
Journal of Visual Languages and Computing 45 (2018) 24–38

Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvlc

Performance assessment of RDF graph databases for smart city

services

Pierfrancesco Bellini a , b , Paolo Nesi a , b , ∗

a Distributed Systems and Internet Technology Lab, DISIT, University of Florence, Florence, Italy
b Department of Information Engineering, DINFO, University of Florence, Florence, Italy

a r t i c l e i n f o

Article history:

Received 6 November 2017

Revised 8 February 2018

Accepted 11 March 2018

Available online 12 March 2018

Keywords:

Smart city

RDF stores

Graph databases

RDF benchmark

Linked data benchmark

a b s t r a c t

Smart cities are providing advanced services aggregating and exploiting data from different sources. Cities

collect static data such as road graphs, service description, as well as dynamic/real time data like weather

forecast, traffic sensors, bus positions, city sensors, events, emergency data, flows, etc. RDF stores may be

used to set up knowledge bases integrating heterogeneous information for web and mobile applications

to use the data for new advanced services to citizens and city administrators, thus exploiting inferential

capabilities, temporal and spatial reasoning, and text indexing. In this paper, the needs and constraints

for RDF stores to be used for smart cities services, together with the currently available RDF stores are

evaluated. The assessment model allows a full understanding of whether an RDF store is suitable to be

used as a basis for Smart City modeling and applications. The RDF assessment model is also supported

by a benchmark which extends available RDF store benchmarks at the state the art. The comparison

of the RDF stores has been applied on a number of well-known RDF stores as Virtuoso, GraphDB (for-

mer OWLIM), Oracle, StarDog, and many others. The paper also reports the adoption of the proposed

Smart City RDF Benchmark on the basis of Florence Smart City model, data sets and tools accessible

as Km4City Http://www.Km4City.org , and adopted in the European Commission international smart city

projects named RESOLUTE H2020, REPLICATE H2020, and in Sii-Mobility National Smart City project in

Italy.

© 2018 Published by Elsevier Ltd.

t

p

t

t

k

o

g

f

l

i

g

g

t

s

t
1. Introduction

Smart cities produce large amount of data having a large vari-

ability, variety, velocity, and size; and thus complexity. The variety

and variability of data can be due to the presence of several dif-

ferent formats, [3,17,23,27] and to the interoperability among se-

mantics of the single fields and of the several data sets [6] . Static

data are rarely updated, for instance once per month/year, which is

quite the opposite with dynamic data: they can be updated from

once a day up to every minute so as to get real time data. The data

velocity is related to the frequency of data update for dynamic data

such as position of buses, flow of people status, position of waste

collectors, etc. or as data streams. Thus the size of the store grows

over time accumulating new data every day and week. At architec-

tural level, smart city solutions typically adopt n-tier architectures

[2] .
∗ Corresponding author at: Department of Information Engineering, University of

Florence, Via S. Marta 3, Firenze 50139, Italy.

E-mail addresses: pierfrancesco.bellini@unifi.it (P. Bellini), paolo.nesi@unifi.it (P.

Nesi).

URL: http://www.disit.org (P. Bellini), http://www.disit.org (P. Nesi)

https://doi.org/10.1016/j.jvlc.2018.03.002

1045-926X/© 2018 Published by Elsevier Ltd.
The Resource Description Framework specified by W3C allows

he representation of facts using “triples” of the form (subject,

redicate, object) where URIs are used to identify the entities and

he predicates connecting them. Thus a triple represents the arc of

he graph connecting two entities and the predicate describes the

ind of relation between the two entities. Moreover, the object part

f the triple can also be a low level data type as string, dates, inte-

ers, etc., to describe the relations among entities and specific in-

ormation about them (e.g., name, email, birth date). RDF stores al-

ow storing triples, while the SPARQL query language allows query-

ng them. Some RDF stores can also manage set of triples as a sin-

le graph identified by a URI, in this way information about this

raph can be provided using other triples (where the subject is

he graph itself). It has to be highlighted that SPARQL performs

earch using triple matching, for example “?s rdf: type km4c: Ho-

el ” searches for all the “?s” that are of type Hotel, and does not

https://doi.org/10.1016/j.jvlc.2018.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jvlc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2018.03.002&domain=pdf
http://Http://www.Km4City.org
mailto:pierfrancesco.bellini@unifi.it
mailto:paolo.nesi@unifi.it
http://www.disit.org
http://www.disit.org
https://doi.org/10.1016/j.jvlc.2018.03.002

P. Bellini, P. Nesi / Journal of Visual Languages and Computing 45 (2018) 24–38 25

a

l

i

F

v

l

p

c

f

S

a

i

i

i

c

b

m

c

a

d

O

i

i

i

H

p

(

g

s

t

l

s

m

d

s

S

s

R

1

a

m

g

b

a

t

e

i

p

t

a

b

e

t

w

s

p

i

[

c

p

R

i

s

a

a

t

f

f

I

l

c

d

s

d

c

f

d

c

a

p

a

f

w

k

q

s

a

t

n

s

e

a

q

t

b

s

o

s

1

R

p

G

d

r

f

T

t

c

k

f
llow performing, in a general way, the typical graph operations

ike path search

1 or connectivity check.

The usage of RDF stores in the application domain of Smart City

s quite recent, since in most cases services are vertically provided.

or example, the Intelligent Transport System, ITS, in the city pro-

ides information regarding the location of buses and their de-

ay, without addressing the location of city services, flow of peo-

le, real time events in the city. The integrated services are typi-

ally provided by data aggregators and service providers that per-

orm data integration and allow exploiting integrated data models.

ome city data integrators are well-known services such as bike

nd car sharing, navigator system, tourism information, hotel book-

ng, etc. All these solutions have the need to integrate geo-located

nformation with real time data and events continuously arriv-

ng from updated information such as: events, votes, traffic flows,

omments, etc. [11,27,18] . As to these applications, RDF stores may

e a solution to allow addressing the variability of data, so as to

ake reasoning on space, time, and concepts [28] . On this regard,

omprehensive smart city data models and ontologies can be re-

lly effective (see for example http://smartcity.linkeddata.es/ , pro-

uced by Read4SmartCity 2 project of the European Commission).

ne of the ranked models in the Read4SmartCity research project

s Km4City ontology that is also used as a reference for the def-

nition of the data of the proposed benchmark [6] , and adopted

n European Commission international projects named RESOLUTE

2020, REPLICATE H2020, and in Sii-Mobility National Smart City

roject in Italy, as well as in GHOST MIUR and other projects.

In this paper, requirements and constraints to adopt RDF stores

graph databases) as fundamental store for smart cities data aggre-

ation and services are discussed. This analysis can be used to as-

ess the currently available RDF stores (graph databases) according

o a model and benchmark. The proposed assessment model al-

ows understanding if an RDF store can be profitably used as a ba-

is for Smart City modeling and applications. To this end a bench-

ark is presented, it is a benchmark for linked data, RDF/Graph

atabase/stores with a special care to real structures and relation-

hips available in smart city applications. The proposed benchmark

CIRB overcomes the limits of state of the art benchmark in the

ector and it has been defined to compare results from different

DF Stores when they are used for smart city services.

.1. State of the art and related work about RDF store assessment

For the evaluation of RDF stores, specific assessment models

nd benchmarks have to be defined and adopted. Some of them

ay be based on real-world datasets, while others provide a pro-

ram to generate a synthetic dataset. For example, the LUBM

enchmark [16] uses a synthetic dataset in the university domain

nd covers only the SPARQL 1.0 specification [26] . On the con-

rary, the BSBM benchmark [9] generates a synthetic dataset in the

-commerce domain and covers the SPARQL 1.1 business analyt-

cs queries. More recently, in the Linked Data Benchmarks Council

roject 3 two benchmarks were proposed both generating a syn-

hetic dataset, one from the semantic publishing domain (LDBC-SP)

nd the other from the social networks domain (LDBC-SN). These

enchmarks perform a mix of insert/update/delete and query op-

rations and not only the simple query access. Noteworthy is that

he current SPARQL standard does not cover the spatial and key-

ord searches, thus a query involving these aspects has to be con-

tructed by adopting specific constructs. The GeoSPARQL standard
1 The SPARQL 1.1 property paths operators may be used to search for a path of

roperties among entities but it can say only if a path exists among two entities; it

s not able to retrieve the actual path.
2 http://www.ready4smartcities.eu/ .
3 http://ldbcouncil.org .

t

t

a

i
15] has been developed by the Open Geospatial Consortium to

over spatial searches, while not many solutions currently sup-

ort this specification. Regarding the benchmark of geo and spatial

DF stores, the Geographica benchmark [14] was proposed by us-

ng both a synthetic generated dataset and a real dataset. It analy-

es the support and performance for advanced spatial relationships

mong complex spatial entities (e.g., polygons). In [12] , the real

nd synthetic benchmark datasets have been compared showing

hat synthetic generated datasets are similar to datasets generated

or relational database benchmarks (TPC-H) and strongly different

rom real-world datasets (e.g., dbPedia) being much less structured.

n [25] , with the SPARQL Performance Benchmark (SP2Bench) a

anguage-specific benchmark framework designed for the most

ommon SPARQL constructs has been proposed. It also includes a

ata generator and 17 general benchmark queries, which are un-

uitable to assess smart city aspects, and more focused on meta-

ata.

