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Abstract 

Hot Forging optimization depends on several factors, known with uncertainty: die pre-heating, geometry, tempering, workpiece temperature 
and shape, lubricant. There are also several objectives: quality, energy consumption and tool life. 
Global optimization methods require a numerous process evaluations to reach the optimum. While tests can be simulated by Finite Element 
Method (FEM), most of them were substituted by a Neural Network model. Neural Network training is less sensitive to problem dimension 
than standard Design of Experiments. The approach is assessed against the traditional Finite Element Optimization by exploiting a case study 
of a steel disc. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing 
Engineering. 
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1. Introduction 

Die design and optimization of process parameters in hot 
metal forging are usually performed by applying empirical 
design rules based on enterprise’s experience and by making 
tests on prototypes. There are several reasons behind the lack 
of a formal and structured design method in forging. They can 
be summarized in the difficulty to cope with the large number 
of production control parameters, the difficulty in building 
reliable models of highly nonlinear phenomena and the large 
process variability. Due to the increasing cost of tools and to 
the demand for defect free production parts, the traditional 
trial and error design process should anyway be replaced by a 
virtual prototyping approach, based on the simulation of a part 
or of the whole forging process and consequent heating 
treatment. 

Due to the large number of factors influencing the process, 
it is necessary to use methods of global optimization, like 
genetic algorithms, particle swarm, etc. They require many 
tests to assure the global optimum. Test time can be shortened 
by recurring to the simulation with Finite Element Method 

(FEM). Even so, a considerable computational time is required 
to execute a full thermal-mechanical 3D simulation. FEM 
simulations can be executed only few times and the remaining 
testing points should be substituted by a numerical model of 
the response function. Among these numerical models, the 
polynomial regression, used in statistical Design of 
Experiment (DOE) or the Kriging approach have some 
limitations, described in the paper. Therefore, a Neural 
Network (NN) has been used and natural process variability 
was accounted for. Even NN demands for a large number of 
tests but, as the variables increase, the test number increases 
with a slower rate with respect to DOE. Furthermore, it is 
possible to train the NN using a set of values not covering 
systematically the space of solutions. 

In present study, FEM simulations were executed in 
selected points. They were repeated with different values of 
disturbance factors. NN was trained, validated by additional 
set of tests data and eventually used to create a complete 
response surface to feed the optimization procedure. 

Solution is checked against FEM and the procedure is 
repeated iteratively until convergence. Due to process 
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variability attention was given to obtain a robust optimal 
solution by considering in the cost function all the desired 
outputs and by giving preference to a stable solution. 

The method was developed having as a target the 
applicability in the context of industrial process design, so 
paying attention to easy implementation and to computational 
time requirements. NN allow to replicate the expert reasoning 
based on the experience. A case study of a steel disc has been 
used to present the method and to test the actual ease of use. 

2. Issues in process design 

The process parameters involved in hot forging and their 
role have been subject of investigation by [1] and [2]. They 
can be clustered under the following main groups [3]: 

 Product geometry 
 Product material 
 Tooling 
 Machine 
 Process 
 Tool-workpiece interface effects 

Every group is composed by several parameters, each of 
them needing thorough investigation to understand its effect 
on the different quality and performance indicators and to 
define the guidelines for their optimal setting. As an example, 
flash allowance has important and conflictive effects on both 
the die filling and the die life [4]. Several models have been 
proposed to design the flash land. [5] compared 6 models, 
used them to design the flash land and verified the results by 
FEM simulation. They chose one model focusing on the 
minimization of die wear, but they recognized that, 
considering all of the outputs, there was not a clear winner. In 
table 1 the most significant parameters are listed, concerning 
the process and the tool-workpiece interface.  

It is easy to understand the level of complexity when the 
parameters are considered all together. An additional difficulty 
is due to the difficulty in controlling all of the referred 
parameters. Workpiece and die temperature are defined at 
design stage but could change, due to the waiting time before 
forging and to the variability in the heating procedure. 

Table 1. Selection of significant process parameters 

Group Parameter Metric Controlled? 

