Available online at www.sciencedirect.com

Structural Integrity

- ScienceDirect Procedia

Procedia Structural Integrity 12 (2018) 538-552

www.elsevier.com/locate/procedia

AIAS 2018 International Conference on Stress Analysis
A continuous model for the railway track analysis in the lateral plane
M. Catena?, A. Gesualdo®, S. Lisi?, F. Penta®*, G.P. Pucillo®

“Technical Management | Technological and Experimental Standard - Superstructure, Rete Ferroviaria Italiana - RFI S.p.A.,
Piazza della Croce Rossa 1, 00161, Rome, Italy
b Department of Structures for Engineering and Architecture, University of Naples Federico 11, via Claudio 21, 80125 Naples, Italy
¢Department of Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy

Abstract

This paper deals with a mechanical model for the analysis of the railway track behaviour built by exploiting the periodicity of the
track-structure. The starting point of this study is the analysis of the inner forces transferring modes. They have been determined
by the unit principal vectors analysis of the base cell transfer matrix.

The proposed model is able to reproduce accurately the track behaviour in transferring its inner forces. However, solutions that
are equilibrated but not kinematically admissible are obtained from it when transversal loads are applied. In additions, only bound-
ary conditions compatibles with the track transferring modes can be satisfied. This inconsistency is eliminated by superposition of
a corrective deformed shape. This is derived from the eigenvectors of the transfer matrix pertaining to self-equilibrated systems of
bending moments decaying along the track.

The application field of the proposed track model is also discussed and the results of a validation study carried out by F.E.
analysis are finally presented.
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1. Introduction

Although over the last three decades most of the railway tracks have been built by the continuous welded rail
technique, several technical problems still prevent the full achievement of the best performance of this constructive
solution in terms of maintainability, energy consumption reduction, comfort degree offered to the passengers and
lifetime of the rails and rolling stock. Surely, a key role is played by the natural trend of this system toward the
thermal buckling phenomenon and, even more so, the unpredictability of the thermal and mechanical conditions in
which this phenomenon may occur.
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Most of the predictive models until now proposed were implemented in advanced computer aided engineering (cae)
environments, see Esveld and Hengstum (1988); Jackson et al. (1988); Pucillo (2016, 2018); Lei and Feng (2004);
Lim et al. (2003, 2008); El-Ghazaly et al. (1991). By this approach, the track structure is reduced to a discrete system
of finite elements while the ballast constraining actions on the sleepers are schematically represented by non-linear
springs whose characteristics have to be experimentally determined as reported in De Iorio et al. (2014a,b,c, 2017);
Pucillo et al. (2018). However, numerical models are not able to explain by a concise mathematical language the
effects of the geometrical and mechanical parameters on the track critical conditions. Consequently, they are ill-suited
for helping the railway engineer that has to make design and strategic choices on the base both of its direct experience
and data gathered from the track installation site. An analytical track model could be a valid alternative, since it offers
a synthetic representation of the essential properties of the track and provides in a form useful by a technical point of
view the actual knowledge state about the track behaviour. Yet, the attempts made by the researchers to build accurate
analytical track models are very few.

In many of the models till now proposed it is assumed that track in the lateral plane acts like a Bernoulli-Euler beam
having bending stiffness equal to twice the minimum bending stiffness (E,1,) of each rail (Kerr (1978a); Tvergaard
and Needleman (1981); Martinez et al. (2015); Yang and Bradford (2016), for example). Into a second modelling
approach, the inner bending moment is instead evaluated by adding two terms: the first term is generated by the
curvature changes of the rails and is proportional to 2(E,I,), the second one is due to the constraint action the fasteners
exert on the rails, see Kerr (1978b); Zakeri (2012). The main shortcoming of these kinds of models is that they do not
take into account the effects of both the bending stiffness of the sleepers and the track gauge.

To overcome this limitation, Kerr and co-workers, observing that the track is a periodic beam-like structure built by
repetitive assembling of two dimensional elements, in Kerr and Zarembki (1981); Kerr and Accorsi (1987); Grissom
and Kerr (2006) have developed a continuous model adopting an homogenization technique based on finite differences
approximation . Instead, according to the model of Zhu-Attard the track in the lateral plane behaves as a sandwich
beam, Zhu and Attard (2015).