Recently SPARQL has been extended to query real-time data

oming from RDF data streams. Generally, the SPARQL query is per-

ormed regularly over the streams using a sliding temporal win-

ow and static knowledge data. The query results are provided as a

ontinuous stream. Therefore, the query is registered on the server

nd clients can connect to receive the results. There are some im-

lementations as C-SPARQL [5] , Sparql Stream

[10] , CQELS [21] and

lso specific benchmarks were defined as SRBench [29] using data

rom weather sensors, LSBench [22] using data from social net-

orks and CityBench [1] using data from smart city sensors. Those

inds of specific benchmark are suitable for streaming data, with

ueries performing specific requests with limited number of re-

ults. W3C also reviewed RDF store benchmarks 4 highlighting their

pplicability in assessing different aspects of the RDF stores, and

heir application on different stores.

Despite this wide state of the art on RDF stores benchmarks,

one of the mentioned approaches is specifically suitable for as-

essing the RDF stores against Smart City. Smart City presents

xtremely particular and specific conditions exploiting the latest

nd most challenging constructs of the RDF stores as geo-spatial

ueries, text queries, time queries and combinations of them. On

his regard, in this paper, Smart City RDF Benchmark, SCIRB, has

een proposed particularly to assess RDF store behavior on geo-

patial and full text searches, which are partially considered in

ther well-known RDF store benchmarks at the state of the art,

uch as LUBM and BSBM.

.2. Aims of the paper, and its organization

This paper reports the formalization of the proposed Smart City

DF Assessment Model and Benchmark and its adoption in com-

arative assessment of a number of RDF stores, such as Virtuoso,

raphDB (former OWLIM), Apache Jena-Fuseki, Blazegraph, Star-

og, 4store, h2rdf + , Oracle, etc. The data and queries adopted for

eplicating the mentioned assessment have been published on the

ollowing web page http://www.disit.org/smartcityrdfbenchmark .

he dataset is real and is based on Florence Smart City which in

urn is grounded on Km4City ontology and model [6,4] .

The paper is structured as follows. In Section 2 , the major smart

ity requirements/demands in modeling and accessing semantic

nowledge are reported. The requirements can be used as drivers

or features based selection of RDF stores. Section 3 presents

he general evaluation methodology for assessing and selecting

he RDF stores for smart city applications. It includes an evalu-

tion model, a set of datasets and number of semantic queries

n SPARQL. In Section 3.1 , the details on the proposed Smart
4 https://www.w3.org/wiki/RdfStoreBenchmarking .

http://smartcity.linkeddata.es/
http://www.ready4smartcities.eu/
http://ldbcouncil.org
http://www.disit.org/smartcityrdfbenchmark
https://www.w3.org/wiki/RdfStoreBenchmarking

26 P. Bellini, P. Nesi / Journal of Visual Languages and Computing 45 (2018) 24–38

t

p

l

t

c

w

a

h

3

t

p

o

m

t

t

f

s

S

t

e

(

i

e

f

i

m

f

w

3

a

a

p

City RDF Assessment Model; Section 3.2 proposed the Smart City

RDF Benchmark and Section 3.3 the corresponding data sets of

triples. Section 3.4 proposes a model to analyze the behavior of

RDF stores when new upload and update of data are performed.

In Section 4 , the comparison of most relevant state of the art

RDF stores is reported on the basis of the model identified in

Section 3.1 . Section 5 reports the application of the proposed smart

city benchmark in assessing the most featured RDF stores (i.e.,

Virtuoso, GraphDB, Oracle and StarDog). The analysis has high-

lighted several interesting aspects connected to the performance

of RDF stores in: loading and indexing triples, and in perform-

ing geographical and textual queries, also during store updates. In

Section 6 , the performance of RDF stores when they are used in

conjunction with SQL database is proposed, to understand better

if either the RDF-SQL-table integration is a profitable solution or

it is better to stay on RDF store only. Conclusions are drawn in

Section 7 .

2. Smart city requirements for RDF stores

When providing services to citizens of a smart city, an

RDF/graph store should provide some features that allow the sup-

port of specific functionalities. In particular, the following features

are reported according to their relevance and classifying them.

Therefore, smart city stores should provide support for:

• spatial indexing (must have): providing information near to a

given geographical point: as a GPS location. For example, all the

services that are currently closed/unavailable to a given point. It

should also support advanced geo-spatial functionalities as be-

ing able to manage complex geometries (e.g., information along

a cycle path, all elements into a given polygonal area).

◦ high performance on spatial querying.

• full text indexing (must have): allowing the integration of se-

mantic queries with keyword based searches on text which can

be present into the attributes and class elements, as triples.

Subjects and objects of triples can contain relevant text area

such as descriptions, street names, locations names, etc.

◦ high performance on full text querying.

• quadruples (not only triples) to associate dataset metadata with

the loaded triples (must have). Triples are produced on the basis

of data coming from many different sources. Therefore, it is im-

portant to track the data source, with metadata and associated

licenses. This feature is particularly useful to solve or process

licenses during the data usage from clients and via APIs.

• some kinds of inference (good to have) such as the basic RDFS

or the more advanced OWL2 profiles allowing the inference of

new facts from the available data. This may be used to general-

ize/specialize about entities, to same-as, equivalence, transitive,

symmetrical, etc. The inference may imply the materialization

of triples in the phase of indexing [7] .

• temporal indexing (good to have): many information and fea-

tures are changing over time in smart cities. For example, the

weather situation and its related forecast, the traffic flow de-

tected from traffic sensors, the position of buses, and events

occurring within the city. For this reason, it is quite important

that the RDF store should support temporal search to allow the

easy retrieval of temporal data. Moreover, the storing of tempo-

ral data (that may change in real time) is the main source for

increasing the database size, demanding big data solutions for

smart city for volume, velocity and variety, at least.

• high volume of queries (good to have) . Dealing with bigdata RDF

store with many users querying the data is quite challenging,

for this reason a clustering solution is needed. It could be a

clustering (vertical scale or scale up/down) when the same ser-

vice is duplicated to allow many concurrent queries and to pro-
vide also a fault tolerance solution. It could be also a scale

out clustering (horizontal) when data are split among different

servers, as a single server cannot handle all the data.

A very relevant non-functional requirement is due to the fact

hat when it comes to Smart City applications, they are often ex-

loited by Public Administrations. They ask for: (i) standard so-

ution to avoid the risk of vendor lock-in especially for very new

echnologies like RDF stores are; (ii) open source solutions to be

ompliant with typical national laws encouraging open solutions

ith source code accessible and shareable among several public

dministrations. Moreover, there should be an active community

andling and supporting the product.

. Evaluation methodology

The Smart City RDF Assessment Model and Benchmark evalua-

ion methodology is carried out within two phases. In the first

hase, the Smart City RDF Assessment Model is applied. It consists

f an analysis of some general features according to the require-

ents provided in Section 2 , and more particularly to verify if

he RDF/graph store provides support for: SPARQL v.1.1, inference,

riples or quadruples, etc. The successive phase of benchmarking

or performance assessment has been carried out only on stores

upporting a minimal number of features. In the second phase , the

mart City RDF Benchmark is applied. It is based on performance

ests grounded on a set of SPARQL queries designed by consid-

ring all the aspects, and including spatial and full text searches

in many cases the SPARQL queries have been designed by adopt-

ng the specific constructs related to the different stores). The ex-

cution of the proposed benchmark consists of assessing the per-

ormance on the identified queries on three datasets with grow-

ng size expanding temporal horizon (1 month, 2 months and 3

onths of cumulated real-time data). An additional test is per-

ormed to see the behavior of the RDF Store under update queries,

hen the dynamic data are added to the store.

.1. Smart city RDF assessment model

According to our requirement analysis for the Smart City RDF

ssessment model to analyze the RDF stores, the features needed

re described as follows. So that the RDF graph database has to

rovide support for

• SPARQL version 1.0 or 1.1;

• inference type supported as full materialization of triples at

load time or materialization at query time, and the inference

profiles supported (e.g., RDFS, RDFS + , OWL, OWL2, OWL2-DL,

…);

• triple or quadruple store, check whether it stores only the sub-

ject predicate object or it can have also a context URI;

• triples/quadruples physically stored, namely by using a custom

indexing or an RDBMS or other external service (e.g., HBase,

Cassandra);

• Clustering where replicated nodes are used for high availability

and fault tolerant solution;

• Scale Out Clustering where data are allocated on multiple

nodes, while no node contains all the data (index sharing);

• Spatial search at Basic level (meaning that it is able to in-

dex and retrieve only geolocated points) or at Advanced level

(meaning that it is able to index complex shapes, for example

polylines);

• full text search, providing the ability to search using keywords;

• the association of triple/quadruples with a temporal validity

contexts, thus allowing to easily filter triples by means of tem-

poral constraints;

P. Bellini, P. Nesi / Journal of Visual Languages and Computing 45 (2018) 24–38 27

s

p

c

3

B

a

A

S

f

A

l

W

c

i

p

t

a

(

m

s

b

d

g

t

“

r

t

c

a

t

o

s

f

e

i

t

?

p

r

f

t

r

(

W

b

b

?

s

m

w

t

t

i

t

s

3

k

a

m

s

l
• size of stores managed as the largest number of

triples/quadruples reported to be managed by the RDF store in

the literature;

• license under which the RDF store is available, being either

open source or commercial;

• development language (e.g., Java, C);

• continuous update: so that if the project is still an active

project, date of last activity, date of last release;

Detailed performance testing which should be performed on

tores that support minimum set of requirements and in particular

roviding at least support for:

• SPARQL 1.1 as it provides aggregation functions (group by,

count) and other features that were missing in 1.0;

• RDFS inference at load time or query time;

• Quadruples, so that correct metadata can be associated with

datasets;

• basic spatial search to allow searching services via position;

• full text search to be able to integrate keyword search with se-

mantic search;

• “Big stores” management in somehow: that is the capability of

managing large data store with some technique, scaling for in-

stance.