Process Workpiece’s initial 
temperature °C Design 

 Die temperature °C Design 

 Time in air s Disturbance 

 Time in open die s Disturbance 

 Forging sequence - Design 

 Die-part centering mm Disturbance 

 Kinematics - Process 

Interface Friction coefficient - Design 

 Heat conduction °C Design 

 Lubrication properties mm Design 

 

The amount of time spent on the die before the blow is 
widely variable and should be considered more a disturbance 
than an input parameter for the process. 

Therefore, the standard procedure adopted in the majority 
of companies is to empirically repeat proven functioning sets 
of parameters, making changes only on the process variables 
taken one by one. Recently, some authors propose to use the 
possibility of executing FEM simulations to look for optimal 
values of process variables, as in [6] or in [7]. In [8], FEM is 
used to concurrently optimize both process and product, 
obviously on a reduced number of variables. The optimization 
procedure is deeply related to the objective of the 
optimization. Some study researches the minimization of the 
plastic deformation energy, others the under-filling of the die, 
the die wear, the folding defects and so on. 

The complexity of global multi-objective optimization of 
every factor in the process is so high that several authors 
prefer to develop empirical expert systems to assist in the 
design phase [9] and [10]. These systems are coded with the 
support of a campaign of experiments. Thus, the complexity 
of the problem is so high that presented case study are 
referring only to 2D axisymmetric process. 

Eventually, some researchers [11], [12] proposed to use a 
Sequential Approximate Optimization algorithm (SAO) to 
optimize forging process, using the time-consuming FEM 
simulation only to fit a metamodel of the process, by 
Polynolmial regression or Kriging interpolation. The 
metamodel is used by the optimization algorithm that is 
evaluated by simulating the optimum with FEM.  

 

 

Fig. 1. Sequential Approximate Optimization Algorithm using NN 
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3. The NN optimization procedure 

In the present study, a version of the SAO algorithm is 
implemented where the metamodel is changed with a NN. The 
NN is trained on examples obtained executing a set of FEM 
simulations that are selected using the DOE methodology. The 
implementation of the SAO algorithm, used in present study, 
is presented in Fig.1.  

The reason for choosing NN instead of a metamodel is the 
following. Metamodel shape is constrained by the need of 
being able to fit it with polynomial regression or kriging. It 
means that, in order to obtain fair results, the function should 
be linear or quadratic, possibly without interactions among the 
variables.  

The NN, conversely can be trained with whatsoever 
number of input factors (design parameters and disturbances 
as well) without imposing constraints on the shape of the 
response surface (the metamodel). Furthermore, it is possible 
to train the NN with input distributed in a non-regular way. 
After the first iteration of the algorithm it is therefore possible 
to refine the NN just in the area near the optimum, without the 
constraints posed by DOE construction. 

3.1 Neural network design 

The capability of the NN model to generalize regarding 
unknown data depends on several factors such as appropriate 
selection of input–output parameters of the system, 
distribution of the input–output dataset, and format of the 
input–output dataset presentation to the NN. 

Accordingly, four steps were followed in the development 
of the NN model: (i) input–output dataset collection, (ii) 
input–output dataset pre-processing, (iii) NN design and 
training, and (iv) NN performance evaluation. 

The optimal NN architecture was determined after several 
simulation trials. Diverse configurations of NNs were trained 
to identify the best arrangement for the prediction of flank 
wear. The parameters that were changed among the different 
configurations are the following: 

- number of nodes in the hidden layers; 
- number of hidden layers; 
- activation function of the node neurons. 
In particular, to predict the Teq 3, three diverse NN 

configurations were constructed and tested: NN5, NN8 and 
NN15 with 5, 8 and 15 nodes in the hidden layer, respectively. 
While, to predict the wear_t value, two different NN 
configurations were constructed and tested: NN3 and NN5 
with 3 and 5 nodes in the hidden layer, respectively 

In all tested NN configurations, the input layer had three 
nodes to receive the feature vector (Tp, Td and f) while the 
output layer had only one node to predict the Teq or wear_t,. 

The number of hidden layers was set equal to one and the 
number of hidden nodes was chosen according to a ‘‘cascade 
learning’’ procedure [14]: hidden units are added one at a 
time until an acceptable training speed is achieved. The 
hidden nodes were initially set equal to four and further nodes 
were added incrementally. The addition of hidden nodes 
continued until there was no significant progress in the NN 
performance. 

