statistics (see e.g. [4]) whose solution is some-

how orthogonal to the results presented in this paper. Moreover note that, the

better the approximation is, the greater the state space explosion caused by

phase-type expansion is. Obviously this may become a problem if we want to

reach certain levels of precision. Again solutions of this well-known problem

are somehow orthogonal to the contents of this paper, e.g. we could adopt the

technique introduced in [22] where the state-space is represented with Kro-

necker matrix expressions. On the other hand in spite of its inconveniences,

for most systems with general distributions, approximation with phase-type

is the only practical way to do performance analysis not based on simulation.

As far as the mapping into ITA is concerned, it just turns probability dis-

tributions into set of possible values for clocks by using distribution supports

(de�ned by adopting the technical shrewdness introduced in [12]) without

modifying the \structure" of the transition system. Therefore it has the de-

sirable property of not increasing the number of states of the IGSMP when

translating it into an ITA. Such a simple technique, which cannot be correctly

applied to the Stochastic Automata model of [11] (see [12]), is convenient

w.r.t. the more complex one introduced in [12] in that it avoids a blow up

in the number of states which is exponential in the number of clocks used in

the initial speci�cation (see Sect. 4.2 for the details). As discussed in more

details in [12], the mappings based on supports like this one guarantee that

each behavior of the IGSMP which was executable with probability greater
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than zero becomes a possible behavior of the resulting ITA, but in general the

converse cannot be stated. Hence at least non-probabilistic real-time safety

properties of the IGSMP can be checked in the resulting ITA. As far as live-

ness properties are concerned only some kind of them (e.g. those related to

possible action behaviors and not to particular time values) can be shown to

hold in the initial IGSMP.

Unfortunately, in order not to make presentation too long, we do not in-

clude in this paper the de�nition of IGSMPs and their semantics, which can be

found in [7,5]. The same holds for the calculus of IGSMPs, which is simply a

variant of the calculus of IMC [15] where pre�xes <f;w> (representing delays

whose duration has general distribution f and are chosen according to weight

w) are used instead of � pre�xes (representing exponentially timed delays of

rate �), and its semantics (which maps algebraic terms into IGSMPs) which

are de�ned in [9,5].

1.4 Outline of the Paper

The paper is organized as follows. In Sect. 2 we introduce the calculus of

IWMCs, which constitutes the �rst extension of IMC [15] with probabilistic

choices endowed with a complete axiomatization for weak bisimulation. Then,

in Sect. 3 we introduce ITA, which constitute the �rst variant of timed au-

tomata [2,21] endowed with a weak version of (structural) bisimulation equiv-

alence and a compositional semantics. Finally, in Sect. 4 we present the two

formal mappings from IGSMP speci�cations to IWMC and ITA speci�cations

and we show that: (i) the IGSMP - IWMC mapping preserves performance

measures once we replace generally distributed durations with the approx-

imating phase-type durations in the initial IGSMP, (ii) the IGSMP - ITA

mapping is such that the traces of \supported" behaviors (originating from

time values in the support of distributions) starting in a state of the IGSMP

are the same as the traces of possible behaviors starting in the corresponding

state of the ITA (as in [12]), and (iii) both mappings are compositional and

preserve weak bisimulation equivalence. In Appendix A we show an axiomati-

zation for weak bisimulation which is complete over �nite state IWMC terms,

while in Appendix B we present the semantics of ITA and we show that it is

compositional and preserves equivalence.

Proofs of theorems can be found in [5] Chapters 4,5 and 8.

2 Interactive Weighted Markov Chains

Interactive Weighted Markov Chains are an extension of Continuous Time

Markov Chains with action transitions, representing the ability of the process

to interact with other processes, and probabilistic transitions, representing

probabilistic choices internally performed by the process. Action transitions,

probabilistic transitions and exponential transitions of CTMCs give rise to
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di�erent kind of states (where choices based on non-determinism, probability

and time are performed) similarly as in an alternating model [24,14].

More precisely, Interactive Weighted Markov Chains extend Interactive

Markov Chains of [15] with the capability of representing probabilistic choices

through probabilistic transitions labeled with weights [23]. Extending IMCs in

this way is very convenient in that it signi�cantly simpli�es the task of mod-

eling real systems (in that alternative system behaviors can be expressed via

probabilistic choices) without increasing the \complexity" of the underlying

class of stochastic processes. This because probabilistic choices just give rise

to vanishing states which can be eliminated via a simple procedure (see [3]

Chapter 4) when evaluating performance.

Similarly to [15], in IWMCs the interrelation between standard action

transitions and performance related transitions (probabilistic and exponen-

tially timed transitions) is governed by the so-called maximal progress as-

sumption [20]: the possibility of executing � transitions prevents the execu-

tion performance related transitions, thus expressing that the system cannot

wait if it has something internal to do. But di�erently from [15], where such

a priority is captured in the de�nition of equivalence among IMCs, we prefer

to express priority by cutting transitions which cannot be performed when

de�ning and composing IWMCs (a solution also hinted in [16]). This allows

us to obtain smaller system models and to de�ne a notion of bisimulation

among IWMCs more simply, without having to discard any transitions when

establishing equivalence.

As for IMCs [15], we will compose in parallel several IWMCs via a CSP-like

synchronization policy. Alternative � transitions in an IWMC represent inter-

nal non-deterministic choices which are performed in zero time and can never

be \resolved" through synchronization with other system components. On the

contrary, visible actions a in an IWMC are seen as incomplete actions which

wait for a synchronization with other system components (they represent po-

tential interaction with the environment). Therefore the choice of such actions

in any IWMC state is governed by an external form of non-determinism, as

their execution completely depends on the environment. We will also make

use of an hiding operator which turns (incomplete) visible action transitions

of an IWMC into (complete) � transitions.

2.1 De�nition of Interactive Weighted Markov Chain

In an IWMC we have four di�erent kinds of state:

- silent states, enabling invisible action transitions � and (possibly) visible

action transitions a only. In such states the IWMC just performs a non-

deterministic choice among the � transitions in zero time and may poten-

tially interact with the environment through one of the visible actions.

- probabilistic states, enabling probabilistic transitions and (possibly) visible

action transitions a only. In such states (also called vanishing states) the
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IWMC just performs a probabilistic choice among the probabilistic transi-

tions in zero time (proportionally to the weights labeling the transitions)

and may potentially interact with the environment through one of the visible

actions.

- timed states, enabling exponentially timed transitions and (possibly) visible

action transitions a only. The IWMC sojourns in these states (also called

tangible states) until one of the exponential delays terminates and the cor-

responding transition is performed. While the IWMC sojourns in the state,

it may (at any time) potentially interact with the environment through one

of the outgoing visible action transitions.

- waiting states, enabling standard visible actions only or no transition at

all. In such states the IWMC remains inde�nitely. It may, at any time,

potentially interact with the environment through one of the outgoing visible

action transitions.

In the following we present the formal de�nition of Interactive Weighted

Markovian Transition System (IWMTS), then we will de�ne interactive weighted

Markov chains as IWMTSs possessing an initial state. Formally, rates, belong-

ing to RI +, are ranged over by �; �
0
; : : : while weights, belonging to RI +, are

ranged over by w;w
0
; : : :. We use �; �0

; : : : to range over both rates and weights.