In this work, a new one-dimensional continuous model is developed by a homogenization method based on the
eigen- and principal vectors of the unit cell transfer matrix. Closed forms for deformation modes of the unit cell
by which the inner forces are transferred through the track are determined by the direct method reported in Penta
et al. (2017); Gesualdo et al. (2018b). In order to identify the equivalent continuum, an energetic approach has been
developed, without any a priori assumption on the kinematics of both the track and its substitute medium.

The proposed model can approximate the track behaviour in transferring the inner forces and, as it will be shown,
is able to satisfy only a limited set of boundary conditions for end nodal and sectional rotations. For taking into
account the local effects of the transversal loads and extending the applicability of the proposed model to more general
boundary conditions, a corrective solution have to be superimposed. This latter is built by homogenizing the response
of the unit cell to a system of inner self-equilibrated bending moments decaying through the track.

Lastly, the homogenization error due to the proposed approach has been evaluated by means of a sensitivity study
carried out by the finite element method.

2. Track transmission modes

The adopted scheme of the periodic rail-tie structure is shown in Fig. 1 together with the unit cell. To simplify the
analysis, we neglect the small angle that the rails longitudinal symmetry planes make with the vertical track symmetry
plane. Moreover, we assume that rails and sleepers axis belong to the same horizontal plane. Thus, the considered
track is a plane framework made up of straight parallel rails and equally spaced sleepers connected by means of
springs of stiffness ky representing the fasteners.

In the analysis, the response of all the track elements is elastic while rails and webs of the unit cell are Bernoulli-
Euler beams. The rails have area A, and minimum second order central moment of area /,. The sleepers are assumed
axially inextensible and have the second order moment equal to /;. To respect the track periodicity, the second order
area moments of the cell webs are equal to the half part of the second order area moment /;, while the stiffness of the
unit cell torsional springs is kg /2.
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Figure 1. Schematic view of the elastically jointed rails-sleepers framework (a), track cross section (b) and unit cell (c).

To identify any quantity related to the track i-th nodal section, the sub-script i will be adopted, see Fig. 2. To
distinguish between the joints or nodes of the same section, the superscripts ¢ or p are used, depending on whether the
top or bottom rail is involved. Finally, in a coherent manner, top and bottom nodes of the section i are labelled i, or ij.

The static and kinematical quantities of the i-th cell are also schematically shown in Fig. 2. However, for our
purposes, it is more convenient to adopt static and kinematic quantities alternative to the standard ones shown in
this figure. More precisely, the deformed shape of the cell will be defined in terms of the mean axial displacement

iy =1/2 (u; + uf), the section rotation /; = (uj’ — u’]) /1, the transverse displacement v; and, finally, the symmetric

and anti-symmetric parts of the section nodal rotations ¢; = 1/2 ((p; + (p’j’.) and g; = 1/2 ((p’J - gp’;).
The static quantities conjugates to the previous kinematic variables are: the axial force n; = (F j? + F ?)/2, the

bending moment M; = (F j? -F 3) I; generated by the anti-symmetric axial forces, the shear force V; = F ;y + F fy, the
resultant of the nodal moments 7z; = ms + m'; and, finally, the difference between the same moments 771; = mt. —mb.
The state vector s of a track nodal cross section consists of its displacements vector d and the vector f of the

. . . T
forces that the section transfers. Hence, the state vectors of the end sections of the i cell are s;_| = [d;l, fll] and

s = [d[T, fl.T]T, Fig. 2. They are related by the transfer matrix G:
G Si-1 =58;.

As shown in Stephen and Wang (1996, 2000), the force transmission modes of the unit cell are given by the unit
principal vectors of the G matrix. By the direct approach proposed in Penta et al. (2017), the problems due to the ill-
conditioning of G are altogether avoided since principal vectors are determined in closed form by operating directly
on the unit cell stiffness matrix.
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Figure 2. Unit cell nodes numbering and positive static and kinematical quantities.
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Figure 3. Forces subvector components and unit cell deformed shapes of bending moment (a) and shear forces (b) transmission modes.

