
Research Article
On Power Sums Involving Lucas Functions Sequences

Stefano Barbero

Department of Mathematics G. Peano, University of Turin, Via Carlo Alberto 10, 10123 Turin, Italy

Correspondence should be addressed to Stefano Barbero; stefano.barbero@unito.it

Received 17 May 2017; Accepted 27 August 2017; Published 25 October 2017

Academic Editor: Fazal M. Mahomed

Copyright © 2017 Stefano Barbero. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present some general formulas related to sum of powers, also with alternating sign, involving Lucas functions sequences. In
particular, our formulas give a synthesis of various identities involving sum of powers of well-known polynomial sequences such as
Fibonacci, Lucas, Pell, Jacobsthal, andChebyshev polynomials. Finally, we point out some interesting divisibility properties between
polynomials arising from our results.

1. Introduction

The spirit of this paper is to develop the interesting ideas of
Horadam presented in [1, 2], finding some general formulas
for special sum of powers (also with alternating signs) related
to a wide class of functions and in particular to some impor-
tant classes of well-known polynomials. We will use a slight
different notation with respect to Horadam.

Definition 1. One defines the Lucas functions sequence(𝑊(𝑑)𝑛 (𝑥))+∞𝑛=0 as the sequence of functions satisfying the
recurrence relation

𝑊(𝑑)0 (𝑥) = Δ𝑑−2 (1 + (−1)𝑑) ,
𝑊(𝑑)1 (𝑥) = Δ𝑑−2 (𝑎 (𝑥) + (−1)𝑑 𝑏 (𝑥)) ,
𝑊(𝑑)𝑛+1 (𝑥) = 𝑝 (𝑥)𝑊(𝑑)𝑛 (𝑥) + 𝑞 (𝑥)𝑊(𝑑)𝑛−1 (𝑥) 𝑛 ≥ 1,

(1)

where 𝑑 is an integer and𝑝(𝑥), 𝑞(𝑥) are polynomials such that

𝑎 (𝑥) + 𝑏 (𝑥) = 𝑝 (𝑥) ,
𝑎 (𝑥) 𝑏 (𝑥) = −𝑞 (𝑥) ,

Δ = √𝑝2 (𝑥) + 4𝑞 (𝑥) = 𝑎 (𝑥) − 𝑏 (𝑥) .
(2)

One supposes that all the functions in (1) and (2) are well
defined for suitable values of the variable 𝑥.

Clearly from the previous definition, we have

𝑊(𝑑)𝑛 (𝑥) = Δ𝑑−2 (𝑎𝑛 (𝑥) + (−1)𝑑 𝑏𝑛 (𝑥)) ,
𝑎 (𝑥) = 𝑝 (𝑥) + Δ2 , 𝑏 (𝑥) = 𝑝 (𝑥) − Δ2 , (3)

and, in particular, when 𝑑 is a positive integer, the sequence
(1) is a polynomial sequence. It is worth noting that very
important families of polynomials satisfy the recurrence (1),
such as Chebyshev, Fibonacci, Lucas, and Jacobsthal poly-
nomials as Horadam pointed out in [1]. For example, con-
sidering 𝑝(𝑥) = 2𝑥, 𝑞(𝑥) = −1, we retrieve for 𝑑 = 1 the
sequence (𝑈𝑛−1(𝑥))+∞𝑛=1 and for𝑑 = 2 the sequence (2𝑇𝑛(𝑥))+∞𝑛=0
involving Chebyshev polynomials of second and first kind,
respectively.

In the next section, we present our results on power sums
of the kind ∑𝑛𝑘=1(−1)𝛿𝑘(𝑊(𝑑)2𝑘𝑙+𝑟(𝑥)/𝑞𝑙𝑘(𝑥))𝑠 with 𝛿 ∈ {0, 1}, 𝑙, 𝑟
integers, 𝑙 ̸= 0, and 𝑛, 𝑠 positive integers. Finally we discuss
interesting consequences of our formulas, related to some
divisibility properties for polynomials obtained generalizing
the so-called Melham convolutions.These convolutions were
introduced in [3] for Fibonacci and Lucas numbers and
studied in many recent papers, for example, [4–9], also with
their extensions to Fibonacci, Lucas, and Chebyshev polyno-
mials. For the sake of simplicity from now on we omit the
dependence on 𝑥.
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2. Power Sums

First of all, we give some straightforward calculation rules
related to the functions 𝑊(𝑑)𝑛 , which we will use along our
proofs.