If the RDF store supports additional features, they are positively

onsidered in the context.

.2. Smart city RDF benchmark

In this section, the queries at the basis of the Smart City RDF

enchmark are presented. The queries performed over the datasets

re mainly the ones behind a real Smart City application and the

PI adopted in Km4City and used in http://servicemap.km4city.org .

erviceMap is an accessible open source smart city web application

or developers to develop informative totems, while the Km4City

PI is a set of services accessible from Smart City mobile app de-

ivered on all the available platforms: Apple Store, Google Play, and

indows Market.

It should be noted that the SPARQL recommendation does not

over the geo-spatial queries, nor the full-text queries. Therefore,

n order to support those features, RDF store builders/vendors im-

lemented these features by using their own specific syntax. For

hese reasons, for some queries there is not a unique formulation

nd the query has to be adapted for each RDF store under test

they can be accessed from the web page of the proposed bench-

ark http://www.disit.org/smartcityrdfbenchmark). In Table 1 , the

emantic queries at the basis of the Smart City RDF Benchmark have

een described highlighting: (i) if the query depends on some ran-

omly chosen parameter; (ii) if it uses inference; (iii) if it uses

eo-spatial search operators; (iv) if it uses full-text search opera-

ors; (v) if it uses some sub-query; (vi) if it use the SPARQL 1.1

group by” feature; (vii) if it uses the UNION operator; (viii) if the

esults are using the “order by” construct; and (ix) the number of

riples matching constraints used in the query (it is a size of the

omplexity of the search pattern). The sub-query, group-by, union

nd order-by impact in the query execution time depending on

he query optimization capabilities (e.g., parallel unions, ordering

r grouping using indexes, etc.), and the number of triples con-

traints gives a measure of query complexity. The queries selected

or the benchmark are able to test different aspects of a SPARQL

ngine and provide a wide spectrum of queries complexities, rang-

ng from very simple queries like Bus-lines to the Bus-stop-forecast.

For example, the query to retrieve the last weather forecast for

he municipality of Florence (Weather-florence) is the following:

PREFIX …
SELECT ?day ?desc ?minTemp ?maxTemp ?time

wPred WHERE {
{
SELECT DISTINCT ?wRep ?time WHERE {
?munic rdf:type km4c:Municipality;
foaf:name "FIRENZE";
km4c:hasWeatherReport ?wRep.
?wRep km4c:updateTime/schema:value ?time.
} ORDER BY DESC(?time) LIMIT 1
}
?wRep km4c:hasPrediction ?wPred.
?wPred dcterms:description ?desc;
km4c:day ?day;
km4c:hour "giorno" ̂^ xsd:string.
OPTIONAL {?wPred km4c:minTemp ?minTemp.}
OPTIONAL {?wPred km4c:maxTemp ?maxTemp.}
}
The above query, uses a sub-query to find the last weather re-

ort received related to the municipality of Florence and from this

eport the prediction associated is selected and the associated in-

ormation is returned. This query was selected because it is used

o test the sub-query capability and the efficiency of sorting the

esults to get the most recent.

A query using full text search and geospatial proximity search

 Service-text-latlng) using the syntax of virtuoso, is:

PREFIX …
SELECT DISTINCT ?ser ?elong ?elat ?sTypeIta

HERE {
?ser ?p ?txt.
?txt bif:contains "casa".
{
?ser km4c:hasAccess ?entry.
?entry geo:lat ?elat;
geo:long ?elong;
geo:geometry ?geo.
filter(bif:st_intersects(?geo,

if:st_point(11.26193046,43.77072194), 0.5))
}UNION{
?ser geo:lat ?elat;
geo:long ?elong;
geo:geometry ?geo.
filter(bif:st_intersects(?geo,

if:st_point(11.26193046,43.77072194), 0.5))
}
?ser a ?sType.
FILTER(?sType! = km4c:RegularService &&

sType! = km4c:Service)
?sType rdfs:label ?sTypeIta.
FILTER(LANG(?sTypeIta) = "it")
}
This query was selected because it mixes the full-text and geo-

patial searches with the UNION capability which can be imple-

ented in different ways (e.g., parallel execution). As it occurs

ith all the RDF benchmarks, the SPARQL queries are specifically

uned for a model. In this case, queries have been designed for

he model described in the next section. The complete formal-

zation of the queries, as well as the dataset dumps adopted in

he tests reported hereafter, are available at http://www.disit.org/

martcityrdfbenchmark

.3. Datasets of the smart city RDF benchmark

The data used for the evaluation are based on the Km4City

nowledge base [6] . The Km4City knowledge base models many

spects of a smart city: structural, energy, mobility, services, ad-

inistrative, environment, etc. Some of them are static (or quasi-

tatic) data such as (i) the road graph modeling the roads, the pub-

ic administrations; etc. (ii) the “services” available within the city

http://servicemap.km4city.org
http://www.disit.org/smartcityrdfbenchmark
http://www.disit.org/smartcityrdfbenchmark

2
8

P.
 B

ellin
i,
 P.

 N
esi

 /
 Jo

u
rn

a
l
 o

f
 V

isu
a

l
 La

n
g

u
a

g
es
 a

n
d
 C

o
m

p
u

tin
g
 4

5
 (2

0
18

)
 2

4
–

3
8

Table 1

Queries of Smart City/RDF Benchmark .

Query Description Parametric Inference Geo-spat. Full-text Sub-query Group-by Union Order-by N. triples constraints

Find-address given the latitude and longitude

position it retrieves the nearest address

within 100 m.

Y N Y N N N N Y 10

Municipalities-florence It retrieves the list of municipalities

within the province of Florence.

N N N N N N N Y 4

Bus-lines It retrieves the list of bus lines. N N N N N N N Y 2

Bus-stops-of-line given the bus line, it retrieves the

complete bus stop list of the line.

Y N N N N N N Y 8

Lines-of-bus-stop given a bus stop, it retrieves the lines

going past that bus stop.

Y N N N N N Y Y 8

Bus-stop-latlng given a position and a radius, it finds

the bus stops that are within the

radius.

Y N Y N N N N N 5

Bus-stop-florence It retrieves all the bus stops in the

municipality of Florence.

N N N N N N N N 6

Bus-stop-forecast given a bus stop, it finds the next

forecasts for the lines going past that

bus stop.

Y N N N Y Y N Y 14

AVM-distribution It retrieves for each day the count of

the received AVM records.

N N N N N Y N Y 2

Service-florence It retrieves all the services in the

municipality of Florence.

N Y N N N N N N 23

Service-Acc-Clt-Trs-W&F-florence It retrieves all the services in the

Accommodation, Cultural Activity,

TourismService and Wine&Food classes

within the municipality of Florence.

N Y N N N N Y N 27

Service-Htl-B&B-florence It retrieves all the services in the Hotel

and Bed&Breakfast classes within the

municipality of Florence.

N Y N N N N Y N 25

Service-latlng It retrieves the services within a radius

from a latitude, longitude position.

Y Y Y N N N Y N 16

Service-Acc-Clt-Trs-W&F-latlng It retrieves all the services in the

Accommodation, Cultural Activity,

TourismService and Wine&Food classes

within a radius from a position.

Y Y Y N N N Y N 20

Service-Htl-B&B-latlng It retrieves all the services in the Hotel

and Bed&Breakfast classes within a

radius from a given position.

Y Y Y N N N Y N 18

(continued on next page)

P.
 B

ellin
i,
 P.

 N
esi

 /
 Jo

u
rn

a
l
 o

f
 V

isu
a

l
 La

n
g

u
a

g
es
 a

n
d
 C

o
m

p
u

tin
g
 4

5
 (2

0
18

)
 2

4
–

3
8

2
9

Table 1 (continued)

Query Description Parametric Inference Geo-spat. Full-text Sub-query Group-by Union Order-by N. triples constraints

Full-text It retrieves anything matching a

keyword

Y N N Y N N Y Y 10

Service-text-florence It retrieves all the services in the

municipality of Florence matching a

keyword.

Y Y N Y N N Y N 20

Service-text-latlng It retrieves all the services matching a

keyword given a position and a radius.

Y Y Y Y N N Y N 11

Sensor-florence It retrieves all the sensors within the

municipality of Florence.

N N N N N N N N 8

Sensor-latlng It retrieves all the sensors within a

radius from a position.

Y N Y N N N N N 6

Sensor-status It retrieves the latest information

associated with a sensor.

Y N N N N N N Y 13

Sensor-distribution It finds for each day the count of the

received sensor status updates.

N N N N N Y N N 3

Parking-status It retrieves the latest information

associated with a parking lot.

Y N N N N N N Y 10

Parking-distribution It retrieves for each day the count of

the acquired parking status records.