Moreover, we denote the set of standard action types used in a IWMTS by

Act , ranged over by �; �
0
; : : :. As usual Act includes the special type � de-

noting internal actions. The set Act � f�g is ranged over by a; b; : : :. The set

of states of an IWMTS is denoted by �, ranged over by s; s
0
; : : :. We assume

the following abbreviations that will make the de�nition of IWMTSs easier.

Let us suppose that T � (� � Labels � �) is a transition relation, where

Labels is a set of transition labels, ranged over by l. In the remainder we use

s
l

�����! s
0 to stand for (s; l; s0) 2 T , s

l

�����! to stand for 9s0 : s
l

�����! s
0,

and s
l

�����!= to stand for 6 9s0 : s
l

�����! s
0.

De�nition 2.1 An Interactive Weighted Markovian Transition System

(IWMTS) is a tuple M = (�;Act ; Tw; Te; Ta) with

� � a set of states,

� Act a set of standard actions,

� Tw � (� � RI +
� �), Te � (� � RI +

� �), and Ta � (� � Act � �) three

transition relations, containing probabilistic, exponentially timed and action

transitions, respectively, such that: 2

(i) 8s 2 �: s
�

�����! =) 6 9�: s
�

�����!

(ii) 8s 2 �: 9w: s
w

�����! =) 6 9�: s
�

�����!

2 For the sake of readability here and in the rest of the paper we assume the following

operator precedence when writing constraints for transition relations: existential quanti�er

> \and" operator > implication.
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An Interactive Weighted Markov Chain (IWMC) is a tuple M = (�;Act ; Tw;
Te; Ta; s0), where s0 2 � is the initial state of the IWMC and (�;Act ; Tw; Te; Ta)

is an IWMTS.

The constraints over transition relations Tw, Te and Ta guarantee that each

state of the IWMC belongs to one of the four kind of states above. In partic-

ular, the �rst requirement says that if a state can perform internal � actions
then it cannot perform exponentially timed or probabilistic transitions. Such

a property derives from the assumption of maximal progress: the possibility
of performing internal actions prevents the execution of delays. The second
requirement says that if a state can perform probabilistic transitions then it

cannot perform exponentially timed transitions. Such a property derives from
the assumption of urgency of choices: probabilistic choices cannot be delayed

but must be performed immediately, hence they prevent the execution of ex-
ponentially timed delays.

2.2 The Calculus of IWMCs

Let Var be a set of process variables ranged over by X; Y; Z. Let ARFun =
f' : Act �! Act j '(�) = � ^ '(Act � f�g) � Act � f�gg be a set of action

relabeling functions, ranged over by '.

De�nition 2.2 We de�ne the language IWMC as the set of terms generated
by the following syntax

P ::= 0 j X j w:P j �:P j �:P j P + P j P=L j P ['] j P kS P j recX:P

where L; S � Act � f�g. An IWMC process is a closed term of IWMC . We

denote by IWMCg the set of strongly guarded terms of IWMC . 3

\0" denotes a process that cannot move. The operators \:" and \+" are
the CCS pre�x and choice. \=L" is the hiding operator which turns into �

the actions in L, \[']" is the relabeling operator which relabels visible actions
according to '. \kS" is the CSP parallel operator, where synchronization over

actions in S is required. Finally \recX" denotes recursion in the usual way.

The semantics of IWMC terms produces a transition system labeled by

actions in Act , weights in RI + and rates in RI +. We use ; 0
; : : : to range over

transition labels. Such a transition system is de�ned as being the IWMTS

M = (IWMCg;Act ; Tw; Te; Ta), where: Ta is the least subset of IWMCg�Act�

IWMCg satisfying the standard operational rules of Table 1, Tw is obtained
from the least multiset over IWMCg� RI +�IWMCg satisfying the operational
rules of Table 2 (similarly to [17,15], we consider a transition to have aritym if

and only if it can be derived in m possible ways from the operational rules) by
summing the weights of the multiple occurrences of the same transition, and Te
is obtained from the least multiset over IWMCg� RI +� IWMCg satisfying the
operational rules of Table 3 by summing the rates of the multiple occurrences

3 We consider w and � pre�xes as being guards in the de�nition of strong guardedness.
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�:P
�

�����! P

P
�

�����! P
0

P +Q
�

�����! P
0

Q
�

�����! Q
0

P +Q
�

�����! Q
0

P
�

�����! P
0

P kS Q
�

�����! P
0
kS Q

� =2S
Q

�

�����! Q
0

P kS Q
�

�����! P kS Q
0

� =2S

P
a

�����! P
0

Q
a

�����! Q
0

P kS Q
a

�����! P
0
kS Q

0

a 2 S

P
a

�����! P
0

P=L
�

�����! P
0
=L

a 2 L
P

�

�����! P
0

P=L
�

�����! P
0
=L

� =2 L

P
�

�����! P
0

P [']
'(�)

�����! P
0[']

PfrecX:P=Xg
�

�����! P
0

recX:P
�

�����! P
0

Table 1

Standard Rules

w:P
w

�����! P

P
w

�����! P
0
^ Q

�

�����!=

P +Q
w

�����! P
0

Q
w

�����! Q
0
^ P

�

�����!=

P +Q
w

�����! Q
0

P
w

�����! P
0
^ Q

�

�����!=

P kS Q
w

�����! P
0
kS Q

Q
w

�����! Q
0
^ P

�

�����!=

P kS Q
w

�����! P kS Q
0

P
w

�����! P
0
^ 69a 2 L:P

a

�����!

P=L
w

�����! P
0
=L

P
w

�����! P
0

P [']
w

�����! P
0[']

PfrecX:P=Xg
w

�����! P
0

recX:P
w

�����! P
0

Table 2

Rules for Probabilistic Moves

of the same transition. In Tables 2 and 3 we use P
a

�����! to stand for

9P 0
: P

a

�����! P 0
, P

�

�����!= to stand for 69Q : P
�

�����! Q and P
w

�����!=

to stand for 69w;Q : P
w

�����! Q.

The rules of Table 2 de�ne probabilistic transitions, by taking into account
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�:P
�

�����! P

P
�

�����! P 0
^ Q

�
�����!= ^ Q

w
�����!=

P +Q
�

�����! P 0

Q
�

�����! Q0
^ P

�
�����!= ^ P

w
�����!=

P +Q
�

�����! Q0

P
�

�����! P 0
^ Q

�
�����!= ^ Q

w
�����!=

P kS Q
�

�����! P 0
kS Q

Q
�

�����! Q0
^ P

�
�����!= ^ P

w
�����!=

P kS Q
�

�����! P kS Q
0

P
�

�����! P 0
^ 69a 2 L:P

a
�����!

P=L
�

�����! P 0=L

P
�

�����! P 0

P [']
�

�����! P 0[']

PfrecX:P=Xg
�

�����! P 0

recX:P
�

�����! P 0

Table 3

Rules for Exponentially Timed Moves

the priority of \�" actions over weights. Note that we consider a \global" kind

of weights which are applied also across the parallel operator. Moreover we

can just interleave parallel weight transitions because they are executed in

zero time.