Proposition 2. For the functions defined by the recurrence (1),
the following rules hold:

𝑊(𝑑)−𝑛 = (−1)𝑑+𝑛 𝑞−𝑛𝑊(𝑑)𝑛 , (4)

𝑊(𝑑)𝑛 = Δ𝑑−𝑒𝑊(𝑒)𝑛 , 𝑒 ≡ 𝑑 mod 2, (5)

Δ2𝑊(ℎ)𝑚 𝑊(𝑘)𝑛 = 𝑊(ℎ+𝑘)𝑚+𝑛 + (−1)𝑘+𝑛 𝑞𝑛𝑊(ℎ+𝑘)𝑚−𝑛 , (6)

where 𝑑, 𝑒, ℎ, 𝑘,𝑚, 𝑛 are integers.
Proof. These rules are direct consequences of relations (3) and
easy calculations. Some of them are also listed in the paper of
Horadam [2].

We start with two useful lemmas which will enable us to
obtain our general formulas.

Lemma 3. The following equality holds:

(𝑊(𝑑)2𝜆+𝑟𝑞𝜆 )𝑠

= Δ𝑠(𝑑−2)+2−𝛼2
𝑠∑
ℎ=0

(𝑠ℎ) ((−1)𝑑+𝑟 𝑞𝑟)ℎ
𝑊(𝛼)
(2𝜆+𝑟)(𝑠−2ℎ)𝑞𝜆(𝑠−2ℎ) ,

(7)

where 𝑑, 𝜆, 𝑟 are integers, 𝑠 is positive integer, and 𝛼 ∈ {1, 2}
with 𝛼 ≡ 𝑑𝑠 mod 2.
Proof. Using the binomial theorem, we have from relations
(3)

(𝑊(𝑑)2𝜆+𝑟)𝑠
= Δ𝑠(𝑑−2) 𝑠∑

ℎ=0

(𝑠ℎ) (−1)𝑑(𝑠−ℎ) 𝑎(2𝜆+𝑟)ℎ𝑏(2𝜆+𝑟)(𝑠−ℎ)
(8)

or equivalently

(𝑊(𝑑)2𝜆+𝑟)𝑠 = Δ𝑠(𝑑−2) 𝑠∑
ℎ=0

(𝑠ℎ) (−1)𝑑ℎ 𝑎(2𝜆+𝑟)(𝑠−ℎ)𝑏(2𝜆+𝑟)ℎ (9)

and if we sum (8) and (9) picking up (𝑎𝑏)(2𝜆+𝑟)ℎ = (−𝑞)(2𝜆+𝑟)ℎ
we have

(𝑊(𝑑)2𝜆+𝑟𝑞𝜆 )𝑠 = Δ𝑠(𝑑−2)2
𝑠∑
ℎ=0

(𝑠ℎ) (−1)(𝑑+𝑟)ℎ
⋅ 𝑞−𝜆(𝑠−2ℎ)+𝑟ℎ (𝑎(2𝜆+𝑟)(𝑠−2ℎ) + (−1)𝑑𝑠 𝑏(2𝜆+𝑟)(𝑠−2ℎ))

(10)

from which we easily find (7).

Now, from identity (7), it is straightforward to obtain
expressions for the powers (𝑊(𝑑)

2𝜆+𝑟
/𝑞𝜆)𝑠 in the cases 𝑠 odd or 𝑠

even. We only need to apply some little calculations and
rule (4) to change sign in the subscripts. After a suitable
rearrangement of the summations involved, if 𝑠 = 2𝑚 + 1
we get

Δ2𝑚(𝑑−2)+𝑑−𝛼 𝑚∑
ℎ=0

(2𝑚 + 1𝑚 − ℎ ) ((−1)𝑑+𝑟 𝑞𝑟)𝑚−ℎ

⋅ 𝑊(𝛼)(2𝜆+𝑟)(2ℎ+1)𝑞𝜆(2ℎ+1) ;
(11)

otherwise, if 𝑠 = 2𝑚, we find
Δ2𝑚(𝑑−2) 𝑚∑

ℎ=1

( 2𝑚
𝑚 − ℎ) ((−1)𝑑+𝑟 𝑞𝑟)𝑚−ℎ

𝑊(2)
2(2𝜆+𝑟)ℎ𝑞2𝜆ℎ

+ (2𝑚𝑚 )((−1)𝑑+𝑟 𝑞𝑟Δ2(𝑑−2))𝑚 .
(12)