N N N N N N Y Y 3

Weather-florence It retrieves the latest forecast available

for the municipality of Florence.

N N N N Y N N Y 11

Weather-distribution It retrieves for each day the count of

the acquired weather forecasts.

N N N N N N Y Y 3

30 P. Bellini, P. Nesi / Journal of Visual Languages and Computing 45 (2018) 24–38

Table 2

Datasets characterization for Smart City Benchmark.

Type 1 month 2 months 3 months

Triples % triples % triples %

AVM 8.4M 19% 18M 33% 28M 43.1%

Parking 413k 0.9% 976k 1.8% 1.4M 2.1%

Sensors 900k 2% 1.7M 3.1% 2.2M 3.3%

Weather forecast 15k 0% 23k 0% 23k 0%

Total dynamic 9.7M 22% 21M 38% 32.5M 48.5%

Road graph 33.5M 75% 33.5M 60.3% 33.5M 50%

Services 681k 1.5% 681k 1.2% 681k 1%

Other static 286k 0.6% 286k 0.5% 286k 0.4%

Total static 34.5M 78% 34.5M 62% 34.5M 51.4%

Total 44.2M 100% 55.6M 100% 67.5M 100%

i

P

t

s

s

I

g

s

t

M

i

c

t

t

t

u

4

m

a

c

o

c

t

s

a

a

still active.

5 http://ontotext.com/products/ontotext-graphdb/ .
6 https://wiki.blazegraph.com .
(e.g., restaurants, hotels, cycle paths, …) and associated with the

road graph and organized in an hierarchy; (iii) the bus stops, bus

lines of the local transportation, (iv) the road sensors available on

the roads.

Moreover, dynamic information changing over time is modeled

as well and namely: (i) the weather forecasts for the different mu-

nicipalities; (ii) the status/position of the bus with possible fore-

casts on the arrival to bus stops; (iii) the status of the parking lots

(e.g., number of available parking space); (iv) the readings of traf-

fic sensors; (v) the events defined within the city. Km4City model

and data instances are representative of many smart city solutions

since it includes multi domains and not only a few of them [2,27] .

Moreover, the Km4City model provides a number of hierarchies

and structures, and huge data with geolocations in which the in-

ferential aspects of SPARQL queries can be profitably tested.

The testing datasets, comprised of quadruples, have been gen-

erated on the basis of Km4City model by using data from the

Florence smart city service. The testing dataset is divided in 72

RDF graphs each of is identified by an URI (e.g. http://www.disit.

org/km4city/resource/GeolocatedObject/Wifi_ kmz). Each RDF graph

is generally associated with a dataset provided by an institu-

tion/department (e.g., the municipality of Florence) with its own

provenience and licensing information.

Three different datasets have been adopted for the assessment.

They share the same ‘static’ information and only differ for the dy-

namic part, having one, two or three months of historical dynamic

data, respectively. In Table 2 , the numbers of triples for the dif-

ferent parts of the Km4City knowledge base are reported. As you

can see, the dynamic parts grow from 22% to 48.5% mostly derived

from the AVM (automatic vehicle monitoring, of the ITS) that it is

generated out of the data coming for only three bus lines, while

the static part is mostly based on structural data like road graph

with 34.5 M triples, in all the cases.

3.4. Real-time data set context description

Since in a real context the dynamic data change regularly (e.g.,

weather status, AVM, sensors and parking), the behavior of the

RDF stores should be analyzed also under dynamic conditions

like queries, while other processes are performing update/upload.

Moreover, in order to test a more realistic case the queries retriev-

ing the last value of dynamic data (e.g., sensor last value) could be

arranged by using a model including triples stating, which is the

latest obtained value. In this case, a SPARQL query should be used

to remove the association with the latest received value and in-

sert the new triple associated with the new reading of values. This

query can be regarded as an update query.

To analyze performance on dynamic update conditions a spe-

cific test case has been set up (e.g., traffic, IOT). In order to estab-

lish replicable conditions, a tool has been used to regularly gener-

ate the status of the 430 sensors using the NTriples format (stored
n a specific context) as standard SPARQL 1.1 Graph Store HTTP

rotocol. They are produced and singularly loaded into the store,

ogether with their association with the latest value to the corre-

ponding sensor. Each submission stores 19 triples for each sen-

or and thus 8056 new triples are stored about every 30 seconds.

n this case, the 3 months dataset of Table 2 has been used. To-

ether with the process of upload/update, the server runs at the

ame time all the queries of the benchmark to assess if updating

he triples while querying, either influences or not the query time.

oreover in this case the “sensor-status” query has been changed

n order to exploit the “latest value” triple. This kind of benchmark

an stress the critical cases of RDF stores, as for multiple reasons

he upload/update of value may involve: (i) indexing of triples and

ext, (ii) inference materialization of triples and then indexing, (iii)

he lock of the store to perform changes, thus any process delay or

nacceptance to perform regular queries on the base data.

. Comparing RDF stores with smart city RDF assessment

odel

In this section, the RDF stores under assessment are compared

ccording to the feature model which has been identified and dis-

ussed in Section 3.1 . The comparison is carried out with the aim

f identifying the stores that are better ranked to be used on smart

ity applications in terms of provided features. In Table 3 , the fea-

ures supported by the different RDF stores under evaluation are

ummarized and the values considered as minimum requirements

re highlighted. A description of the RDF stores considered in the

ssessment and reported in Table 3 is given below.

• Virtuoso 7.2.4 [13] , it is mostly known because it is the RDF

query engine behind dbpedia.org. It is a SPARQL 1.1 quadru-

ple store developed in C available both via open source and

commercial license. The open source version mainly misses the

clustering feature. Inference is not materialized at load/indexing

time, while query rewrite is performed to support RDFS + in-

ference. It is backed by the Virtuoso RDBMS and thus SPARQL

queries are translated to SQL for that RDBMS. It supports ad-

vanced spatial indexing (using RTrees) and supports full text

search. The community behind virtuoso is headed by OpenLink

Software ltd and it is quite active.

• GraphDB SE 7.0.1 (former OWLIM store) 5 is a commer-

cial solution providing a SPARQL 1.1 endpoint supporting

triple/quadruple stores with spatial indexing of geographic co-

ordinates and full text indexing based on Lucene, Apache. It

supports inference at load/indexing time with different rule

sets (RDFS, OWL2RL, etc.), and such rule sets can be selected by

the user. The Enterprise edition allows horizontal scaling with

a master node forwarding the insert/update/delete operations

to slave nodes. Each single node may support up to 10 billion

of triples. The solution is implemented in Java using OpenRDF

Sesame. The project is still active and it is managed by Onto-

text.

• Blazegraph (ex BigData) 6 is an open source project, provid-

ing also a commercial license. It supports triple and quadruple

stores. With RDFS + inference (at load time) it is available only

on triple stores. It has a full-text indexing support, and there

is a basic geospatial indexing, too. It provides both a horizon-

tal and vertical scaling solution, thus allowing an index to be

shared on multiple nodes. A single computer can manage up

to 50 billion triples. The project is managed by Systap and it is

http://www.disit.org/km4city/resource/GeolocatedObject/Wifi_kmz
http://ontotext.com/products/ontotext-graphdb/
https://wiki.blazegraph.com

P. Bellini, P. Nesi / Journal of Visual Languages and Computing 45 (2018) 24–38 31

Table 3

RDF stores’ features comparison, where:

OS = Open Source, Cm = Commercial, H = Horizontal cluster, V = Vertical cluster.

• CumulusRDF [20] is an open source project based on OpenRDF

Sesame using Apache Cassandra 1.2 as NoSQL storage layer. It

does not support inference and can store only triples. Since it

is based on Cassandra, it supports vertical scaling for storage of

the indexes on the nodes in the cluster, while only one node is

used to perform queries.

• Stardog 4.1.1 7 is a commercial RDF quadruple store developed

by Clark&Parsia (developer of the well-known OWL reasoner

Pellet). It supports SPARQL 1.1 and OWL2 inference at query

time, full-text indexing and search, and spatial indexing and

search. It allows horizontal scaling, and it is a quite active

project. Stardog may support 10 billion triples store on single

node while the community version manages up to 25 million

triples.

• Strabon [19] is an open source SPARQL 1.1 store developed to

support both spatial and temporal search [8] . It is based on

PostGIS extension of Postgres RDBMS; it does not support in-

ference, nor full-text search. It only provides support for stor-

ing triples (the context URI associated with the triple is used

for temporal linking). No clustering solution is available.

• 4store 8 is an open source quad RDF store developed in C sup-

porting a clustering solution which stores the quads on dif-

ferent nodes (max 32). It does not support any inference, any
7 http://stardog.com/ .
8 http://4store.org/ .

t
full-text search, nor geospatial search. The activity seems to be

moved to 5store, which is a corresponding commercial version.

• h2rdf + [24] is an open source triple store based on HBase and

Hadoop platform. It supports only the SPARQL 1.0 specification,

and does not support any inference, any full-text indexing, nor

geo-spatial search. Being based on HBase and Hadoop, it pro-

vides horizontal and vertical scaling.

• Apache Jena-Fuseki 2.3.1 9 is an open source SPARQL 1.1 engine

integrated within the java based Apache Jena framework. Jena

provides the quads RDF storage layer which could be native

on file system (TDB), based on a SQL DBMS (SDB) or in mem-

ory. Jena provides also the inference support (supporting RDFS,

OWL-Lite or using custom rules) but it works only on triple

stores and not on quadruples stores, moreover it supports full-

text and basic spatial indexing based on Lucene or Solr. No clus-

tering solution has been reported.