De�nition 2.3 The semantic model M[[P ]] of P 2 IWMCg is the IWMC

de�ned byM[[P ]] = (�P ;Act ; Tw;P ; Te;P ; Ta;P ; P ), where: �P is the least subset

of IWMCg such that P 2 �P and, if P 0 2 �P and P
0



�����! P
00, then P

00 2

�P ; moreover Tw;P ; Te;P and Ta;P are the restriction of Tw; Te and Ta to �P �

Act � �P , �P � RI + � �P and �P � RI + � �P .

2.3 Observational Congruence for IWMCs

Observational congruence over IWMCs deals with exponentially timed

choices according to Markovian bisimulation [17], deals with probabilistic

choices according to probabilistic bisimulation [18], and abstracts from stan-

dard � actions as in [19].

In our context we express cumulative probabilities and cumulative expo-

nential times by aggregating weights and rates, respectively. In particular, if

I is a set of states, TW (s; I) represents the cumulative weight of probabilistic

transitions leaving s and going into a state of I. Similarly, TR(s; I) represents

the cumulative rate of exponentially timed transitions from s to I.

The de�nition of weak bisimilarity is an adaptation of that presented in [15]

to our context.
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Let
�

=) denote (
�

�! )�
�

�! (
�

�! )�, i.e. a sequence of transitions includ-

ing a single � transition and any number of � transitions. Moreover we de�ne
�̂

=) =
�

=) if � 6= � and
�̂

=) = (
�

�! )�, i.e. a possibly empty sequence of �

transitions.

De�nition 2.4 Let M = (�;Act ; Tw; Te; Ta) be a IWMTS. An equivalence

relation � on � is a weak bisimulation i� s1 � s2 implies

� for every � 2 Act and s
0

1
2 �,

s1
�

�! s
0

1
implies s2

�̂

=) s
0

2
for some s0

2
with s

0

1
� s

0

2
,

� TW (s1;�) 6= ; implies

s2
�̂

=) s
0

2
for some s0

2
such that, for every equivalence class I of �,

TW (s1; I) = TW (s0
2
; I)

� TR(s1;�) 6= ; implies

s2
�̂

=) s
0

2
for some s0

2
such that, for every equivalence class I of �,

TR(s1; I) = TR(s0
2
; I)

Two states s1 and s2 are weakly bisimilar, denoted by s1 �IWMC s2, i� (s1; s2)

is included in some weak bisimulation.

Di�erently from [15], for the sake of simplicity, we do not express conditions

about the stability of bisimilar states because we are interested in obtaining

a congruence result only for strongly guarded processes of our calculus. Such

processes cannot produce an IWMC which is forced in a � loop, hence we do

not have to recognize this situation.

De�nition 2.5 Two closed terms P;Q of IWMCg are observational congru-

ent, written P 'IWMC Q, i�:

� for every � 2 Act and P
0 2 IWMCg,

P
�

�! P
0 implies Q

�

=) Q
0 for some Q0 with P

0 �IWMC Q
0,

� for every � 2 Act and Q
0 2 IWMCg,

Q
�

�! Q
0 implies P

�

=) P
0 for some P 0 with P

0 �IWMC Q
0,

� for every equivalence class I of �,

TW (P; I) = TW (Q; I) and TR(P; I) = TR(Q; I)

Theorem 2.6 'IWMC is a congruence over terms of IWMCg
4 w.r.t. all the

operators of IWMC, including recursion.

It is easy to to produce an axiomatization for 'IWMC which is complete

over �nite-state IWMCg terms (due to lack of space we refer to Appendix A

for the details).

4 Actually the congruence property holds for a wider class of processes which has the
following semantical characterization: processes whose states may reach via (zero or more)

\�" transitions a state which cannot perform \�" transitions.
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3 Interactive Timed Automata

Interactive Timed Automata are a variant of classical Timed Automata [2,21],

where action executions, events enabled on the basis of clock constraints and

clock reset events are expressed by means of separate transitions (thus fol-

lowing the approach of [24,14,15]). The advantage of ITA with respect to

existing timed automata, where usually we have one single kind of transition

expressing all these features in a combined fashion, is that action transitions

can be dealt with separately from time-related transitions, hence making it

easy to de�ne, e.g., a notion of weak bisimulation as a simple extension of

the standard notion of [19]. Therefore, with respect to the existing equiva-

lence notions for timed automata, abstracting from � transitions, improves

the capability of minimizing the state space of speci�ed systems. ITA can

be straightforwardly mapped into existing timed automata (e.g. those de�ned

in [21]), hence previous decidability results and software tools can be exploited

for analysing real-time properties in ITA speci�cations.

Time delays are modeled in ITA by means of clocks Cn which are set to zero

and count upwards while time passes. An ITA represents the behavior of a

system component by employing both clock reset transitions and clock bound

transitions, representing the timed behavior of the component and standard

action transitions, representing the interactive behavior of the component.

Clock reset transitions are labeled with a clock name Cn and represent the

event of reset of the clock (which is set to zero). After such event, Cn counts

upwards while time passes and states are traversed by the automaton. When

several clock reset transitions are enabled in an ITA state, the choice among

them is just non-deterministic. Clock bound transitions are labeled with a

clock constraint � (an expression built from bounds on the clock values) and

they can be executed only when the status of clocks satis�es such a constraint.

A system is allowed to stay in a state enabling several clock bound transitions

as long as all clock constraints labeling the transitions can be satis�ed at

present time or in the future. The role and the meaning of visible and invis-

ible action transitions, related to composition of ITA via a CSP-like parallel

composition and hiding, is exactly the same as for IWMCs.

3.1 De�nition of Interactive Timed Automaton

In an ITA we have four di�erent kinds of state:

- silent states, enabling invisible action transitions � and (possibly) visible ac-

tion transitions a only. The meaning of such states is exactly as in IWMCs.

- reset states, enabling reset transitions Cn and (possibly) visible action tran-

sitions a only. In such states the ITA just performs a choice among the

clock reset transitions in zero time and may potentially interact with the

environment through one of the visible actions.
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- timed states, enabling clock bound transitions � and (possibly) visible action

transitions a only. In such states all the clocks of the ITA count upwards

as time passes. The system is allowed to sojourn in the state as long as

all clock constraints labeling its outgoing transitions can be satis�ed at the

present time or in the future. Moreover, it can non-deterministically leave

the state at any time through a bound transition � whose constraint � is

(at present time) satis�ed. Moreover, while the ITA sojourns in the state,

it may (at any time) potentially interact with the environment through one

of the outgoing visible action transitions.

- waiting states, enabling standard visible actions only or no transition at all.

In such states the ITA remains inde�nitely. It may, at any time, potentially

interact with the environment through one of the outgoing visible action

transitions.