Lemma 4. Let one consider 𝛿 ∈ {0, 1}, 𝛼 ∈ {1, 2}, integers 𝑙, 𝑟
with 𝑙 ̸= 0, and positive integers𝑁, 𝑛. Then one has

𝑛∑
𝑘=1

(−1)𝛿𝑘 𝑊(𝛼)(2𝑙𝑘+𝑟)𝑁𝑞𝑘𝑙𝑁
= Δ−2 (−1)𝛿𝑛 𝑊(𝛼+𝛽)(𝑙(2𝑛+1)+𝑟)𝑁 + (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑁𝑊(𝛼+𝛽)(𝑙+𝑟)𝑁𝑞𝑛𝑙𝑁𝑊(𝛽)

𝑙𝑁

,
(13)

where 𝛽 ∈ {1, 2} and 𝛽 ≡ 𝛿 + 𝑙𝑁 + 1 mod 2.
Proof. From rule (6), we have

𝑊(𝛼)(2𝑙𝑘+𝑟)𝑁𝑊(𝛿+𝑙𝑁+1)𝑙𝑁

= Δ−2 (𝑊(𝛿+𝛼+𝑙𝑁+1)(𝑙(2𝑘+1)+𝑟)𝑁 + (−1)𝛿+1 𝑞𝑙𝑁𝑊(𝛿+𝛼+𝑙𝑁+1)(𝑙(2𝑘−1)+𝑟)𝑁) (14)

and we observe that

𝑊(𝛿+𝑙𝑁+1)𝑙𝑁

𝑛∑
𝑘=1

(−1)𝛿𝑘 𝑊(𝛼)(2𝑙𝑘+𝑟)𝑁𝑞𝑙𝑘𝑁
= Δ−2 𝑛∑

𝑘=1

((−1)𝛿𝑘 𝑊(𝛿+𝛼+𝑙𝑁+1)(𝑙(2𝑘+1)+𝑟)𝑁𝑞𝑘𝑙𝑁
− (−1)𝛿(𝑘−1) 𝑊(𝛿+𝛼+𝑙𝑁+1)(𝑙(2𝑘−1)+𝑟)𝑁𝑞(𝑘−1)𝑙𝑁 ) = Δ−2((−1)𝛿𝑛

⋅ 𝑊(𝛿+𝛼+𝑙𝑁+1)(𝑙(2𝑛+1)+𝑟)𝑁𝑞𝑛𝑙𝑁 −𝑊(𝛿+𝛼+𝑙𝑁+1)(𝑙+𝑟)𝑁 )

(15)

since the sum telescopes.Thus we easily obtain (13) using rule
(5).
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Thanks to rule (6), we point out that the right member of
(13) could also be expressed in the following equivalent form:

(−1)𝛿𝑛 Δ−2(Δ2𝑊(𝛼)(𝑙(𝑛+1)+𝑟)𝑁𝑊(𝛽)𝑛𝑙𝑁𝑞𝑛𝑙𝑁𝑊(𝛽)
𝑙𝑁

+ ((−1)𝛿𝑛+1 − (−1)𝛽+𝑛𝑙𝑁) 𝑊(𝛼+𝛽)(𝑙+𝑟)𝑁𝑊(𝛽)
𝑙𝑁

) ,
(16)

which becomes

(−1)𝛿𝑛 𝑊(𝛼)(𝑙(𝑛+1)+𝑟)𝑁𝑊(1)𝑛𝑙𝑁𝑞𝑛𝑙𝑁𝑊(1)
𝑙𝑁

(17)

when 𝛿 ≡ 𝑙𝑁 mod 2, since in this case 𝛽 = 1, or
(−1)𝛿𝑛 𝑊(𝛼)𝑛𝑙𝑁𝑊(𝛽)𝑛𝑙𝑁𝑞𝑛𝑙𝑁𝑊(𝛽)

𝑙𝑁

(18)

when 𝑊(𝛼+𝛽)
(𝑙+𝑟)𝑁

= 0, in other words, by definition (1), when𝑟 = −𝑙 and 𝛼 + 𝛽 = 3.
Now we have all what we need to find out our general

formulas.