• Oracle Database 12c , the well-known Oracle database solu-

tion provides support for RDF graphs, full-text & spatial index-

ing/search but it does not support the standard SPARQL HTTP

query protocol, it can be integrated by using the open source

Jena framework with Fuseki or Joseki tools. Moreover Oracle so-

lution provides inference (RDFS, OWL2RL and custom rules).

As a conclusion of this section, it is evident from Table 3 , that

he RDF store solutions supporting all the minimum requirements
9 https://jena.apache.org .

http://stardog.com/
http://4store.org/
https://jena.apache.org

32 P. Bellini, P. Nesi / Journal of Visual Languages and Computing 45 (2018) 24–38

Table 4

RDF stores performance of data loading,

“NA” means that the information is not available (impossible to measure).

Triples load time Stated triples Stored triples Size (of which: full text index size, spatial index size)

GraphDB – 1 month 1 h 8m 44,274,756 84,425,185 8.5GB (299 MB, 66 MB)

GraphDB – 2 months 1 h 48m 55,617,333 104,041,312 10GB (379 MB, 67 MB)

GraphDB – 3 months 2 h 10m 67,082,202 124,015,329 13GB (459 MB, 70 MB)

Virtuoso – 1 month 16m 44,274,820 46,259,439 2.2GB (NA, NA)

Virtuoso – 2 months 21m 55,619,789 57,669,629 2.8GB (NA, NA)

Virtuoso – 3 months 31m 67,084,661 69,200,459 3.5GB (NA,NA)

Stardog – 1 month 1 h 19m 44,273,368 44,273,368 4.8GB (341 MB, 131 MB)

Stardog – 2 months 1 h 24m 55,615,945 55,615,945 5GB (318 MB, 129 MB)

Stardog - 3 months 2 h 58m 67,080,814 67,080,814 6.2GB (493 MB, 138 MB)

Oracle – 1 month 6 h 18m 44,270,460 78,744,647 25GB (NA, NA)

r

s

b

p

p

t

b

s

O

a

o

i

c

B

t

t

e

a

t

t

3

r

o

f

i

b

f

p

t

v

t

t

w

s

t

b

s

q

l

a

c

s

f

d

o

s

a
are Virtuoso 7.2.4 open source and commercial edition, GraphDB

Standard Edition 7.2, Stardog 4 and Oracle 12c. Therefore, only

these RDF stores have been assessed in term of performance, as

reported in Section 5 . Apache Jena-Fuseki has been considered in

Section 6 , when the performance of RDF stores together with SQL

databases is evaluated.

5. Assessing RDF stores with smart city RDF benchmark

The performance evaluation has been carried out by consider-

ing: (i) the loading/indexing time for knowledge base initialization,

(ii) the execution time without any update for spatial and non-

spatial queries, and (iii) query execution time while the sensors

data were regularly updated.

The performance has been evaluated using a server Ubuntu

14.04 with 8GB RAM, CPU, Intel Xeon E5-2680@2.8 GHz with 20

logical processors, HD at 15,0 0 0 RPM.

5.1. Assessing loading/indexing

Table 4 reports the results for the loading/indexing time con-

cerning the different previously discussed datasets, respectively. It

should remarked that Virtuoso is the fastest, GraphDB and Star-

dog perform similarly (about 5 times slower than Virtuoso) and

Oracle is the slowest being about twenty three times slower than

Virtuoso. Due to the performance of Oracle 12c in loading, the de-

cision was to only test the 1 month data set. On the other hand,

GraphDB and Oracle perform inference at load time while Virtuoso

and Stardog at query time, under user request. For this reason, the

number of triples indexed by GraphDB is typically 80% bigger than

those of Virtuoso. As to Virtuoso, the slight increment of triples

stored/indexed with respect to the ones provided to the RDF store

(2.1 M for the 3 months case) is due the transformation of the geo:

lat and geo: long triples in a geo:geometry with POINT() to enable

the geo-spatial indexing. While in the same case, as to GraphDB,

the increment of about 57 M of triples is due to the materializa-

tion of triples via inference at the indexing/loading time.

5.2. Assessing query execution time

Tables 5 and 6 focus on the results for the average query

execution time concerning GraphDB, Virtuoso, Stardog and Ora-

cle and related to the different time horizons of one, two and

three months, respectively. Table 5 reports the performances for

non-spatial queries and Table 6 for spatial queries. The queries

have been tested performing a pseudo-random sequence of 10 0 0

queries repeated two times with some pseudo-random arguments

in order to reduce the caching effect. The sequence of performed

queries has been the same for each test execution, so as to test

the same sequence on different systems. The table reports for each

query the average response time and the maximum number of
esults obtained for each type of query when the number of re-

ults depends on the parameter randomly chosen (e.g., lines of a

us stop) or from the different dataset used (e.g., the AVM, sensor,

arking and weather distribution queries). When considering the

oor performance by Oracle 12c in loading and also in the query

imes, it was decided to only test the 1 month case. Moreover, a

ug in the Oracle plugin for Apache Jena did not allow performing

patial queries via the HTTP protocol and this is the reason why

racle 12c does not appear in Table 6 .

If observing the query results (see Table 5), when no spatial

nd full text search and inference are involved, the performances

f Virtuoso and GraphDB are comparable, in some cases GraphDB

s even better ranked. When inference is needed (e.g., in the test

ases Service-florence, Service-Acc-Clt-Trs-W&F-florence, Service-Htl-

&B-florence), as to Virtuoso the inference had to be enabled on

he single constraint involving a general class (e.g., all services in

he Accommodation class). While if the inference is enabled, gen-

rally on the query, the internal automated query rewrite takes

 longer time (may be related to the size of the exploited on-

ology). For example, for query Service-Acc-Clt-Trs-W&F-florence the

ime grows from an average of 2.9 s to an average of 19.6 s (on the

 months dataset). In those cases, the GraphDB results are better

anked. Stardog generally is the slowest on all the queries.

When considering the spatial indexing (see Table 6) in Virtu-

so, some mistakes have been detected using the st_intersection

unction. In some cases, Virtuoso returned an error, in other cases

t provided a smaller number of results than the correct num-

er; Virtuoso could provide different results for the same query

or the three different datasets, even if they do not differ for the

art considered in the query. On the other hand, in Virtuoso, if

he st_distance function is used, all the obtained results have been

erified to be correct, apart from few cases on the border (due to

he numerical computation in measuring distances). The usage of

he distance function for Virtuoso is a good solution in most cases,

hile the query optimizer seems to avoid the exploitation of the

patial index. This fact may be deduced out of a comparison among

he results of the formalization of query Find-address: in two cases

y using: (i) st_distance function it takes about 5.7 s, while (ii) with

t_intersect function it takes about 0.14 s.

Another aspect to be considered is the mixing of spatial

uery with text search query (for example, in query Service-text-

atlng(500 m)). With GraphDB and also with Stardog, we obtained

 higher execution time, hitting in some cases the timeout. In this

ase where spatial and text are combined for Virtuoso, the inter-

ect function returned an error, while the distance function per-

ormed very well.

Regarding the analytic queries (for example: Weather-

istribution, AVM-distribution) which count the daily number

f records of the weather forecasts, bus, sensor data, parking

tatus for the three datasets, both solutions have provided accept-

ble execution time (less than 5 s). In this case, Virtuoso is better

P.
 B

ellin
i,
 P.

 N
esi

 /
 Jo

u
rn

a
l
 o

f
 V

isu
a

l
 La

n
g

u
a

g
es
 a

n
d
 C

o
m

p
u

tin
g
 4

5
 (2

0
18

)
 2

4
–

3
8

3
3

Table 5

RDF stores average query time of non-spatial queries (best performances in bold).

GraphDB Virtuoso StarDog Oracle

Query

1 month

(ms)

2

months

(ms)

3

months

(ms)

1 month

(ms)

2

months

(ms)

3

months

(ms)

1 month

(ms)

2

months

(ms)

3

months

(ms)

1 month

(ms)

Number

of

results

Municipalities-florence 7 10 121 8 15 9 127 173 129 2,391 46

Bus-lines 17 18 91 6 7 6 125 156 141 2,325 85

Bus-stops-of-line 50 26 28 65 68 62 194 211 172 36,661 135

(max)

Lines-of-bus-stop 7 12 18 21 23 20 210 235 210 6457 11 (max)

Bus-stop-florence 100 113 126 374 291 281 216 258 201 34,071 1108

Bus-stop-forecast 96 413 4 4 4 632 2065 2008 2028 3072 5084 259,577 15

AVM-distribution 914 1893 2767 26 58 70 1442 2417 3772 26,844 89 (max)

Service-florence 7106 7841 10,150 2170 2135 2158 3689 3667 3514 > 10min 3259

Service-Acc-Clt-Trs-W&F-florence 8,158 8274 8318 2386 2917 2930 4118 4110 6416 > 10min 1179

Service-Htl-B&B-florence 3311 3296 4,035 537 845 766 3640 3782 3448 > 10min 234

Full-text 314 750 618 64 96 67 166,202 214,344 215,937 136,243 1389

(max)

Service-text-florence 286,842 295,057 284,573 1981 3621 5661 165,860 202,919 209,364 126,833 51 (max)

Sensor-florence 21 48 46 82 93 84 785 615 483 7349 62

Sensor-status 598 1101 1560 56 146 163 295 384 392 173,612 1

Sensor-distribution 939 1867 2665 174 328 399 672 1060 1,346 178,272 78 (max)

Parking-status 83 188 309 72 87 100 1,388 1339 1053 40,823 1

Parking-distribution 455 1096 1628 61 131 203 223 373 451 30,4 4 4 83 (max)

Weather-florence 9 19 93 46 60 71 181 182 149 5047 5

Weather-distribution 12 23 19 7 18 11 126 141 128 2342 38 (max)

3
4

P.
 B

ellin
i,
 P.