In the following we present the formal de�nition of Interactive Timed Au-

tomaton Transition System (ITATS), then we will de�ne Interactive Timed

Automata as ITATSs possessing an initial state. Formally, we use T; T 0; : : :,

representing sets of time values, to range over subsets of RI
+ [ f0g. More-

over, we denote the set of standard action types used in an ITATS by Act ,

ranged over by �; �0; : : :. As usual Act includes the special type � denoting

internal actions. The set Act � f�g is ranged over by a; b; : : :. The set of

clocks of an ITATS is denoted by C = fCn j n 2 CNamesg, where CNames

is a set of clock names. Given a set C, we denote with C�, ranged over by

�; �0; : : :, the set of constraints over clocks of C (the labels of clock bound tran-

sitions), which is de�ned as the set of terms generated by the following syntax:

� ::= Cn 2 T j � ^ �

Moreover, let C [ C� be ranged over by �; �0; : : :. The set of states of an

ITATS is denoted by �, ranged over by s; s0; : : :. We assume the following

abbreviations that will make the de�nition of ITATSs easier.

De�nition 3.1 An Interactive Timed Automata Transition System (ITATS)

is a tuple T = (�; C;Act ; Tr; Tb; Ta) with

� � a set of states,

� C a set of clocks,

� Act a set of standard actions,

� Tr � (� � C � �), Tb � (� � C� � �), and Ta � (� � Act � �) three

transition relations representing clock reset and clock bound events and

action execution, respectively, such that:

(i) 8s 2 �: s
�

�����! =) 6 9�: s
�

�����!

(ii) 8s 2 �: 9Cn: s
Cn

�����! =) 6 9�: s
�

�����!

An Interactive Timed Automata (ITA) is a tuple T = (�; C;Act ; Tr; Tb; Ta; s0),

where s0 2 � is the initial state of the ITA and (�; C;Act ; Tr; Tb; Ta) is an

ITATS.
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The constraints over transition relations Tr, Tb and Ta guarantee that each

state of the ITA belongs to one of the four kind of states above. In particular,

the �rst requirement says that if a state can perform internal � actions then

it cannot perform clock reset transitions or clock bound transitions. Such

a property derives from the assumption of maximal progress: the possibility

of performing internal actions prevents the execution of time-related activity.

The second requirement says that if a state can perform clock reset transitions

then it cannot perform clock bound transitions. Such a property derives from

an assumption of urgency of clock resets: clock reset transitions cannot be

delayed but must be performed immediately and they are just assumed to

prevent the execution of clock bound transitions.

3.2 Composing ITA

In the following we present the formal de�nitions of parallel composition and

hiding of ITA. It can be easily shown that the transition system obtained by

the composition is still an ITA (see [5]) due to the fact that maximal progress

and urgency of clock resets assumptions are enforced when composing ITA.

Given a clock renaming function ren : C �! C, we assume ren(�) to be the

constraint �0 obtained from � by renaming clocks in � according to function

ren. In particular we de�ne the renaming function l : C �! C by f(Cn; Cn;l) j

Cn 2 Cg and, similarly, function r : C �! C by f(Cn; Cn;r) j Cn 2 Cg.

De�nition 3.2 The parallel composition T1 kS T2 of two ITA T1 = (�1; C1;

Act ; Tr;1; Tb;1; Ta;1; s0;1) and T2 = (�2; C2;Act ; Tr;2; Tb;2; Ta;2; s0;2), with S �

Act�f�g being the synchronization set, is the tuple (�; C;Act ; Tr; Tb; Ta; (s0;1;

s0;2)) with

� � = �1 � �2 �M the set of states,

� C = fCn;l j Cn 2 C1g [ fCn;r j Cn 2 C2g

� Tr � (��C ��), Tb � (��C���), and Ta � (��Act ��) are the least

transition relations, such that 8(s1; s2) 2 �:

1l s1
�

�����! s0

1; � 62 S =) (s1; s2)
�

�����! (s0

1; s2)

2 s1
a

�����! s0

1 ^ s2
a

�����! s0

2; a 2 S =) (s1; s2)
a

�����! (s0

1; s
0

2)

3l s1
Cn

�����! s0

1 ^ s2
�

�����!= =) (s1; s2)
C
n;l

���������! (s0

1; s2)

4l s1
�

�����! s0

1 ^ s2
�

�����!= ^ 6 9Cn: s2
Cn

�����! =) (s1; s2)
l(�)

�����! (s0

1; s2)

and also the symmetric rules 1r; 3r; 4r referring to the local transitions of

T2, which are obtained from the rules 1l; 3l; 4l by exchanging the roles of

states s1 (s
0

1) and s2 (s
0

2), by turning l into r in the subscripts of clocks, and

by turning the renaming function l into r, hold true.

� (s0;1; s0;2) 2 � the initial state

Each state s 2 � of the composed model is represented by a pair of states

(s1 2 �1 and s2 2 �2). Moreover we rename clocks of both ITA T1 and T2
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so to avoid a name conict whenever two clocks with the same name Cn are

simultaneously in execution in both ITA. Rules 1 (2) describe the behavior

of the composed model in the case of a standard action � performed by one

(or both, via a synchronization) ITA, when � 62 S (� 2 S). Rules 3 and

4 de�ne the behavior of the composed model in the case of clock reset and

clock bound transitions, respectively, locally performed by components. Note

that the negative clauses in the premises enforce the maximal progress and

the urgency of clock resets assumptions.

De�nition 3.3 The hiding T =L of a ITA T = (�; C;Act ; Tr;1; Tb;1; Ta;1; s0)
with L � Act � f�g being the set of visible actions to be hidden is the tuple

(�; C;Act ; Tr; Tb; Ta; s0) where Tr � (� � C � �), Tb � (� � C� � �), and

Ta � (�� Act � �) are the least set of transitions, such that 8s 2 �: 5

1 s
�

�����!1s
0; � 62 L =) s

�

�����! s0

2 s
a

�����!1s
0; a 2 L =) s

�

�����! s0

3 s
�

�����!1s
0 ^ 6 9a 2 L: s

a

�����!1 =) s
�

�����! s0

Rules 1 and 2 are standard. Rule 3 says that the e�ect of the hiding

operator over states of T which enable standard actions in L is to preempt all

clock related transitions according to the maximal progress assumption.

3.3 Weak bisimulation for ITA

Now we will introduce a notion of weak bisimulation over ITA which matches

the clock related transitions as in [1] and abstracts from standard � actions

similarly to [19].

Given an ITATS T = (�; C;Act ; Tr; Tb; Ta), weak bisimulation over states

is de�ned by associating clock names as in [1] so that equivalence does not

depend on the particular names used for clocks. We use H to range over

association histories of clock names, i.e. partial bijections from C to C. We

denote by H the set of all association histories.

We now present weak bisimulation for ITA which is de�ned by means of

a family of bisimulations �H , each indexed by an association history. First

of all, let us say that a H-indexed family of binary relations f�H j H 2 Hg
over � is symmetric if and only if (s1; s2) 2 �H implies (s2; s1) 2 �

H
, where

H = f(Cn0; Cn) j (Cn; Cn0) 2 Hg. Moreover, we use H  (Cn; Cn0) to denote

the association history H 0
obtained from H by adding the pair (Cn; Cn0) and

removing old associations (Cn; Cn00) and (Cn000; Cn0), for some Cn00 and Cn000,

already contained in H, thus preserving the structure of bijection from C to

C. We use  to range over transition labels, i.e. Act [ C [ C�. Let


=)

denote (
�

�! )
�



�! (
�

�! )
�
, i.e. a sequence of transitions including a single 

5 In order to distinguish transition of Tr;1, Tb;1 and Ta;1 from transitions of Tr, Tb and Ta

we denote the former with \�����!1" and the latter simply with \�����!".
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transition and any number of � transitions.