Theorem 5. For all integers 𝑑, 𝑙, 𝑟, 𝑚, 𝑛, 𝛿, with 𝑙 ̸= 0, 𝑚 ≥ 0,𝑛 ≥ 1, and 𝛿 ∈ {0, 1}, the following identities hold:
𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚+1 = (−1)𝛿𝑛

⋅ Δ(2𝑚+1)(𝑑−2)−𝛼 𝑚∑
ℎ=0

(2𝑚 + 1𝑚 − ℎ ) ((−1)𝑑+𝑟 𝑞𝑟)𝑚−ℎ
⋅W2ℎ+1,

(19)

where

W2ℎ+1

= 𝑊(𝛼+𝛽)(𝑙(2𝑛+1)+𝑟)(2ℎ+1) + (−1)𝑛𝛿+1 𝑞𝑛𝑙(2ℎ+1)𝑊(𝛼+𝛽)(𝑙+𝑟)(2ℎ+1)𝑞𝑛𝑙(2ℎ+1)𝑊(𝛽)
𝑙(2ℎ+1)

, (20)

𝛼, 𝛽 ∈ {1, 2}, 𝛼 ≡ 𝑑 mod 2, 𝛽 ≡ 𝛿 + 𝑙 + 1 mod 2, and
𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚

= (−1)𝛿𝑛 Δ2𝑚(𝑑−2) 𝑚∑
ℎ=1

( 2𝑚
𝑚 − ℎ) ((−1)𝑑+𝑟 𝑞𝑟)𝑚−ℎW2ℎ

+ (2𝑚𝑚 )((−1)𝑑+𝑟 𝑞𝑟Δ2(𝑑−2))𝑚U (𝛿, 𝑛) ,

(21)

where

W2ℎ = 𝑊
(𝛿+1)
2(𝑙(2𝑛+1)+𝑟)ℎ

+ (−1)𝑛𝛿+1 𝑞2𝑛𝑙ℎ𝑊(𝛿+1)2(𝑙+𝑟)ℎ𝑞2𝑛𝑙ℎ𝑊(𝛿+1)
2𝑙ℎ

, (22)

U (𝛿, 𝑛) =
{{{{{{{{{

U (0, 𝑛) = 𝑛
U (1, 𝑛) = 0 if 𝑛 is even

U (1, 𝑛) = −1 if 𝑛 is odd.
(23)

Proof. The identities (19) and (21) are direct consequences of
(11) and (12), combined with (13) of Lemma 4. In the case𝑁 =2ℎ + 1, we have 𝛽 ≡ 𝛿 + 𝑙 + 1 mod 2; on the other hand, if𝑁 = 2ℎ, we have 𝛽 = 𝛿 + 1. Clearly in the latter, we also have
to take in account that 𝛼 = 2, so, applying rule (5), we obtain
(−1)𝛿𝑛W2ℎ = 𝑊

(𝛿+1)
2(𝑙(2𝑛+1)+𝑟)ℎ

+ (−1)𝑛𝛿+1 𝑞2𝑛𝑙ℎ𝑊(𝛿+1)2(𝑙+𝑟)ℎ𝑞2𝑛𝑙ℎ𝑊(𝛿+1)
2𝑙ℎ

. (24)

Finally, when we consider the sum related to the
term ( 2𝑚𝑚 ) ((−1)𝑑+𝑟𝑞𝑟Δ2(𝑑−2))𝑚 in (12), we observe that∑𝑛𝑘=1(−1)𝛿𝑘 = U(𝛿, 𝑛).

In order to highlight in the next section some interesting
divisibility properties between polynomials, we end with
some results whichmade us able to rewrite equalities (19) and
(21). For our purposes, we recall two important formulas due
to Girard and Waring.