 N
esi

 /
 Jo

u
rn

a
l
 o

f
 V

isu
a

l
 La

n
g

u
a

g
es
 a

n
d
 C

o
m

p
u

tin
g
 4

5
 (2

0
18

)
 2

4
–

3
8

Table 6

RDF stores average query time of spatial queries (the best performances in bold).

Query GraphDB Virtuoso (intersect) Virtuoso (distance) Stardog

Number of

results

1 month

(ms)

2 months

(ms) 3months(ms)

1

month(ms)

2

months(ms) 3months(ms)

1

month(ms)

2

months(ms) 3months(ms)

1

month(ms)

2

months(ms) 3months(ms)

Find-address 47 180 218 219 160 143 5762 5965 5776 2495 2848 2367 1

Bus-stop-latlng(100 m) 8 8 9 33 63 63 28 31 28 2105 1791 1885 1 (max)

Bus-stop-latlng(200 m) 16 17 26 88 80 23 29 27 30 1820 1723 1638 3 (max)

Bus-stop-latlng(500 m) 33 52 48 147 182 166 34 41 33 1781 1853 1810 20

Bus-stop-latlng(1 km) 82 135 155 76 – 265 42 43 47 2095 2116 2334 93 (max)

Bus-stop-latlng(2 km) 192 302 361 89 – – 77 77 76 2418 2822 2787 306 (max)

Bus-stop-latlng(5 km) 463 669 782 – – – 201 201 205 2883 3245 2815 1003

(max)

Service-latlng(100 m) 691 1111 324 2788 2117 915 582 761 754 3970 4581 5123 41 (max)

Service-latlng(200 m) 189 393 364 680 462 357 271 308 287 3679 4230 3846 130 (max)

Service-latlng(500 m) 1131 1256 1212 627 513 549 401 421 391 4110 4303 4467 784 (max)

Service-latlng(1 km) 2924 3236 3205 1566 1085 1238 613 602 609 4406 5475 5492 1810

Service-latlng(2 km) 6087 6550 6548 1377 1688 – 1062 1167 1079 5832 6929 6204 3718

(max)

Service-latlng(5 km) 11,192 13,069 12,712 3054 – – 1900 1996 1912 6585 7494 6551 6666

(max)

Service-Acc-Clt-Trs-

W&F-latlng(100 m)

74 125 87 880 921 773 1260 1209 1073 5978 6076 4986 37 (max)

Service-Acc-Clt-Trs-

W&F-latlng(200 m)

196 221 226 1351 1039 1152 1243 1223 1225 5186 6195 5418 113 (max)

Service-Acc-Clt-Trs-

W&F-latlng(500 m)

948 1091 1602 2159 1709 1698 1159 1187 1232 6130 6738 5933 650 (max)

Service-Acc-Clt-Trs-

W&F-latlng(1 km)

3016 3453 3801 – – 3701 1546 1465 1437 5679 7631 7147 1555

(max)

Service-Acc-Clt-Trs-

W&F-latlng(2 km)

4731 5644 7999 – – – 1706 1807 1619 6451 8669 7353 2224

(max)

Service-Acc-Clt-Trs-

W&F-latlng(5 km)

7983 9610 9974 – – – 1785 1938 1813 8024 9669 7646 3102

(max)

Service-Htl-B&B-

latlng(100 m)

29 38 29 420 466 392 541 563 631 3843 3985 3886 7 (max)

Service-Htl-B&B-

latlng(200 m)

65 84 97 605 471 418 529 606 587 3865 4083 3953 28 (max)

Service-Htl-B&B-

latlng(500 m)

293 371 393 1119 724 1032 555 666 544 4055 4605 4424 151 (max)

Service-Htl-B&B-

latlng(1 km)

789 1065 1162 810 1253 552 630 578 4971 5500 5506 363 (max)

Service-Htl-B&B-

latlng(2 km)

1390 1729 2020 – – – 617 683 681 5664 6573 6278 488

Service-Htl-B&B-

latlng(5 km)

2421 3144 8281 – – – 673 744 682 6516 7009 7053 611(max)

Service-text-

latlng(500 m)

204,936 236,937 256,328 433 148 324 242 64 73 > 7min > 7min > 7min 21 (max)

Sensor-latlng(100 m) 10 12 13 – – 63 20 27 30 1842 1639 1604 0

Sensor-latlng(200 m) 30 45 36 – 102 54 21 27 32 1800 1734 1635 1

Sensor-latlng(500 m) 41 62 198 118 73 163 18 23 26 1788 2069 1923 4

Sensor-latlng(1 km) 109 159 210 81 – 252 19 24 27 2556 2184 2257 14

Sensor-latlng(2 km) 229 335 4 4 4 – – – 22 29 29 2372 2798 2670 29

Sensor-latlng(5 km) 514 721 888 – – – 23 30 38 2961 2947 2837 56

P. Bellini, P. Nesi / Journal of Visual Languages and Computing 45 (2018) 24–38 35

Fig. 1. Spatial queries performance for GraphDB, Virtuoso (using distance function) and Stardog for the 3 months data set.

r

p

i

t

3

q

d

o

f

G

B

G

5

b

p

n

h

m

u

t

s

G

a

l

J

s

Table 7

Sensor data upload performance.

GraphDB Virtuoso Stardog

Total mean time (ms) 4135.59 1290.05 42,498.80

Mean upload time (ms) 2105.06 893.52 41,526.02

Mean update time (ms) 2030.53 396.53 972.78

Minimum total time (ms) 1810.00 480.00 6050.00

Maximum total time (ms) 37,294.00 20,678.00 791,083.00

Std. dev of total time (ms) 2197.81 2082.30 76,121.02

w

a

q

Q

s

t

o

o

fl

g

a

a

r

e

y

i

t

p
anked with less than 0.5 s of execution time. Moreover, Virtuoso

resents a less growing factor with respect to GraphDB.

A section of Table 6 results for spatial queries has been reported

n Fig. 1 . The adoption of the logarithmic scale leads to appreciate

he smarter performance of Virtuoso in the cases of reference tests.

We calculated the standard deviation of the query times (on the

 month dataset and Virtuoso using the distance function) for each

uery, in general we found that Virtuoso shows the lowest stan-

ard deviation among GraphDB and Stardog in most queries (36

ut of 52, while GraphDB 6 and Startdog 10). For example for the

ull-text query we calculated a standard deviation of 1,402 ms for

raphDB, 78 ms for Virtuoso and 9,525 ms for Stardog, while the

us-stops-florence query shows a standard deviation of 111 ms for

raphDB, 115 ms for Virtuoso and 74 ms for Stardog.

.3. Assessing query execution time under update/load

In this section, the behavior of RDF stores under update has

een tested according to the assessing conditions and data set ex-

lained in Section 3.4 . During the test, the time to upload/update

ew triples for all the sensors and mark them as the ‘ latest value’

as been recorded and reported in Table 7 . Therefore, the mini-

um, maximum, average time and the standard deviation of the

pload and update time are reported for each RDF store. From

he results, it is clear that Virtuoso turned out to be the smartest,

ince it performed the update of the 430 sensors within 20 s, while

raphDB did the same in 37 s, and StarDog had an average of 42 s

nd with a maximum time in just one case of 13 minutes to up-

oad new triples for all the 430 sensors. As to Oracle with Apache

ena-Fuseki it was not possible to send the triples for the 430 sen-

ors through Fuseki, since the communication was hanging; while
hen sending the data for only 10 sensors the average time was

bout 16 s with a maximum of 2.5 min.

In order to evaluate the impact of the update/upload action on

uery performance, the mean number of queries per hour (MN-

PH) has been computed for each RDF store in presence or ab-

ence of ongoing upload/updates. MNQPH has been computed as

he ratio of total time needed to run a large number of queries

f the benchmark and the number of queries. In particular, some

f the queries such as: “Service-text-latlng(500 m)”, “Service-text-

orence” and “Full-text” have been not used because they typically

enerate on GraphDB and StarDog many timeouts, that could cre-

te too noise on assessing query performance during update/load

ctivity.

In the assessment, the time for sensor data access is strongly

educed provided that the “Sensor-status” query requests the lat-

st value triple marker. The results are reported in Table 8 , where

ou can see that the MNQPH is decreased in all the cases, shift-

ng from the value registered with RDF store under no updates up

o the value registered during the store updates. The decrease in

erformance is due to the fact that the query has to wait for the

36 P. Bellini, P. Nesi / Journal of Visual Languages and Computing 45 (2018) 24–38

Table 8

Store performance in presence and absence of updates during bench-

mark.