De�nition 3.4 Let T = (�; C;Act ; Tr; Tb; Ta) be a ITATS. A symmetric H-

indexed family B = f�H � � � � j H 2 Hg of binary relations over � is a

weak bisimulation family i� s1 �H s2 implies

� for every � 2 Act and s
0

1 2 �,

s1
�

�! s
0

1 implies s2
�̂

=) s
0

2 for some s02 with s
0

1 �H s
0

2

� for every Cn 2 C and s
0

1 2 �,

s1
Cn
�! s

0

1 implies s2
C
n

0

=) s
0

2 for some s02; Cn0 with s
0

1 �H (Cn;Cn0 ) s
0

2

� for every � 2 C� and s
0

1 2 �,

s1
�

�! s
0

1 implies � 2 dom(H) and s2

H(�)
=) s

0

2 for some s02 with

s
0

1 �H s
0

2

Two states s1 and s2 are weakly bisimilar with respect to association his-

tory H 2 H, denoted by s1 �ITA;H s2, i� there exist some weak bisimulation

family B = f�H j H 2 Hg such that (s1; s2) 2 �H . Two ITA (T1; s0;1) and

(T2; s0;2) are weakly bisimilar, denoted by (T1; s0;1) �ITA (T2; s0;2) if their ini-

tial states s0;1 and s0;2 are such that s0;1 �ITA;; s0;2 in the ITATS obtained

with the disjoint union of T1 and T2.

Theorem 3.5 �ITA is a congruence over ITA whose states may reach via

(zero or more) \�" transitions a state which cannot perform \�" transitions

w.r.t. both parallel and hiding.

3.4 Semantics of ITA

ITA are endowed with a semantics which maps an ITA onto a transition system

where: (i) the passage of time is explicitly represented by transitions labeled

with numeric time delays t 2 RI + [ 0 and (ii) clock reset transitions and

clock bound transitions are turned into prioritized transitions reecting the

precedence of clock reset transitions over clock bound transitions. Di�erently

from existing approaches, we express semantic models of ITA by means of

\interactive" timed transition systems which can be themselves composed and

for which we de�ne a notion of weak bisimulation. This allows us to develop a

semantic mapping which is compositional with respect to parallel composition

and hiding and preserves equivalence, similarly to what is done in [7,5] for

IGSMPs. Due to lack of space we refer the reader to Appendix B for a complete

presentation of the semantics of ITA.

4 Mapping IGSMPs onto Pure Markovian and Real-

Time Processes

In this section we present the two formal mappings from IGSMPs, representing

the stochastic and real-time behavior of a concurrent system in an integrated
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way, into IWMCs, representing the pure stochastic (Markovian) behavior of

the system, and into ITA, representing the pure real-time behavior of the sys-

tem. The former mapping is obtained by approximating generally distributed

durations with phase-type durations. Technically, such mapping is performed

compositionally at the algebraic level by replacing each delay pre�x <f;w>

occurring in an algebraic term of an IGSMP speci�cation with an IWMC term

w:P , where P is the algebraic representation of a phase-type distribution ap-

proximating f . In this way we map a term of the calculus of IGSMPs into

a term of IWMC. The latter mapping is obtained by abstracting from prob-

ability related information. Such mapping is still performed compositionally,

but at the level of models (not at the level of algebraic terms). In particu-

lar we de�ne how to derive an ITA from an IGSMP by turning probabilistic

choices into non-deterministic choices and by considering the support of the

distribution of a clock, i.e. the set of time values that may happen with prob-

ability (density) greater than 0, as the set of possible values for its duration.

Moreover we show that such mapping is compositional, i.e. is preserved by

CSP parallel composition and hiding. If every distribution used in the GSMP

has a support which is a �nite collection of intervals, then the derived ITA is

analyzable with existing techniques and tools.

4.1 Deriving the Pure Markovian Process

Given an IGSMP term P 2 IGSMPg (see [9] or [5] Chapter 7), we derive an

IWMC term Q 2 IWMCg by approximating general distribution with phase-

type distributions.

Since phase-type distributions can be seen as the time to absorption of a

continuous time Markov chain, any phase-type distribution pht can be repre-

sented by some term Ppht of IWMC, made up of only weighted pre�xes \w: ",

exponentially timed pre�xes \�: ", choice operators \ + " and occurrences

of a variable X representing absorbing states.

Given a function approx : PDF+ �!o PhT , which associates with each gen-

eral distribution f occurring in an IGSMP speci�cation P its approximating

phase-type distribution pht, term Q 2 IWMCg is obtained as follows. De-

noted with R[R0=X] the term obtained from a term R by replacing R0
for X

inside R, we just replace each occurrence of a subterm <f;w>:P 0
in P with

w:(Papprox (f)[P
0=X]).

De�nition 4.1 Given P 2 IGSMPg and a function approx : PDF+
�!o PhT ,

which associates with each general distribution occurring in P an approxi-

mating phase-type distribution, we de�neM[[P; approx ]] 2 IWMCg to be the

term obtained by replacing each occurrence of a subterm <f;w>:P 0
in P with

w:(Papprox (f)[P
0=X]).

The following theorem, where we denote by approx(P ) the term of IGSMPg

obtained from P 2 IGSMPg by replacing distributions f in pre�xes <f;w>
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according to approx , shows the correctness of the mapping from IGSMP to

IWMC terms (performance measures are preserved).

Theorem 4.2 Given P 2 IGSMPg and approx : PDF
+
�!o PhT, we have

that, for every �xed adversary resolving non-deterministic choices, the stochas-

tic process underlying approx(P ) is the same as that underlyingM[[P; approx ]]

(provided that in M[[P; approx ]] we only consider states which do not enable

derivatives of terms Papprox (f), for any f , as states of the underlying stochastic

process).

The following theorem shows that, thanks to the fact that the semantics

of IGSMP delays are de�ned by means of an ST semantics, observational

equivalence is preserved when delays are re�ned by means of phase-type dis-

tributions. We denote with 'IGSMP observational equivalence over IGSMP

terms (de�ned in [9] or [5] Chapter 7).

Theorem 4.3 Given P;Q 2 IGSMPg and a function approx : PDF
+
�!o

PhT, we have that P 'IGSMP Q impliesM[[P; approx ]] 'IWMC M[[Q; approx ]].

The simple mapping above from IGSMP terms into IWMC terms is sig-

ni�cant from a pure performance viewpoint in that it shows process algebra

to provide exactly the machinery necessary for approximating GSMPs with

CTMCs through phase-type distributions. This because, while directly trans-

forming at the model level a GSMP into a CTMC via phase-type approxima-

tion is really cumbersome due to the interleaving of the exponential phases,

when using process algebra we just have to approximate general distributions

at the term level and then the parallel operator automatically computes the

interleaving of exponential phases for us. Finally, such a mapping con�rms ST

semantics to be the adequate semantics for generally distributed time in that

approximation of activity durations with phase-type distributions is a form of

action re�nement [1,8].