The principal vector s, pertaining to the pure bending mode has displacement and force sub-vectors respectively
given by:

db=1/2[0’ (Y, 0’ a’ O]T’ sza[o’ ﬁr/z, 05 277?" O]T (l)

where « is the rigid unit cell rotation, 8, = E,A,l? /1, and n,=E.I,/l,. Eq. (1) indicates that due to bending, the top
and bottom nodes of the unit cell rotate exactly of the same angle as the cross section they belong to does. In other
words, the cell transfers the bending moments without deformations of the webs (Fig. 3). This result was already
observed in Gesualdo et al. (2017) by numerical experimentation on Vierendeel girders unit cells. In addition, two
bending moments are transferred through the unit cell: the first one, to which we refer as primary bending moment,
is generated by the couple of axial forces acting on the rails, the second one, to which instead we refer as secondary
or micro-polar moment, is exclusively due to curvature change of the rails and is given by the resultant of the nodal
moments.

The principal vector sy defining the shear transmission mode is generated by s, and has displacements and forces
sub-vectors respectively given by

T - B2 + 21, ’
dV = [O, Aw + (,DV,O, ®y, 0] s fV = |:0 —% ﬂ/l—n _an’ 0
where
a B Br
Ay = —|[— +8
AT v = 48( * )

with g = (Esly) [ [I5 (6as — 1] and ag = (Egly) [ (kgls) + 1/3.

The deformed shape of the unit cell due to the shear transmission mode is schematically depicted in Fig. 3(b)
assuming that Av; = v;; — v; = 0. Actually, this shape is obtainable by superposition of two independent modes. The
first one, shown in Fig. (4a), involves rigid rotation of the sleepers and skew bending deformation of both rails, whose
end sections rotate exactly of the same angle as the sleepers do. Consequently, it generates respectively the transversal
shear forces

= +2477c (gﬁ - Alv)
with ¢ rotation angle of the cell webs, and the secondary bending moments ¥ 127, ( — Av/l,) applied on the left
and right sides of the cell. The second deformed shape involved in shear transmission is instead associated with the
relative rotation & = (¢ — ) of the cell nodal sections with respect to the mean nodal rotation ¢. It does not produce
any transversal shear (Fig. 4b) and is characterized by rigid translations of the rails and flexural deformation only of
the sleepers. Their end sections in this mode does not rotate but carry out a relative transversal displacement equal to
(¥ — @) I;. The related distorting forces acting on each cell face are a couple of axial forces Ny = £12 (n5/l5) (¥ — @)
and two nodal moments 617, (Y — ¢) equilibrating the primary bending moment generated by the forces Ny. It is
noteworthy that, as consequence of the previous forces system, an uniform horizontal shear Sy = Ny is induced in
each sleeper.
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Figure 4. Unit cell deformations generating the transversal (a) and the longitudinal (b) shears.

Finally, the components d, and f, of the axial force transmission mode s, are:
d,=[0,4,0,0]", f,=i[B. 0,0,0,0]"

where 8, = (26,)/ (l,l?) = 2E,A,/l,, it denotes a rigid unit cell translation in the axial direction and the symbol ¢ is
adopted for indeterminate quantities.

3. Track continuum model

In order to write the expression of the cell strain energy associated with the inner forces transmission modes, we
adopt the following re-parametrization of the sectional and nodal rotations:

Y=y +E, 0=y,

where ¢ is the common part of  and ¢ due to both bending and transversal shear while £ is the difference y — ¢
caused by the longitudinal shear. Furthermore, we decompose the unit cell response to the shear and bending moment
in the three following parts: pure bending, symmetric bending due to shear and antisymmetric bending and shear (Fig.
5). Then, denoting by A(.) the change of a generic quantity (.) over the cell range, the cell strain energy due to the
transmission modes is written as:

: A
E,=> (% + 277,)Az// LE, + 12n,(¢ - —v) 12,8+ —BaAu

where E; is the strain energy pertaining to the symmetric bending due to shear.