RDF store MNQPH

No updates During updates Loss in performance

GraphDB 2117.00 1799.93 14.97%

Virtuoso 4584.16 4362.21 4.84%

Stardog 1620.24 876.63 45.89%

Table 9

Performance in accessing to the last value of sensors.

RDF store Mean time to sensor status access, Time in ms

Case 1 (no update) Case 2 (no update) Case 3 (update)

GraphDB 1561 31 334

Virtuoso 163 46 174

Stardog 393 208 554

Fig. 2. Query architecture when RDF store is mixed with SQL store.

D

f

t

1

o

S

a

i

s

t

t

fi

a

f

s

a

a

o

F

b

s

i

r

S

p

m

R

a

f

t

q

F

a

D

P

i
store unlock. Among the RDF stores considered, Virtuoso presented

the lower reduction in performance. Moreover, as stated above, the

benchmark occurred in some time outs with to GraphDB and Star-

Dog stores in the absence of updates; typically 46 and 96 times for

the whole benchmark. The number of timeouts is more than twice

in presence of updates.

Table 9 reports the mean time to get access to the latest value

of a sensor series (the Sensor-status query) in three cases: (1) using

the order by clause and without concurrent updates, (2) using the

“latest value” triple without concurrent updates and (3) using the

latest value triple during concurrent updates. For all the stores we

can see that when avoiding the sort and using the “latest value”,

the time needed to access is reduced. However, performing a con-

current update increases access time of a significant amount (i.e.,

more than 10 times for GraphDB, 3.8 times for Virtuoso and 2.7 for

StarDog). According to the access mean time values, Virtuoso could

perform better than the others in all the cases.

6. Evaluation of RDF stores with SQL mappings

In the smart city context, it often occurs to have a huge num-

ber of static information and a large number of triples due to the

real time data, growing in time, as already seen in the test data

sets. Therefore, you are supposed to take advantage of mixing RDF

store with classical tables and SQL for real time data. Therefore,

this section is meant to assess the integration of RDF stores used

for storing the static datasets, with SQL DBMS used for storing the

dynamic/real-time data. This aspect is added to RDF stores by us-

ing an SQL-RDF mapping which allows any querying of SQL DBMS

using SPARQL.

As to the problem of mapping relational databases to RDF, this

is not new and there are several solutions both commercial and

open source. 10 Oracle, Stardog and Virtuoso provide support for

mapping relational data as RDF. Moreover, in 2012 W3C published

R2RML 11 a standardized language to describe relational to RDF

mappings.

Two queries of the benchmark dealing with real-time data were

used for the evaluation of this feature, presented before. In Fig. 2 ,

the reference simple architecture representing the mixture of RDF

store and SQL database and thus of the configuration considered in

this assessment test is reported.

The RDF Store and solutions we tested where (i) Virtuoso that

has an integrated SPARQL-SQL mapper for its internal relational
10 https://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations .
11 https://www.w3.org/TR/r2rml/ .

g

v

BMS, and (ii) D2R

12 with MySQL with Apache Jena-Fuseki as

ront-end RDF store using the SERVICE clause of SPARQL to use

he D2R SPARQL endpoint. In fact, the SERVICE clause of SPARQL

.1 allows the exploitation from which a query on a SPARQL server

f the results coming from a SPARQL query executed on another

PARQL server, thus allowing any joining of the results of two sep-

rate worlds. In this context, one SPARQL endpoint is used for stor-

ng static data, while the other is for dynamic data.

The testing queries adopted for the evaluation have been de-

cribed in Table 1 : (i) Sensor-status to retrieve the latest value ob-

ained from a specific traffic sensor, and (ii) Bus-stop-forecast to ob-

ain the latest forecasts on bus arrival for a specific bus stop. The

rst query is very simple: it orders the results by observation time

nd gets the most recent values; whereas when it comes to bus

orecasts, it involves a more complex query using a sub query. As

pecified in the benchmark, the above mentioned two queries were

dapted to be used in the new query architecture; all the queries

re reported in http://www.disit.org/smartcityrdfbenchmark .

The queries were tested with an increasing number of records

n the SQL DBMS (28k, 50k, 100k, 200k, 300k, 500k and 1 M). In

igs. 3 and 4 , the query execution time for four different cases has

een provided. Such cases are:

• Virtuoso static data as RDF and using the SQL mapping for dy-

namic data.

• Fuseki RDF store for the static data and D2R with MySql for the

dynamic data.

• Virtuoso RDF with both static and dynamic data.

• Fuseki RDF with both static and dynamic data.

Fig. 3 shows that as to the sensor status query on the single in-

tance, Virtuoso RDF store outperforms the other solutions provid-

ng the results in the shortest time, while Fuseki RDF is not well

anked with respect to the other solutions. Please note that the

ensors status query of Table 1 is quite simple and presents only

arameters. And construct for order-by. Moreover, among the SQL

apping solutions, Virtuoso performs better than Fuseki&D2R.

As to the bus-stop forecast query , Fig. 4 shows that Virtuoso

DF (virtRDF) is better ranked with respect to the other solutions,

nd both the SQL mapping based solutions have the lowest per-

ormance (i.e., highest execution time). As explained in Table 1 ,

he query adopted for the assessment presents parameters, sub-

uery the constructs as group-by and order-by. It can be seen from

ig. 4 that full RDF based solutions (virtuoso and fuseki) have an

lmost linear trend while for SQL based mappings (virtuoso and

2R) the trend is almost exponential (see the log scale of Fig. 4).

lease note that, for some cases the queries cannot be completed

n a reasonable time when dealing with a number of records

reater than 10 0,0 0 0 for fuseki + D2R and greater than 30 0,0 0 0 for

irtRDF + SQL.
12 http://d2rq.org/ .

https://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations
https://www.w3.org/TR/r2rml/
http://www.disit.org/smartcityrdfbenchmark
http://d2rq.org/

P. Bellini, P. Nesi / Journal of Visual Languages and Computing 45 (2018) 24–38 37

Fig. 3. Performance comparison among native RDF Store vs RDF Stores using integration with SQL: query on sensors status values, see query description on Table 1 .

Fig. 4. Performance comparison among native RDF Store vs RDF Stores using integration with SQL: query on bus stop forecast /delay query time, see query description on

Table 1 .

t

t

s

q

f

p

7

w

p

a

f

t

m

o

o

p

c

t

S

g

o

a

p

t

s

m

s

s

t

s

t

p

s

t

o

S

f
In both examined cases, the Virtuoso RDF store performed bet-

er than the other solutions. In the event of a simple mapping (as

he one of sensors), the performance of Virtuoso SQL mapping is

till acceptable (about 5 seconds for 1 M records), while when the

uery becomes more complex, both SQL mapping solutions per-

orm unacceptably and for greater datasets they were unable to

rovide a result in a reasonable time.

. Conclusions

The usage of RDF stores to store smart city data is becoming of

ide interest for several applications. In this paper we have pro-

osed a Smart City RDF Assessment Model for a comparative study

bout the state of the art on RDF stores according to their main

eatures and in particular on the SPARQL aspects/features. In addi-

ion, the Smart City RDF Benchmark has been proposed. The bench-

ark is based on (i) some datasets of triples (that are grounded

n Km4City ontological model) accessible from http://www.disit.

rg/smartcityrdfbenchmark , it can be used only for benchmarking

urpose; (ii) a set of SPARQL queries declined for different SPARQL

onstructs. The benchmark has been defined for smart city services

o compare results which can be obtained by using different RDF
tores. In the benchmark, particular emphasis has been given to

eo-spatial and full text searches, since such aspects have been

nly partially considered and addressed by the general state of the

rt benchmarks such as LUBM and BSBM. As a general remark, the

roduced benchmark can be profitably used in several other con-

exts where similar aspects are modeled.

The comparison addressed a number of well-known RDF stores

uch as Virtuoso, GraphDB, StarDog, and Oracle for the perfor-

ance aspects. As a general consideration about performance, it

hould be noted that Virtuoso performs better in presence of less

elective queries, thus providing a higher number of results. On

he contrary, GraphDB performs better when specific results are

earched, thus when a smaller number of results are requested. As

o Virtuoso, some small problems have been detected. For exam-

le, with the st_intersect function that, in order to get results, con-

trained us to rewrite queries using st_distance function. It seems

hat in this case the spatial indexing structure is not used and the

ptimizer does not exploit it as the starting point for a selection.

Moreover, the performance of native RDF stores with standard

QL DBMS integration was investigated, as well. From the per-

ormed tests, the solutions adopting SPARQL to SQL rewriting need

http://www.disit.org/smartcityrdfbenchmark

38 P. Bellini, P. Nesi / Journal of Visual Languages and Computing 45 (2018) 24–38

[

[

[

[

[

[

to be improved, since when it comes to complex queries, the per-

formance is still very poor with respect to full RDF solutions.

Acknowledgement

The authors would like to say thanks to ONTOTEXT for grant-

ing us the access to a trial version of their RDF store. This works

has been developed in the framework of Km4City activity for RES-

OLUTE H2020, and for REPLICATE H2020 (both are European Com-

mission funded International Projects) and for Sii-Mobility Smart

City National project (http://www.sii-mobility.org).

Supplementary materials

Supplementary material associated with this article can be

found, in the online version, at doi:10.1016/j.jvlc.2018.03.002 .