Lemma 6 (Girard–Waring formulas). For all nonnegative
integers 𝑛 and real numbers𝑋, 𝑌, the following identities hold:
𝑋𝑛 + 𝑌𝑛
= ⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘 𝑛𝑛 − 𝑘 (
𝑛 − 𝑘
𝑘 ) (𝑋 + 𝑌)𝑛−2𝑘 (𝑋𝑌)𝑘 , (25)

𝑋𝑛+1 − 𝑌𝑛+1𝑋 − 𝑌
= ⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘 (𝑛 − 𝑘𝑘 ) (𝑋 + 𝑌)𝑛−2𝑘 (𝑋𝑌)𝑘 .
(26)

Clearly these two formulas have a long history and should
be widely known, so we only refer the reader to the original
books of Girard [10] and Waring [11]. We also mention the
paper of Gould [12], in which the reader will find some
interesting remarks about the history and the use of these
formulas and their generalizations. We observe that formula
(26) also holds in the case𝑋 = 𝑌; indeed

lim
𝑌→𝑋

𝑋𝑛+1 − 𝑌𝑛+1𝑋 − 𝑌 = 𝑋𝑛 (𝑛 + 1) , (27)

and𝑋𝑛(𝑛+1) corresponds to the right member of (26) via the
identity

𝑛 + 1 = ⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘 (𝑛 − 𝑘𝑘 ) 2𝑛−2𝑘. (28)
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Applying these formulas, we can find alternative expressions
for𝑊(𝐷)
(2𝐴+𝐵)𝑁

+ (−1)𝛾𝑞𝐴𝑁𝑊(𝐷)𝐵𝑁 in the cases𝑁 odd or𝑁 even,
under the convention that ratios of the kind𝑊(𝐷)𝐵𝑁 /𝑊(𝐷)𝐵 when𝐵 = 0 and𝐷 odd will take the value𝑁, according to the result
of the limit lim𝐵→0(𝑎𝐵𝑁 − 𝑏𝐵𝑁)/(𝑎𝐵 − 𝑏𝐵).
Proposition 7. Let one consider integers 𝐷, 𝛾, 𝐴, 𝐵, 𝐶, and
nonnegative integer ℎ. Then the following equality holds:

𝑊(𝐷)(2𝐴+𝐵)(2ℎ+1) + (−1)𝛾 𝑞𝐴(2ℎ+1)𝑊(𝐷)𝐵(2ℎ+1)
= (𝑊(𝐷)2𝐴+𝐵 + (−1)𝛾 𝑞𝐴𝑊(𝐷)𝐵 ) (2ℎ + 1) 𝑞2𝐴ℎ𝑊(𝐷+1)𝐵(2ℎ+1)𝑊(𝐷+1)𝐵

+ (𝑊(𝐷)2𝐴+𝐵 + (−1)𝛾 𝑞𝐴𝑊(𝐷)𝐵 )2
⋅Rℎ (𝑊(𝐷)2𝐴+𝐵 + (−1)𝛾 𝑞𝐴𝑊(𝐷)𝐵 , (−1)𝛾+1 𝑞𝐴𝑊(𝐷)𝐵 ) ,

(29)

where

Rℎ (𝑢, V) = ℎ−1∑
𝑡=0

𝐶𝑡 (ℎ, 𝑞, Δ)

⋅ 2ℎ−2𝑡∑
𝑗=1

(2ℎ + 1 − 2𝑡𝑗 + 1 )𝑢𝑗−1V2ℎ−2𝑡−𝑗,
(30)

𝐶𝑡 (ℎ, 𝑞, Δ) = 2ℎ + 12ℎ + 1 − 𝑡
⋅ (2ℎ + 1 − 𝑡𝑡 ) ((−1)𝐷+𝐵+1 𝑞2𝐴+𝐵)𝑡 Δ−(𝐷−2)(2ℎ−2𝑡). (31)

Proof. Thanks to the Girard–Waring formula (25) of
Lemma 6, we can rewrite

𝑊(𝐷)(2𝐴+𝐵)(2ℎ+1)
= Δ𝐷−2 ((𝑎2𝐴+𝐵)2ℎ+1 + ((−1)𝐷 𝑏2𝐴+𝐵)2ℎ+1) ,

𝑞𝐴(2ℎ+1)𝑊(𝐷)𝐵(2ℎ+1)
= Δ𝐷−2 ((𝑞𝐴𝑎𝐵)2ℎ+1 + ((−1)𝐷 𝑞𝐴𝑏𝐵)2ℎ+1)

(32)

obtaining

𝑊(𝐷)(2𝐴+𝐵)(2ℎ+1) + (−1)𝛾 𝑞𝐴(2ℎ+1)𝑊(𝐷)𝐵(2ℎ+1)
= ℎ∑
𝑡=0

𝐶𝑡 (ℎ, 𝑞, Δ)