A 1-D equivalent continuum for the track can be built by the following two-steps procedure. Firstly, the elastic strain
energy E per (track) unit length is evaluated by dividing the unit cell energy E, by the cell length /,. Then, considering
that /, is usually very smaller than the length L of the track to be analysed or equivalently that € = /,/L < 1, the ratios
AY/l,, Av/l, and Au/l, may be interpreted as the incremental ratios of the differentiable functions ¢ (x), v (x) and u (x)
that define together with £(x) the deformed shape of the substitute medium. Consequently, they may be approximated
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Figure 5. Decomposition of shear and bending moment change in symmetric and antisymmetric parts.
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Figure 6. Deformed shapes of the elementary cell due to axial force (a), bending (b), transversal shear (c) and longitudinal shear (d).
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Figure 7. Track segment under axial and transversal loads.

by their limit as € — 0, namely by the first derivatives of these functions. In addition, the strain energy E; as € — 0
is an higher order infinitesimal quantity and for this reason disappears. Thus, the following expression of the elastic
strain energy density E of the equivalent continuum is obtained:
212 2 2
E= %(rh + r,,)(%’/:) + %Kv(w - g—;) + %KH,;rZ + %Ka(%) 2
where I', = B,1,/2 and I', = 2,I, are respectively the primary and secondary (or micro-polar) bending stiffness’s,
kq = Bal, is the axial stiffness and, finally, xy = 24n,/l, and kg = 24n,/l, are the transversal and longitudinal shear
stiffness’s.

When & < 1 the real track may be approximated by a continuous fictitious one, composed of elementary cells
of length dx = I, having properties analogous to those of the unit cell analysed in previous section (Fig. 6b). They
transmit the primary and micro-polar bending moments M), and M,, involving only a di change, namely maintaining
undeformed the transversal fibres or equivalently conserving the cross sections plane.

Regarding the shear property of the equivalent track, we may imagine that the transversal shear is generated by
elastic sliding of cross sections that remain plane during deformation or equivalently by sliding of the undistorted
transversal fibres, Fig. 6¢c. The longitudinal shear, that is equilibrated by the primary bending moment changes, is
instead due to the skew symmetric bending of these fibres about the system axis.

The equilibrium equations of the substitute medium are straightforwardly obtained by invoking the principle of
virtual works. As an example, we consider the case of the track segment constrained as the cantilever of Fig. 7 and
subjected to the distributed axial and transversal loads p and g, respectively. At the free end, a concentrated force of
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components Fy, F, and the bending couple M are applied. Equating the virtual works of the inner and external forces
due to kinematically admissible changes of u, v, & and ¢ and integrating by parts the term containing first derivatives
of the changes, we obtain the following equilibrium conditions for the inner points of the equivalent track:

thzTib=KH§7 rb(:Tl!;’:Kv(l/_’—%)’ KV(%_%):% Ka%+l7=0, 3
while at the boundaries the following equalities must holds:

Wloo = P o+ Elico = 0, Vo = 0, o,

r, % x=: m, T, 3—{; sz: M, Kq % = Fo, «v (l/_/ - :—:) X:L: F,. 4

with I', = I, + I',,. The first of equations (3) expresses the equilibrium between the couple Ty = ky& and the unitary
change of the primary bending moment, Fig. 6d . The remaining equations are instead the in-plane rotational and
translational equilibrium conditions of the unit length continuum segment.

It is worth noting that Eq. (3) make sense and give accurate predictions of the real track behaviour, only when
boundary conditions and applied loads are such that the cells are allowed to deform according to the force transmission
modes. If this condition is not satisfied a corrective solution has to be superimposed to the one obtained from (3). More
details on this point are given in Sec. 5.

The Eq.(3) are very similar to the equilibrium equations of a Timoshenko couple-stress beam proposed by Ma et al.
(2008), which is frequently adopted as substitute continuum for Vierendeel girders Gesualdo et al. (2017); Romanoff
and Reddy (2014); Romanoff et al. (2016). In addition, Eq. (3) well highlight that it is essential to consider separately
the contributions to bending moment due to the rail axial forces and bending, even though this second contribution
in some cases is very small. If this is not the case, it would be not possible to model consistently the real track shear
behaviour.