To set up the NN models, the NNet toolbox of the Matlab 
software package was used. In particular, the Levenberg–
Marquardt backpropagation algorithm was adopted for its 
performance in terms of rapid network error convergence and 
good reliability. 
For optimal NN architecture configuration, weights and 
thresholds were randomly initialized between -1 and +1. 
Learning coefficients were: learning rate between input and 
hidden layer: 0.3, learning rate between hidden and output 
layer: 0.15, momentum: 0.4. The learning rule was the 
Normal Cumulative Delta Rule and the transfer function 
applied to the nodes was the sigmoid function f(x) = 1/(1 + ex) 
[15]. 

The number of learning steps for a complete training was 
set at 2000 on the basis of the time to convergence. Epoch 
size, i.e. the number of training presentations between weight 
updates, was set at 100. 

4. Case study: optimization of a extruded forged disk 

The case study is a C22 disk obtained in two steps by 
extrusion forging. The first step is the blocking phase. After 
flash removal, it is followed by a finishing step. The 
maximum die wear is found in the blocking phase that 
therefore is subjected to optimization. In this test of the 
method, only the parameters of the process and of the 
interface were considered, together with the disturbances 
variables. Fig. 2 shows the initial and the forged part. 

The original process is executed on a 6.3MN crank press, 
250mm/s ram velocity, the workpiece temperature is 1200°C, 
the dry lubricant is graphite with water vapor for a friction 
factor of 0.4. Both dies are H13 - AISI steel with ion nitride 
surface treatment and are pre-heated to 200°C. The flash is 
3mm thick. 

The process has been chosen as a benchmark because the 
FEM simulation is in good agreement with the experiment. 
The coupled thermos-mechanical simulation is executed with 
the QForm3D software from Quantor. 

The temperature in the workpiece and in the die changes 
consistently during forging. In Fig.3 it is possible to see that 
external temperature lowers to 800°C, while internal rises to 
1278°C. Die temperature in Fig.4 rises to 662°C. 

 

 

 

 

Fig. 2. The initial and forged workpiece. 
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Fig. 3. The temperature on the workpiece at the end of the process (min 
802°C, max 1278°C). 

 

Fig. 4. The temperature on the die at the end of forging process (min 200°C, 
max 662°C). 

There is a consistent effect of thermal softening that 
reduces die life because of plastic deformation of the die [13]. 
The equivalent temperature, expressed as (Tmax and Tmin are 
the highest and lowest temperature in the same point on the 
die during the forging cycle): 

 

3
2 minmax TT

Teq  (1) 

is 508°C that gives an estimated die service life of about 
20000 cycles (the amount of plastic deformation after which 
the die life is terminated is a matter of choice). At the same 
time the wear traction on the most stressed zone of the die, 
can be calculated from the Archard abrasive wear model as   

tcycle

sdtpv
h

k
W

3
 (2) 

where W is the wear traction, k a wear coefficient,  the 
friction coefficient, p the normal pressure on the die surface, 
vs the sliding velocity, h the HrC hardness of the die. 
Assuming k as 1000, the wear traction is 0.94 that gives an 
estimated die service life of about 10400 cycles (again, the 
amount of acceptable wear before changing die is a matter of 
choice). Every action that increases the equivalent 
temperature worsens the die life due to plastic deformation, 
but improves the die life due to abrasive wear.  
Fig. 5 shows the wear traction on the dies. Wear figures are 
concentrated in few zones. One of them is, as expected, the 
flash land. The others are in correspondence with curvature 
radii of the dies. 
 

 

Fig. 5. The wear traction on the die at the end of forging process (min 0,   
max 0.94). The wear is concentrated in a few spots. 

5. Analysis and results 

The simulations used for the initial training of the NN have 
been executed following a 33 full factorial design with as 
factors: workpiece initial temperature, die temperature and 
lubricant type. The range of variation of the factors has been 
chosen very wide, to cover the largest experiment area. The 3 
levels of the factors are reported in Table 2. Disturbances are 
considered by introducing random variations of the variables 
that are not under control. 

Table 2. The values of process parameters used to build a full factorial design 
structure for NN training (3 factors on 3 levels) 

Parameter Level 1 Level 2 Level 3 

Workpiece temperature 1050°C 1150°C 1250°C 

Die temperature 20°C 200°C 400°C 

Lubricant glass Graphite + water Unlubricated 
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5.1. Neural network training and testing 

During the training phase, input vectors were sequentially 
presented to the NN input layer, and the corresponding 
measured Teq or wear_t value was fed to the output layer 
(Table 3). 