⋅ ((𝑊(𝐷)2𝐴+𝐵)2ℎ+1−2𝑡 + (−1)𝛾 (𝑞𝐴𝑊(𝐷)𝐵 )2ℎ+1−2𝑡)
= 𝐶ℎ (ℎ, 𝑞, Δ) (𝑊(𝐷)2𝐴+𝐵 + (−1)𝛾 𝑞𝐴𝑊(𝐷)𝐵 )
+ ℎ−1∑
𝑡=0

𝐶𝑡 (ℎ, 𝑞, Δ)
⋅ ((𝑊(𝐷)2𝐴+𝐵)2ℎ+1−2𝑡 + (−1)𝛾 (𝑞𝐴𝑊(𝐷)𝐵 )2ℎ+1−2𝑡) .

(33)

Now, since

(𝑊(𝐷)2𝐴+𝐵)2ℎ+1−2𝑡 + (−1)𝛾 (𝑞𝐴𝑊(𝐷)𝐵 )2ℎ+1−2𝑡
= 2ℎ+1−2𝑡∑
𝑗=1

(2ℎ + 1 − 2𝑡𝑗 ) (𝑊(𝐷)2𝐴+𝐵 + (−1)𝛾 𝑞𝐴𝑊(𝐷)𝐵 )𝑗

⋅ ((−1)𝛾+1 𝑞𝐴𝑊(𝐷)𝐵 )2ℎ+1−2𝑡−𝑗 = (𝑊(𝐷)2𝐴+𝐵 + (−1)𝛾
⋅ 𝑞𝐴𝑊(𝐷)𝐵 ) (2ℎ + 1 − 2𝑡) (𝑞𝐴𝑊(𝐷)𝐵 )2ℎ−2𝑡
+ 2ℎ−2𝑡∑
𝑗=1

(2ℎ + 1 − 2𝑡𝑗 + 1 ) (𝑊(𝐷)2𝐴+𝐵 + (−1)𝛾 𝑞𝐴𝑊(𝐷)𝐵 )𝑗+1

⋅ ((−1)𝛾+1 𝑞𝐴𝑊(𝐷)𝐵 )2ℎ−2𝑡−𝑗

(34)

the last member of (33) is equal to

(𝑊(𝐷)2𝐴+𝐵 + (−1)𝛾 𝑞𝐴𝑊(𝐷)𝐵 )(𝐶ℎ (ℎ, 𝑞, Δ)
+ ℎ−1∑
𝑡=0

𝐶𝑡 (ℎ, 𝑞, Δ) (2ℎ + 1 − 2𝑡) (𝑞𝐴𝑊(𝐷)𝐵 )2ℎ−2𝑡)
+ (𝑊(𝐷)2𝐴+𝐵 + (−1)𝛾 𝑞𝐴𝑊(𝐷)𝐵 )2Rℎ (𝑊(𝐷)2𝐴+𝐵
+ (−1)𝛾 𝑞𝐴𝑊(𝐷)𝐵 , (−1)𝛾+1 𝑞𝐴𝑊(𝐷)𝐵 ) ,

(35)

where, by definition (31) of 𝐶𝑡(ℎ, 𝑞, Δ) and by the
Girard–Waring formula (26) of Lemma 6, we have with
simple calculations

𝐶ℎ (ℎ, 𝑞, Δ)
+ ℎ−1∑
𝑡=0

𝐶𝑡 (ℎ, 𝑞, Δ) (2ℎ + 1 − 2𝑡) (𝑞𝐴𝑊(𝐷)𝐵 )2ℎ−2𝑡

= (2ℎ + 1) ℎ∑
𝑡=0

(−1)𝑡 (2ℎ − 𝑡𝑡 ) ((−1)𝐷+𝐵 𝑞2𝐴+𝐵)𝑡
⋅ Δ−(𝐷−2)(2ℎ−2𝑡) (𝑞𝐴𝑊(𝐷)𝐵 )2ℎ−2𝑡 = (2ℎ + 1) 𝑞2𝐴ℎ
⋅ 𝑊(𝐷+1)𝐵(2ℎ+1)𝑊(𝐷+1)𝐵

.