4.2 Deriving the Pure Real-Time Process

Given an IGSMP G = (�; C; D;Act ; T+; T�; Ta; s0) (see [7] or [5] Chapter 6), we

derive an ITA T = (�; C;Act ; Tr; Tb; Ta; s0), by turning probabilistic choices

into non-deterministic choices and by considering the support of the distribu-

tion of a clock as the set of possible values for its duration. In particular, clock

start transitions C+
i

are turned into reset transitions Ci, while clock termi-

nation transitions C�
i
are turned into clock bound transitions Ci 2 T , where

T is the support of the distribution D(Ci). Note that a technique like this,

which is based on the idea that we introduced in [6] of considering support of

distributions as constraints over clocks, was also used in [10] for deriving timed

automata from the stochastic automata model of [11]. Subsequently, in [12]

it was shown that a more complex technique, which generates new states for

each interval composing the domain of the support of the probability distribu-

tion of clocks, is actually needed for correctly deriving timed automata from
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the model of [11]. This because it can be seen that in such a model the di-

rect transformation of clock termination transitions into transitions requiring

clocks to assume values in the support of their distributions causes timed au-

tomata which behave di�erently from the original system to be derived. This

is due to the fact that in the model of [11] it may happen that a clock ter-

mination transition is executed some time after the clock the transition refers

to actually terminates. Since such a phenomenon cannot happen in IGSMPs,

our simple technique which does not increase the system state space, can be

correctly applied.

Now we present the precise de�nition of support of a probability distribu-

tion that we need for the translation. We follow the idea of [12] of de�ning the

support (therein called \useful domain") in such a way that, if a time value

is in the support set, then either it has non-zero measure, or it is internal, i.e.

it belongs to an open interval which is all included in the support set (and

which must have non-zero measure). This avoids considering traces contain-

ing action orderings which in the original IGSMP occur with zero probability

(see [12]).

De�nition 4.4 Given a probability distribution f over RI , the support of f ,

denoted by supp(f), is the set obtained from the least closed subset of RI with

measure 1 by eliminating non-internal values with measure 0.

It is trivial to verify that for each probability distribution f , supp(f) has

measure 1 (hence that the de�nition is correct).

De�nition 4.5 Given an IGSMP G = (�; C; D;Act ; T+; T�; Ta; s0), we de�ne

T [[G]] to be the ITA (�; C;Act ; Tr; Tb; Ta; s0), where Tr and Tb are given by

� Tr = f(s; Ci; s
0) j (s; C+

i
; s0) 2 T+g

� Tb = f(s; Ci 2 T; s0) j (s; C�

i
; s0) 2 T

�
^ T = supp(D(Ci))g

In order to show the correctness of the mapping from IGSMP to ITA, we

assume the following. Given a state s of an IGSMP and a valuation function v

assigning a time value to each of its clocks, we call a \supported execution of

an IGSMP starting in (s; v)" a �nite sequence of timed transitions t 2 RI + [ 0

and actions transitions � 2 Act executable by the IGSMP according to its

semantics (see [7,5]) when it starts in the state s with initial valuation v and

when we consider as possible values sampled for a clock with distribution f

the time values in supp(f) only. Similarly a \possible execution of an ITA

starting in (s; v)" is a �nite sequence of timed transitions t 2 RI + [ 0 and

actions transitions � 2 Act executable by the ITA according to its semantics

(see Appendix B) when it starts in the state s with initial valuation v.

Theorem 4.6 Given an IGSMP G = (�; C; D;Act ; T+; T�; Ta; s0), we have

that for each state s and valuation function v associating a time value to the

clocks of G (belonging to C) the set of all supported executions of G starting

in (s; v) is equal to the set of all possible executions of the T [[G]] starting in
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(s; v).

The following theorem shows that weak bisimulation equivalence is pre-
served when well-named IGSMPs are mapped into ITA. We denote with
�IGSMP weak bisimulation over well-named IGSMPs (de�ned in [9,7] or [5]
Chapter 6).

Theorem 4.7 Given two well-named IGSMPs G 0
and G 00

, we have that G 0

�IGSMP G
00
implies T [[G 0]] �ITA T [[G 00]]. Moreover, for each S; L � Act � f�g,

we have T [[G 0]] kS T [[G 00]] �ITA T [[G 0 kS G
00]] and T [[G]]=L �ITA T [[G=L]].

5 Conclusion

In this paper we have presented an idea for an integrated approach for the
speci�cation and analysis of stochastic real-time systems based on the usage of
probabilistic generally distributed time. Moreover, we have implemented such
an approach in the case of interactive systems where speci�cations are made
with the calculus of Interactive Generalized Semi-Markov Processes (IGSMPs)
introduced in [9,7,5]. In order to do this we have introduced: the calculus of
Interactive Weighted Markov Chains (IWMCs), a pure stochastic-time process
algebra, and Interactive Timed Automata, a pure real-time compositional
speci�cation paradigm.

As far as future work is concerned, the main goal is to extend the expres-
siveness of the speci�cation language and to improve usability.

The expressive power of the calculus of IGSMPs, though signi�cant in
that it allows internal probabilistic choices, non-determinism and generally
distributed probabilistic time to be expressed, should be enhanced in order to
increase the capability of modeling real systems with mechanisms like multi-
level priorities and interruption of probabilistic time delays. The expressive-
ness of IWMCs and ITA should then be extended accordingly.

Moreover, once gained an adequate expressive power, the development
of a software tool, implementing the transformation techniques introduced
and which is interfaced with other standard tools for the analysis of Markov
Chains and Timed Automata, would be essential for the actual usability of
the integrated approach. Such a tool should also have a friendly graphical
user interface to make the development of speci�cations easy for non experts
in process algebra.
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A A Complete Axiomatization for �nite state IWMC

terms

In this section we present an axiom system which is complete for 'IWMC on

�nite state IWMCg terms.

The axiom system AIWMC for 'IWMC on IWMCg terms is formed by the

axioms presented in Fig. A.1. In this �gure \bb" and \j" denote, respectively,

the left merge and synchronization merge operators. We recall from Sect. 2

that � ranges over weights in RI + and rates in RI +, while ; 0; : : : range over

actions in Act , weights and rates.

The axioms (Pri1) and (Pri2) express the two kinds of priorities of IWMC ,

respectively, priority of � actions over weights and rates and priority of weights

over rates. The axiom (Par) is the standard one which expresses parallel

composition in terms of left and synchronization merge. The axioms (Rec1�3)

handle strongly guarded recursion in the standard way.

If we consider the obvious operational rules for \bbS" and \jS" that derive

from those we presented for the parallel operator 6 then the axioms of AIWMC

are sound.

A sequential state is de�ned to be one which includes \0", \X" and oper-

ators \:", \+", \recX" only; leading to the following theorem.

6 The de�nition of the operational rule for \jS" must allow for actions \�" to be skipped,

as reected by axiom (SM4).