During the recall phase, the output of the NN was the 
predicted value of Teq, Teqpp, or wear_t, wear_tp, for each input 
vector.  

By setting normalised error EnTeq = (Teqp - Teq)/Teq, and Enw 
= (wear_tp - wear_t)/wear_t, the NN output identification is 
correct if En  [-0.5, +0.5]; otherwise, a misclassification case 
occurs. The ratio of correct classifications over the total 
number of input feature vectors yields the NN success rate. 
The normalised errors were calculated and plotted versus the 
number of NN input vectors (Figure 6) for the different NN 
models.  

 
Table 3. NN input and output vectors 

NN Input NN output 1 NN output 2 

Tp Td f Teq wear_t 

1050 20 0,15 319 0,001200 

1150 20 0,15 345 0,000919 

1250 20 0,15 369 0,000728 

1050 200 0,15 406 0,001260 

1150 200 0,15 427 0,000956 

1250 200 0,15 448 0,000722 

1050 400 0,15 546 0,001180 

1150 400 0,15 566 0,000968 

1250 400 0,15 586 0,000743 

1050 20 0,4 381 0,001500 

1150 20 0,4 411 0,001175 

1250 20 0,4 441 0,000948 

1050 200 0,4 456 0,001660 

1150 200 0,4 482 0,001480 

1250 200 0,4 508 0,000940 

1050 400 0,4 584 0,001700 

1150 400 0,4 609 0,001180 

1250 400 0,4 634 0,000931 

1050 20 0,8 433 0,002189 

1150 20 0,8 467 0,001770 

1250 20 0,8 495 0,001353 

1050 200 0,8 502 0,002590 

1150 200 0,8 526 0,001928 

1250 200 0,8 556 0,001460 

1050 400 0,8 615 0,002540 

1150 400 0,8 651 0,001900 

1250 400 0,8 673 0,001390 

 
The trained NN was fed to a global optimization method 

for mixed-Integer non-smooth problems. The chosen method 
is the genetic algorithm. The problem admits multiple local 

solutions and is always multi-objective. The problem has to be 
considered as mixed-integer because the friction coefficient in 
this case study, but also other parameters in a more complete 
optimization can assume a limited, integer, number of values. 

Table 4 shows the comparison of the results through 
optimization and the corresponding results obtained by FEM 
used as an evaluation tool. As the residuals are below the 
given accuracy threshold, the sequential optimization stopped. 
It is worth noting that sequential optimization requires a very 
short number of iterations. Unfortunately, the method cannot 
guarantee either the convergence or the convergence to an 
optimal solution. However, this limit is already present in the 
genetic optimization algorithm. 

Table 4. Evaluation of the optimal solutions by comparing the NN based 
optimization of equivalent temperature and wear traction with the FEM 
simulation using the same input data. 

Output Optimized 
value / FEM 

Workpiece 
temperature 

Die 
temperature 

Lubricant 

Teq 318 / 319°C 1050°C 20°C Glass 

W 0.62 / 0.73 1250°C 20°C Glass 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Fig. 6: NN normalised error for the diverse NN configurations related to 

(a) Teq and (b) wear_t. 

6. Conclusions and further developments 

In the paper, a version of Sequential Approximate 
Optimization algorithm is implemented where the metamodel 
to be optimized is substituted by NN. The use of NN allows to 
find the optimal solution to multi-objective multi-factor 
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forging design problem without executing too many 
computing intensive FEM simulations. With NN, the 
constraints on metamodel shape have been relaxed. 

The application of the algorithm to a standard case study 
has made it possible to highlight the potentials of the approach 
but also the drawbacks: multi-objective model leads to as 
many NN as the objectives, but different NN can have 
different levels of fitting to the studied system, thus leading to 
uneven distances from the optimum.  

Further developments of the research will be the training of 
the net using a large dataset obtained by 2D simplified (and 
faster) simulations of 3D complex parts to greatly increase the 
size of the training set and to further replicate the actual 
reasoning process of the factory expert: abstraction of design 
rules from the experience on simple problems. 
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