(36)
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Proposition 8. Let one consider integers 𝐷, 𝛾, 𝐴, 𝐵, 𝐶, and
nonnegative integer ℎ. Then, if𝐷 is odd, one has

𝑊(𝐷)2(2𝐴+𝐵)ℎ + (−1)𝛾 𝑞2𝐴ℎ𝑊(𝐷)2𝐵ℎ
= 𝑞2𝐴(ℎ−1) (𝑊(𝐷)2(2𝐴+𝐵) + (−1)𝛾 𝑞2𝐴𝑊(𝐷)2𝐵 ) 𝑊

(𝐷)
2𝐵ℎ𝑊(𝐷)2𝐵

+𝑊(𝐷)2(2𝐴+𝐵) (𝑊(2)2(2𝐴+𝐵) − 𝑞2𝐴𝑊(2)2𝐵 )
⋅ Sℎ (𝑊(2)2(2𝐴+𝐵) − 𝑞2𝐴𝑊(2)2𝐵 , 𝑞2𝐴𝑊(2)2𝐵 ) ;

(37)

else, if𝐷 is even, one gets

𝑊(𝐷)2(2𝐴+𝐵)ℎ + (−1)𝛾 𝑞2𝐴ℎ𝑊(𝐷)2𝐵ℎ = (𝑊(𝐷)2(2𝐴+𝐵) − 𝑞2𝐴𝑊(𝐷)2𝐵 )
⋅Tℎ (𝑊(2)2(2𝐴+𝐵) − 𝑞2𝐴𝑊(2)2𝐵 , 𝑞2𝐴𝑊(2)2𝐵 )
+ (1 + (−1)𝛾) 𝑞2𝐴ℎ𝑊(𝐷)2𝐵ℎ ,

(38)

where

Sℎ (𝑢, V)
= ⌊(ℎ−1)/2⌋∑
𝑡=0

𝐾𝑡 (𝑞) ℎ−2−2𝑡∑
𝑗=0

(ℎ − 1 − 2𝑡𝑗 + 1 )𝑢𝑗Vℎ−2−2𝑡−𝑗,

𝐾𝑡 (𝑞) = (ℎ − 1 − 𝑡𝑡 ) (−𝑞4𝐴+2𝐵)𝑡 ,
Tℎ (𝑢, V) = ⌊ℎ/2⌋∑

𝑡=0

𝐻𝑡 (𝑞) ℎ−1−2𝑡∑
𝑗=0

(ℎ − 2𝑡𝑗 + 1 )𝑢𝑗Vℎ−1−2𝑡−𝑗,

𝐻𝑡 (𝑞) = ℎℎ − 𝑡 (
ℎ − 𝑡
𝑡 ) (−𝑞4𝐴+2𝐵)𝑡 .

(39)

Proof. In order to prove (37) if𝐷 is odd, we observe that

𝑊(𝐷)2(2𝐴+𝐵)ℎ = Δ𝐷−2 ((𝑎2(2𝐴+𝐵))ℎ − (𝑏2(2𝐴+𝐵))ℎ) ,
𝑞2𝐴ℎ𝑊(𝐷)2𝐵ℎ = Δ𝐷−2 ((𝑞2𝐴𝑎2𝐵)ℎ − (𝑞2𝐴𝑏2𝐵)ℎ) .

(40)

Thus, applying Girard–Waring formula (26), we have

𝑊(𝐷)2(2𝐴+𝐵)ℎ + (−1)𝛾 𝑞2𝐴ℎ𝑊(𝐷)2𝐵ℎ = ⌊(ℎ−1)/2⌋∑
𝑡=0

𝐾𝑡 (𝑞)
⋅ ((𝑊(2)2(2𝐴+𝐵))ℎ−1−2𝑡𝑊(𝐷)2(2𝐴+𝐵)
+ (−1)𝛾 (𝑞2𝐴𝑊(2)2𝐵 )ℎ−1−2𝑡 𝑞2𝐴𝑊(𝐷)2𝐵 ) .