58



Bravetti

(A1) P +Q = Q+ P (A2) (P +Q) +R = P + (Q+R)

(A3) �:P + �:P = �:P (A4) P + 0 = P

(Tau1) :�:P = :P (Tau2) P + �:P = �:P

(Tau3) �:(P + �:Q) + �:Q = �:(P + �:Q)

(Prob) w:P + w0:P = (w + w0):P

(ExpT ) �:P + �0:P = (�+ �0):P

(Pri1) �:P + �:Q = �:P (Pri2) w:P + �:Q = w:P

(Hi1) 0=L = 0 (Hi2) (:P )=L = :(P=L)  =2 L

(Hi3) (a:P )=L = �:(P=L) a 2 L (Hi4) (P +Q)=L = P=L+Q=L

(Rel1) 0['] = 0 (Rel2) (�:P )['] = '(�):(P ['])

(Rel3) (�:P )['] = �:(P [']) (Rel4) (P +Q)['] = P ['] +Q[']

(Par) P kS Q = P bbS Q+Q bbS P + P jS Q

(LM1) 0 bbS P = 0

(LM2) (a:P ) bbS Q = 0 a 2 S

(LM3) (:P ) bbS Q = :(P kS Q)  =2 S

(LM4) (P +Q) bbS R = P bbS R+Q bbS R

(SM1) P jS Q = Q jS P

(SM2) 0 jS P = 0

(SM3) (:P ) jS(
0:Q) = 0 ( =2 S _  6= 0) ^ � =2 f; 0g

(SM4) (�:P ) jS Q = P jS Q

(SM5) (a:P ) jS(a:Q) = a:(P kS Q) a 2 S

(SM6) (P +Q) jS R = P jS R+Q jS R

(Rec1) recX:P = recY:(PfY=Xg) provided that Y is not free in recX:P

(Rec2) recX:P = PfrecX:P=Xg

(Rec3) Q = PfQ=Xg ) Q = recX:P provided that X is strongly guarded in P

Fig. A.1. Axiomatization for IWMC

Theorem A.1 If an IWMCg process P is �nite state, then 9P 0
: AIWMC `

P = P
0 with P 0 sequential state.

For sequential states the axioms of AIWMC involved are just standard

axioms plus the axioms for priority and probabilistic and exponentially timed
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choice, hence we have the following.

Theorem A.2 AIWMC is complete for 'IWMC over �nite state IWMCg pro-

cesses.

B A Semantics for Interactive Timed Automata

In Sect. B.1 we introduce Interactive Prioritized Timed Transition Systems

(IPTTSes) that will be used in Sect. B.2 to de�ne a semantics for ITA.

B.1 Interactive Prioritized Timed Transition Systems

In this section we formally introduce Interactive Prioritized Timed Transition

Systems (IPTTS) which essentially include three type of transitions: standard

action transitions, representing the interactive behavior of a system compo-

nent, prioritized transitions, representing behaviors of the system component

executed according to a certain priority level, and numeric time transitions

representing a �xed temporal delay.

As far as standard action transitions are concerned they have exactly the

same behavior as in ITA. Prioritized transitions are labeled with a certain

priority level p 2 NI
+
and, where transitions with a higher priority level take

priority (e.g. when composing two IPTTSes in parallel) over prioritized transi-

tions with a lower priority level. Moreover, we assume standard � transitions

to take priority over prioritized transitions, no matter which is the priority

level of such transitions (due to the maximal progress assumption). Given a

time domain TD � RI
+
, numeric time transitions are labeled with a certain

delay t 2 TD representing the passage of t time units. As usual in the real

time literature (see e.g. [21]), several timed transition leaving a state o�er the

possibility to the observer to choose the amount of time after which he wants

to observe the status of the system.

In IPTTS we have two di�erent kinds of state:

� silent states which are exactly like in ITA.

� non-silent states enabling numeric timed transitions and/or prioritized tran-

sitions all with the same priority level and (possibly) visible action transi-

tions a, only. In such states numeric timed transitions (which cause the

amount of time labeling the transition to pass) and prioritized transitions

are chosen by means of a non-deterministic choice. Moreover the IPTTS

may potentially interact with the environment through one of its visible

actions.

In the following we present the formal de�nition of Interactive Prioritized

Timed Transition System (IPTTS), then we will de�ne Rooted Interactive

Prioritized Timed Transition Systems as IPTTSes possessing an initial state.

Formally, given a time domain TD � RI
+
, we use t; t

0

; : : :, representing time

values, to range over TD . Moreover we use p; p
0

; : : :, representing priority
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levels, to range over NI +. Finally we use � to range over time values in TD

and priorities in NI +.

De�nition B.1 An Interactive Prioritized Timed Transition System (IPTTS)

is a tuple D = (�;TD ;Act ; Tp; Tt; Ta) with

� � a set of possibly in�nite states,

� TD a time domain, i.e. the set of possible values over which the labels of

the numeric timed transitions range.

� Act a set of standard actions,

� Tp � (� � NI + � �) and Tt � (� � RI + � �) and Ta � (� � Act � �)

three transition relations representing prioritized behaviors, time passage

and action execution, respectively. Tp, Tt and Ta must be such that 8s 2 �:

- s
�

�����! =) 6 9t:s
t

�����! ^ 6 9p:s
p

�����!

- s
p

�����! =) 6 9p0 < p:s
p

0

�����!

- s
�

�����! _ 9t:s
t

�����! _ 9p:s
p

�����!

De�nition B.2 A Rooted Interactive Prioritized Timed Transition System

(RIPTTS) is a tupleD = (�;TD ;Act ; Tp; Tt; Ta; s0), where s0 2 � is the initial

state and (�;TD ;Act ; Tp; Tt; Ta) is an IPTTS.

The meaning of the constraints over transition relations is the following.

The �rst requirement says that (similarly as in ITA) if a state that can perform

internal � actions then it cannot perform time-related transitions (maximal

progress assumption). The second requirement says that if a state can perform

prioritized transitions with a certain priority level then it cannot perform

prioritized transitions with a lower priority level. The third requirement says

that (similarly as in ITA) we cannot have states where time is not allowed to

pass (time deadlocks).

B.1.1 Parallel of Rooted IPTTSes

Now we de�ne, similarly as for ITA, the parallel composition �a la CSP of

RIPTTSes.

In such a parallel composition the discrete timed transitions of the com-

posed RIPTTSes are constrained to synchronize, so that the same amount

of time passes for both systems, i.e. when time advances for one RIPTTS it

must also advance for the other RIPTTS.