4. Self-equilibrated bending eigenvector

To improve the continuous model accuracy, also the eigenvectors s, di G defining self-equilibrated systems of
bending moments of amplitude ¢ decaying along the track have to be considered. They may be readily determined by
the method reported in Penta et al. (2017); Gesualdo et al. (2018b). The corresponding eigenvectors are the root’s of
the following quadratic equation:

AZ—(2+121+481)A+1=0.
nr Br

Since the known term is equal to the unit, the eigenvectors occur as a reciprocal pair, according to whether the moments
system decay from left to right, or vice versa. The displacements and forces components of the eigenvector associated
to the eigenvalue greater than unity are given by

T
u 1
d, = A_,,[O’ 20,0, = 5 By, 0] , £, =0, 1,0, —, 0]"

with A, = B,1, (4 — 1)=61, (B, + 4n,). The displacement components corresponding to the eigenvalue lesser than unity
can be derived from the previous ones by simple symmetry considerations. By means of previous results, the deformed
shape of a track made of N cells constrained as the cantilever of fig. 8 in which self-equilibrated bending moments
are vanishing can be built by kinematical composition of its unit cells strains. In the case of unit self-equilibrated
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Figure 8. Track segment under self-equilibrating bending moments decaying from left to right.

bending moments on the track constrained section and unloaded free end, for the rotations i;, the displacement v; and
the nodal rotation ¢; of the i section one obtains:

 Ad (17— 1) (21— 1)
T Ay

._1222A—(2+1)2A—2+1A lzzf—(1+}1)(iA+1)+2i2A-fA 34
Yi = ) (2_1)(22/\_1) l//(+)_2 (2_1)(221\_1) ‘p(+)+;‘12/\_1

Al s ) (A= 1) 12 (V- 1) (14 ) (P 1 +y (- 1)
T G L D) (0 D e

being A = N = L/l, and 1 = A~'. For reason of brevity, the procedure adopted to derive previous results is not
reported. A rigorous proof of eq.(5) will be given in a forthcoming paper.

From previous results, a continuous approximation of the track response may be achieved by considering the limit
case of unit-cell having infinitesimal length (with respect to the track length). This continuous track solution can be
achieved observing that

Yo+ 5

Vi =

L i

N o i-1) .1

/l’:[l—(/l—l)]zl1+< )il (6)
with x; = i [, abscissa of the nodal section i in the reference frame of Fig. 8. When the cell sizes are very smaller than
the track length L or equivalently the track is composed of a great number of cells per unit length, it will result in

x;>>1, and i>>1. @)

Under these conditions, to the last quantity in Eq. (6) we may substitute the corresponding limit as i approaches +oo:

- (ﬁ‘I)X_f} e )

P

with {; = x;/I,. When this limit value is inserted in Eq. (5) and the variable ¢; is substituted by the non-dimensional
real variable ¢ ranging in [0, A], three continuous functions i, ¢ and v are obtained. These latter define the deformed
shape of a continuum equivalent medium, that may be thought as an asymptotic approximations of the track behaviour,
exact only in the limit when i — + oco.

5. Track analysis

By means of the equivalent continuum of Sec. 3 and the approximating solution of Sec. 4, the track behaviour for
quite simple constraint and loading cases can be readily analysed.
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Figure 9. Track segment under different loading and constraint conditions: (a) clamped end and unit transversal force at the free end, (b) simply
supported with a unit transversal load on the j-th sleeper.

Case 1 - Track with a clamped end. As first example, we examine the behaviour of a track made of N cells constrained
as shown in Fig. 9-a and loaded by a unit transversal load at the free end. Initially, we assume that only the cross-
section rotation ¢ at x = 0 is blocked by the constraint and that the nodal moment m = (I',/I',)L is applied on this
section. The solution of this boundary value problem is obtained by integrating the equilibrium equations (3). Since
at x = 0 only the sectional rotation is constrained, a nodal rotation ¢y = I';,/(I'ykg) # 0 occurs.

If, instead, the boundary conditions at x = 0 are formulated also in terms of the symmetric nodal rotations ¢, the
previous solution has to be corrected by adding to it a self-equilibrated one derived from Eq. (5). From this latter
equation, the following expression of the direct nodal rotational compliance ¢, at the constrained section is also
derived:

_Tpexp [A-1D2L/l]+1

¢~ Ayexpld-D2L/] -1 2

Thus, denoting by ¢ the prescribed value of ¢ at x = 0, the constraint has to transfer to the track also the nodal moment
my given by:
Ayexpl(A-D2L/A] -1 _
my = — (@ = ¢o)
Ipexpl(A—-1D2L/1]+1

in order to the boundary conditions for ¢ be satisfied.