References

[1] MuhammadIntizar Ali , Feng Gao , Alessandra Mileo , CityBench: a configurable
benchmark to evaluate RSP engines using smart city datasets, 14th Int. Seman-

tic Web Conference, 2015 .

[2] L. Anthopoulos, P. Fitsilis, Exploring architectural and organizational features in
smart cities, in: Advanced Communication Technology (ICACT), 2014 16th In-

ternational Conference on, 2014, pp. 190–195, doi: 10.1109/ICACT.2014.6778947 .
16–19 Feb .

[3] C. Balakrishna , Enabling technologies for smart city services and applications,
in: Next Generation Mobile Applications, Services and Technologies (NGMAST),

2012 6th International Conference on, 223, 2012, p. 227. 12-14 Sept .

[4] C. Badii, P. Bellini, D. Cenni, A. Difino, P. Nesi, M. Paolucci, Analysis and as-
sessment of a knowledge based smart city architecture providing service APIs,

Future Generation Computer Systems, Elsevier, 2017 http://dx.doi.org/10.1016/
j.future.2017.05.001 .

[5] D.F. Barbieri , D. Braga , S. Ceri , E. Della Valle , M. Grossniklaus , C-sparql: sparql
for continuous querying, in: Proc. of WWW, ACM, 2009, pp. 1061–1062 .

[6] P. Bellini , M. Benigni , R. Billero , P. Nesi , N. Rauch , Km4City ontology bulding vs

data harvesting and cleaning for smart-city services, Int. J. Vis. Lang. Comput.
(2014) .

[7] P. Bellini, I. Bruno, P. Nesi, N. Rauch, Graph databases methodology and
tool supporting index/store versioning, J. Vis. Lang. Comput. (2015). http:

//www.sciencedirect.com/science/article/pii/S1045926X150 0 0750 , doi: 10.1016/
j.jvlc.2015.10.018 .

[8] K. Bereta , P. Smeros , M. Koubarakis , Representing and querying the valid time

of triples for linked geospatial data, The 10th Extended Semantic Web Confer-
ence (ESWC 2013), 2013 May 26–30 .

[9] C. Bizer , A. Schultz , The Berlin SPARQL benchmark, Int. J. Semant. Web Inf. Syst.
5 (2) (2009) 1–24 .

[10] J.-P. Calbimonte , O. Corcho , A.J.G. Gray , Enabling ontology-based access to
streaming data sources, in: ISWC, 2010, pp. 96–111 .

[11] H. Chourabi , Taewoo Nam , S. Walker , J.R. Gil-Garcia , S. Mellouli , Karine Na-

hon , T.A. Pardo , HansJochen Scholl , Understanding smart cities: an integrative
framework, in: System Science (HICSS), 2012 45th Hawaii International Con-

ference on, 2012, p. 2289,2297. 4-7 Jan .
[12] S. Duan , A. Kementsietsidis , K. Srinivas , O. Udrea , Apples and oranges: a com-
parison of RDF benchmarks and real RDF datasets, in: Proceedings of the 2011

ACM SIGMOD International Conference on Management of data (SIGMOD ’11).
ACM, New York, NY, USA, 2011, pp. 145–156 .

[13] O. Erling , I. Mikhailov , Virtuoso: RDF support in a native RDBMS, in: Semantic
Web Information Management, Springer, 2009, pp. 501–519 .

[14] G. Garbis , K. Kyzirakos , M. Koubarakis , Geographica: a benchmark for geospa-
tial RDF stores, the 12th International Semantic Web Conference (ISWC 2013),

2013 October 21-25 .

[15] GeoGeoSPARQL. Open Geospatial Consortium, “GeoGeoSPARQL - a geographic
query language for RDF Data”. Sept. 10 http://www.opengeospatial.org/

standards/geosparql . 2012.
[16] Y. Guo , Z. Pan , J. Heflin , Lubm: a benchmark for owl knowledge base systems,

J. Web Semant. 3 (2–3) (2005) 158–182 .
[17] Kehua Su , Jie Li , Hongbo Fu , Smart city and the applications, in: Electronics,

Communications and Control (ICECC), 2011 International Conference on, 2011,

p. 1028,1031. 9-11 Sept. .
[18] Zaheer Khan, Ashiq Anjum, SaadLiaquat Kiani, Cloud based big data analytics

for smart future cities, in: Proceedings of the 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing (UCC ’13). IEEE Computer Society,

Washington, DC, USA, 2013, pp. 381–386. http://dx.doi.org/10.1109/UCC.2013.
77 .

[19] K. Kyzirakos , M. Karpathiotakis , M. Koubarakis , Strabon: a semantic geospa-

tial DBMS, the 11th International Semantic Web Conference (ISWC 2012), 2012
11-15 November .

[20] G. Ladwig , A. Harth , CumulusRDF: linked data management on nested key–
value stores, 7th International Workshop on Scalable Semantic Web Knowl-

edge Base Systems (SSWS 2011), 2011 .
[21] D. Le-Phuoc , M. Dao-Tran , J.X. Parreira , M. Hauswirth , A native and adaptive

approach for unified processing of linked streams and linked data, in: ISWC,

2011, pp. 370–388 .
22] D. Le-Phuoc , M. Dao-Tran , M. Pham , Linked stream data processing engines:

facts and figures, in: International Semantic Web Conference (ISWC 2012),
1380, Springer, Boston, USA, 2012, pp. 300–312 .

23] C.E.A. Mulligan , M. Olsson , Architectural implications of smart city business
models: an evolutionary perspective, Commun. Mag. IEEE vol.51 (6) (2013)

80,85 June .

[24] N. Papailiou , I. Konstantinou , D. Tsoumakos , P. Karras , N. Koziris , H2RDF + :
high-performance distributed joins over large-scale RDF graphs, in: Big Data,

2013 IEEE International Conference on, 2013, p. 255,263. 6-9 Oct. .
25] Michael Schmidt , et al. , SP ̂ 2Bench: a SPARQL performance benchmark, Data

Engineering, 2009. ICDE’09. IEEE 25th International Conference on. IEEE, 2009 .
26] W3C Consortium, SPARQL 1.1 Query Language, W3C Recommendation, 21

March, 2013 http://www.w3.org/TR/sparql11-query/ .

[27] WelingtonM. da Silva, Alexandre Alvaro, GustavoH.R.P. Tomas, Ricar-
doA. Afonso, KelvinL. Dias, ViniciusC. Garcia, Smart cities software archi-

tectures: a survey, in: Proceedings of the 28th Annual ACM Symposium on
Applied Computing (SAC ’13). ACM, New York, NY, USA, 2013, pp. 1722–1727.

http://dx.doi.org/10.1145/2480362.2480688 .
28] Zaheer Khan, Ashiq Anjum, SaadLiaquat Kiani, Cloud based big data analytics

for smart future cities, in: Proceedings of the 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing (UCC ’13). IEEE Computer Society,

Washington, DC, USA, 2013, pp. 381–386. http://dx.doi.org/10.1109/UCC.2013.

77 .
29] Y. Zhang , M.-D. Pham , O. Corcho , J.-P. Calbimonte , SRBench: a streaming

RDF/SPARQL benchmark, in: Proc. of the 11th International Semantic Web Con-
ference ISWC 2012, Boston, USA, 2012 Nov .

http://www.sii-mobility.org
https://doi.org/10.1016/j.jvlc.2018.03.002
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0001
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0001
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0001
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0001
https://doi.org/10.1109/ICACT.2014.6778947
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0003
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0003
http://dx.doi.org/10.1016/j.future.2017.05.001
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0005
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0005
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0005
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0005
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0005
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0005
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0006
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0006
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0006
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0006
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0006
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0006
http://www.sciencedirect.com/science/article/pii/S1045926X15000750
https://doi.org/10.1016/j.jvlc.2015.10.018
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0008
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0008
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0008
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0008
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0009
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0009
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0009
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0010
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0010
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0010
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0010
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0012
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0012
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0012
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0012
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0012
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0013
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0013
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0013
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0014
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0014
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0014
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0014
http://www.opengeospatial.org/standards/geosparql
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0016
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0016
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0016
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0016
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0017
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0017
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0017
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0017
http://dx.doi.org/10.1109/UCC.2013.77
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0019
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0019
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0019
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0019
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0020
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0020
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0020
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0021
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0021
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0021
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0021
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0021
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0022
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0022
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0022
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0022
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0023
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0023
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0023
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0025
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0025
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0025
http://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1145/2480362.2480688
http://dx.doi.org/10.1109/UCC.2013.77
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0029
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0029
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0029
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0029
http://refhub.elsevier.com/S1045-926X(17)30246-X/sbref0029

	Performance assessment of RDF graph databases for smart city services
	1 Introduction
	1.1 State of the art and related work about RDF store assessment
	1.2 Aims of the paper, and its organization

	2 Smart city requirements for RDF stores
	3 Evaluation methodology
	3.1 Smart city RDF assessment model
	3.2 Smart city RDF benchmark
	3.3 Datasets of the smart city RDF benchmark
	3.4 Real-time data set context description

	4 Comparing RDF stores with smart city RDF assessment model
	5 Assessing RDF stores with smart city RDF benchmark
	5.1 Assessing loading/indexing
	5.2 Assessing query execution time
	5.3 Assessing query execution time under update/load

	6 Evaluation of RDF stores with SQL mappings
	7 Conclusions
	 Acknowledgement
	 Supplementary materials
	 References