De�nition B.3 The parallel composition D1 kS D2 of two RIPTTSes D1 =

(�1;TD ;Act ; Tp;1; Tt;1; Ta;1; s0;1) and D2 = (�2;TD;Act ; Tp;2; Tt;2; Ta;2; s0;2),

with S � Act�f�g being the synchronization set, is the tuple (�;TD ;Act ; Tp;

Tt; Ta; (s0;1; s0;2)) with:

� � = �1 � �2 the set of states
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� Tp � (�� NI + � �), Tt � (�� TD � �) and Ta � (�� Act � �) the least
transition relations, such that

1l s1
�

�����! s0
1
; � 62 S =) (s1; s2)

�

�����! (s0
1
; s2)

1r s2
�

�����! s0
2
; � 62 S =) (s1; s2)

�

�����! (s1; s
0

2
)

2 s1
a

�����! s0
1
^ s2

a

�����! s0
2
; a 2 S =) (s1; s2)

a

�����! (s0
1
; s0

2
)

3l s1
p

�����! s0
1
^ s2

�

�����!= ^ 6 9p0 > p:s2
p
0

�����! =)

(s1; s2)
p

�����! (s0
1
; s2)

3r s2
p

�����! s0
2
^ s1

�

�����!= ^ 6 9p0 > p:s1
p
0

�����! =)

(s1; s2)
p

�����! (s1; s
0

2
)

4 s1
t

�����! s0
1
^ s2

t

�����! s0
2
=) (s1; s2)

t

�����! (s0
1
; s0

2
)

� (s0;1; s0;2) 2 � the initial state.

When evaluating action transitions we just make use of standard rules.
Prioritized transitions are determined by taking into account priorities ac-
cording to a \global" notion of priority where priorities are applied across the
parallel operator. Finally timed transitions are evaluated by just requiring
them to synchronize.

Theorem B.4 Let D1 and D2 be two RIPTTSes. Then for each S � Act �

f�g, D1 kS D2 is a RIPTTS.

B.1.2 Hiding of Rooted IPTTSes

Now we de�ne, similarly as for ITA, the hiding of RIPTTSes.

De�nition B.5 The hidingD=L of a RIPTTSD1 = (�;TD ;Act ; P1; Tp;1; Tt;1;

Ta;1; s0), with L � Act � f�g being the set of visible actions to be hidden, is
the tuple (�;TD ;Act ; P; Tp; Tt; Ta; s0), with:

� P the partial function obtained from P1 by removing from its domain those
states (and the associated probability spaces) which enable at least one
transition labeled with an action in L

� Tp � (�� NI + � �), Tt � (�� TD � �) and Ta � (�� Act � �) the least
transition relations, such that 8s 2 �: 7

1 s
�

�����!1s
0; � 62 L =) s

�

�����! s0

2 s
a

�����!1s
0; a 2 L =) s

�

�����! s0

3 s
�

�����!1 ^ 6 9a 2 L: s
a

�����!1 =) s
�

�����!

Similarly as for ITA, in the de�nition of the hiding operator in addition
to standard rules we make use of rules which enforce the maximal progress
assumption.

7 In order to distinguish transition of Tp;1, Tt;1 and Ta;1 from transitions of Tp, Tt and Ta

we denote the former with \�����!1" and the latter simply with \�����!".
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Theorem B.6 Let D be a RIPTTS. Then for each L � Act �f�g, D=L is a

RIPTTS.

B.1.3 Equivalence of Rooted IPTTSes

Now we introduce a notion of weak bisimulation for RIPTTSes which matches

prioritized and timed transitions according to strong bisimulation and ab-

stracts from standard � actions similarly as in [19].

De�nition B.7 Let D = (�;TD ;Act ; Tp; Tt; Ta) be an IPTTS. An equiva-

lence relation � on � is a weak bisimulation i� s1 � s2 implies

� for every � 2 Act ,

s1
�

�����! s01 implies s2
�̂

=) s02 for some s02 with s01 � s02,

� for every � 2 NI + [ TD ,

s1
�

�����! s01 implies s2
�

=) s02 for some s02 with s01 � s02,

Two states s1 and s2 are weakly bisimilar, denoted by s1 �RIPTTS s2, i�

(s1; s2) is included in some weak bisimulation. Two RIPTTSes (D1; s0;1) and

(D2; s0;2) are weakly bisimilar, if their initial states s0;1 and s0;2 are weakly

bisimilar in the IPTTS obtained with the disjoint union of D1 and D2.

Theorem B.8 �RIPTTS is a congruence over RIPTTSes whose states may

reach via (zero or more) \�" transitions a state which cannot perform \�"

transitions w.r.t. both parallel and hiding.

B.2 De�nition of the Semantics for ITA

In this section we present a semantics for interactive timed automata which

maps them onto interactive prioritized timed transition systems. Such a se-

mantics explicitely represents the passage of time by means of transitions

labeled with numeric time delays and turns clock reset transitions into prior-

itized transitions with priority level 2 and clock bound transitions into prior-

itized transitions with priority level 1.

We now formally de�ne the semantics of an ITA.

De�nition B.9 The semantics of an ITA T = (�; C;Act ; Tr; Tb; Ta; s0) is the

RIPTTS [[T ]] = (�0; RI + [ f0g;Act ; Tp;Tt ;T
0

a ; s
0

0) where:

� �0 = (� � Spent) is the set of states of the RIPTTS, where Spent , ranged

over by v, is the set of functions from C to RI + [ f0g, expressing the time

already spent in execution by the clocks of the ITA from the last reset event

� RI + [ f0g is the time domain: we consider continuous time.

� Act is the set of standard actions considered in the ITA.

� Tp is the set of prioritized transitions which are de�ned as the least rela-

tion over �0 � NI + � �0 satisfying the operational rules in the �rst part of

Table B.1.
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(P1)
s

�

�����! s0
^ v ` �

hs; vi
1

�����!hs0; vi
(P2)

s
Cn

�����! s0

hs; vi
2

�����!hs0; v  (Cn; 0) i

(T )
9t0 � t : v + t0 `

V
f� j s

�

�����!g

hs; vi
t

�����!hs; v + ti

(A)
s

�

�����! s0

hs; vi
�

�����!hs0; vi

Table B.1

Semantic rules for ITA

� Tt is the set of timed transitions which are de�ned as the least relation over
�0
� ( RI +

[ f0g)� �0 satisfying the operational rules in the second part of
Table B.1.

� T 0

a
is the set of action transitions which are de�ned as the least relation over

�0
�Act ��0 satisfying the operational rules in the third part of Table B.1.

� s00 = hs0; 0i, with 0 = f(Cn; 0) j Cn 2 Cg is the initial state of the RIPTTS,
where the ITA is in the initial state and all clocks start from zero.

In Table B.1 we make use of the following notation. v ` � holds true if
and only if the formula obtained from � by replacing clocks with time values
according to v is true. Moreover we de�ne v  (Cn; t) to be the function
obtained from v by replacing the pair (Cn; t

0) already contained in v with the
new pair (Cn; t). Finally, we de�ne v + t, with t 2 RI +

[ 0, to be the function
obtained from v by adding t to the time value associated with each clock in v.

Theorem B.10 Let T 0, T 00 be two ITA. If T 0
�ITA T

00 then [[T 0]] �RIPTTS

[[T 00]].

The following theorems show that the semantics of ITA is indeed compo-
sitional.

Theorem B.11 Let T 0, T 00 be two ITA. For each S � Act � f�g we have

[[T 0]] kS[[T
00]] �RIPTTS [[T 0

kS T
00]].

Theorem B.12 Let T be an ITA. For each L � Act � f�g we have [[T ]]=L
�RIPTTS [[T =L]].
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