Case 2 - Simply supported track with unit transversal load. By means of the results achieved for the Case 1, it is
possible to build an approximation for the response of a simply supported track under a unit transversal load. For this
purpose, we examine the 2D system of Fig. 9b composed of N cells and subjected to a unit transversal load applied
on the upper end of the j-th sleeper.

It is convenient to analyse preliminary the effect of this loading condition on the response of a discrete track.
We recall that when a cell deform by bending or transversal shear, its transversal webs remain undeformed. Hence,
generalized strains associated to these two kinds of inner forces are always geometrically compatible. Geometrical
incompatibility, instead, takes place if the longitudinal shear varies from a cell to the next one. This happens when
a transversal load is applied on a sleeper. In Fig. 10, the deformed shapes assumed by the cells i and i + 1 as a
consequence of the strains due to different longitudinal shears are represented under the assumption that they are
mutually constrained by hinges. In the common nodal section, the transversal beams of the two cells does not have
the same deformed shape, so that a jump Ay in the nodal rotation occurs. In order to restore the continuity without
violating the equilibrium, the two cells have to interact also by a self-equilibrated bending moments system. This will
generate relative rotations between the coincident nodes of the cells such that the previous jump A¢ disappears.

In close analogy with the discrete problem, we may build the continuous approximation of the track response
by superimposing two solutions. The first one, defined by Eq. (3) and b.c. of Fig. 9b, represents the effect of the
transmission through the cells of the inner forces in equilibrium with the external load. The second one is generated
by the self-equilibrated bending moments needed to eliminate the jump in the nodal rotations caused by the applied
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Figure 11. Theoretical and numerical predictions of the displacements (left column ), sectional rotations (central column) and nodal rotations ( right
column ) of track segments with N = 10, 20 and 100 cells.

transversal load. In order to determine the amplitude m; of this couple of bending moments, we observe that in the
equilibrated solution the unit transversal load causes the jump ATy = I';,/T’, = ay in the couple Ty = dM),/dx. Hence,
according to the first of Eq. (3) for the nodal rotations of the section j where the load is applied the discontinuity

Ap = —A§ = —ATy/ky

(10)

547
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Figure 12. Effects of changes in fasteners stiffness on the response of track segments with N = 20 (upper row) and N = 100 (lower row) cells .

takes place. To eliminate it, we introduce in the loaded section two hinges to constrain the nodes of the contiguous
elementary cells. Then on the right and left side parts of the section j we apply self-equilibrated bending moments of
intensity m; such that the jump A¢; = —Ag for the nodal rotations occurs. By the compliance given in Eq. (9) and
taking into account the signs of the nodal rotations caused by a positive self-equilibrated moment at the left and right
hand side of the loaded section, for the jump Ag; we obtain:

i m'%g(xf)’ (11
n
where
g(xs) = fexp2(1—1)L/,] - 1)
[P 2 - DL —x/t] 1] [exp 20— Dy /0] 1]

Hence, the self-equilibrated bending moment active in the loaded section is

1 aunh, -1
= — ) 12
M 48 KHD, g(xf) ( )

Both equilibrated and self-equilibrated solutions to be superimposed are obtained by combining the results achieved

for the cantilever of Case 1 by a procedure analogous to the one usually adopted for simply supported Euler-Bernoulli
beams.

6. Homogenization Error and Validation Study

To examine in detail the homogenization errors of the interpolating and asymptotic approximations, a sensitivity

study has been carried out. For this purpose, a track with the following geometrical and mechanical properties, has
been considered:

[, = 1500 mm, [, = 600 mm, kg = 3.5%107 Nmm

13
A, =7670 mm?, I, =5.123x10° mm*, I, = 2.50x10% mm* (13)
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Figure 13. Effects of changes in sleeper second order moment on the response of track segments with N = 20 (upper row) and N = 100 (lower
row) cells.
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Figure 14. Effects of changes in sleepers spacing on the response of track segments with N = 20 (upper row) and N = 100 (lower row) cells.

and the accuracy of the proposed models has been analysed changing once or twice per time the values of these
parameters. Indeed, a track having properties given in Eq. (13) may be thought as representative of a high speed
tangent track of the Italian Railway Network.

By considering a series of track composed of a number N of unit cells increasing from 10 until 100, the range of
€ values where the continuum model is applicable is investigated . The static scheme adopted is a simply supported
beam under a unit uniform load. The predictions of the theoretical model were obtained by integrating with respect to
the abscissa of the loaded track section the results achieved for Case 2. All the needed computations were made in a
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Computer Algebra System. Corresponding results are reported in the diagrams of Fig. 11 together with the ones of
the F.E. simulations.

As can be seen from Fig. 11, the homogenization error, as expected, is strongly dependent on the cell number
composing the track. It quickly decreases as the cell number increases, becoming negligible for the case of the dis-
placement function v as N reaches the threshold value of 20 cells; for the rotations y and ¢ instead is necessary that
N exceeds the value of 50 cells, in order that the approximation become accurate.

In Fig. 12, the effects of the variations in torsional stiffness ky of the fasteners are reported. In fact, the frame
parameter of the diagrams in this picture is the relative change y = (3E,l;) / (I;ky) of the direct bending compliance
of a simply supported sleeper equipped with its fasteners. In all the examined cases, the homogenization error is
surprisingly small. Hence, we may affirm that the continuous model predicts with high accuracy the effects of the
stiffness kg on the track equilibrium shapes.

The effects of the changes in the sleeper second order moment are negligible when the constraints between sleepers
and rails have stiffness of the same order of magnitude as the torsional stiffness value given in Eq. (13). Under these
conditions, varying I does not affect significantly the direct bending compliance of the elastic system composed by
sleepers and fasteners in series and consequently, the shear compliance of the unit cells. The effects of I; become
instead substantial when the torsional stiffness kg has a very high value. In Fig. 13, the theoretical and numerical
deformed track shapes, evaluated under the assumption of fasteners ideally rigid, are reported. The considered values
of I are alyy with Iy reference value given in Eq. (13) and a non-dimensional factor ranging in [1, 50]. It is evident
that for all the examined values of I; and N, the homogenization errors are very small.

In Fig. 14 the effects of the sleeper spacing changes are shown. The considered static scheme is the cantilever-track
having both nodal and section rotations blocked at x = L. Also in this case to have noticeably changes in the track
response the assumption ky = +oo is needed. For all the examined values of N and /; the approximating solution well
agree with the predictions from the F.E. models.

Conclusions

A model for the mechanical behaviour of a tangent railway track in the lateral plane has been developed starting
from the transmission modes of the unit cell. Their analysis reveals that bending moments are transferred through a
unit cell without deforming the sleepers and fasteners. As a consequence, track bending moments are composed of
two parts having fixed ratio: the first one is generated by the couple of axial forces acting in the rails, the other is due
to bending moments of the rails. Solutions obtained from the proposed model are equilibrated but not kinematically
admissible. To overcome the geometrical incompatibilities and improve the theoretical predictions accuracy, a correc-
tive solution was derived from the eigenvectors of the unit cell transfer matrix pertaining to self-equilibrated systems
of bending moments.

The accuracy of the approximations obtained by superposing the corrective solution has been analysed by a val-
idation study carried out with some track F.E. models. In all the examined cases, the theoretical outcomes are very
close to the numerical results when segments with more than 50 cells are considered. The homogenization procedure
followed for the track model has great potential for analysing the dynamic isolation of fragile goods in tall buildings
(i.e. art objects, see Gesualdo et al. (2018a)). It is also a serious candidate to analyse the buckling and post-buckling
response of a railway track under thermal load. Further research has to be carried out to extend the presented results to
both kinds of problems. Similarly, deeper studies are needed to apply the proposed technique also in the track elastic-
plastic range, whereas the response of the unit cell has to be evaluated by approximated methods as those presented
in Fraldi et al. (2014) and Cennamo et al. (2017).
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