(41)

Since

(𝑊(2)2(2𝐴+𝐵))ℎ−1−2𝑡𝑊(𝐷)2(2𝐴+𝐵) + (−1)𝛾 (𝑞2𝐴𝑊(2)2𝐵 )ℎ−1−2𝑡
⋅ 𝑞2𝐴𝑊(𝐷)2𝐵 = (𝑞2𝐴𝑊(2)2𝐵 )ℎ−1−2𝑡
⋅ (𝑊(𝐷)2(2𝐴+𝐵) + (−1)𝛾 𝑞2𝐴𝑊(𝐷)2𝐵 )
+𝑊(𝐷)2(2𝐴+𝐵)ℎ−1−2𝑡∑

𝑗=1

(ℎ − 1 − 2𝑡𝑗 )
⋅ (𝑊(2)2(2𝐴+𝐵) − 𝑞2𝐴𝑊(2)2𝐵 )𝑗 (𝑞2𝐴𝑊(2)2𝐵 )ℎ−1−2𝑡−𝑗 ,

(42)

the right member of (41) becomes

(𝑊(𝐷)2(2𝐴+𝐵) + (−1)𝛾 𝑞2𝐴𝑊(𝐷)2𝐵 )
⋅ ⌊(ℎ−1)/2⌋∑
𝑡=0

𝐾𝑡 (𝑞) (𝑞2𝐴𝑊(2)2𝐵 )ℎ−1−2𝑡
+𝑊(𝐷)2(2𝐴+𝐵) (𝑊(2)2(2𝐴+𝐵) − 𝑞2𝐴𝑊(2)2𝐵 )
⋅ Sℎ (𝑊(2)2(2𝐴+𝐵) − 𝑞2𝐴𝑊(2)2𝐵 , 𝑞2𝐴𝑊(2)2𝐵 ) ,

(43)

where, again by Girard–Waring formula (26), we obtain

⌊(ℎ−1)/2⌋∑
𝑡=0

𝐾𝑡 (𝑞) (𝑞2𝐴𝑊(2)2𝐵 )ℎ−1−2𝑡 = 𝑞2𝐴(ℎ−1)𝑊(𝐷)2ℎ𝐵𝑊(𝐷)2𝐵 . (44)

On the other hand, bymeans of Girard–Waring formula (25),
when𝐷 is even, we have

𝑊(𝐷)2(2𝐴+𝐵)ℎ = Δ𝐷−2 ((𝑎2(2𝐴+𝐵))ℎ + (𝑏2(2𝐴+𝐵))ℎ)
= Δ𝐷−2⌊ℎ/2⌋∑

𝑡=0

𝐻𝑡 (𝑞) (𝑊(2)2(2𝐴+𝐵))ℎ−2𝑡

𝑞2𝐴ℎ𝑊(𝐷)2𝐵ℎ = Δ𝐷−2 ((𝑞2𝐴𝑎2𝐵)ℎ + (𝑞2𝐴𝑏2𝐵)ℎ)
= Δ𝐷−2⌊ℎ/2⌋∑

𝑡=0

𝐻𝑡 (𝑞) (𝑞2𝐴𝑊(2)2𝐵 )ℎ−2𝑡 ;

(45)

thus

𝑊(𝐷)2(2𝐴+𝐵)ℎ + (−1)𝛾 𝑞2𝐴ℎ𝑊(𝐷)2𝐵ℎ
= 𝑊(𝐷)2(2𝐴+𝐵)ℎ − 𝑞2𝐴ℎ𝑊(𝐷)2𝐵ℎ + (1 + (−1)𝛾) 𝑞2𝐴ℎ𝑊(𝐷)2𝐵ℎ
= Δ𝐷−2⌊ℎ/2⌋∑

𝑡=0

𝐻𝑡 (𝑞) ((𝑊(2)2(2𝐴+𝐵))ℎ−2𝑡 − (𝑞2𝐴𝑊(2)2𝐵 )ℎ−2𝑡)
+ (1 + (−1)𝛾) 𝑞2𝐴ℎ𝑊(𝐷)2𝐵ℎ .

(46)
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Now substituting the identity

(𝑊(2)2(2𝐴+𝐵))ℎ−2𝑡 = ℎ−2𝑡∑
𝑗=0

(ℎ − 2𝑡𝑗 )
⋅ (𝑊(2)2(2𝐴+𝐵) − 𝑞2𝐴𝑊(2)2𝐵 )𝑗
⋅ (𝑞2𝐴𝑊(2)2𝐵 )ℎ−2𝑡−𝑗

(47)

in the last member of (46), with some simple calculations we
can finally find (38).

As straightforward consequences of identities (29), (37),
and (38) applied in equalities (19) and (21), we state the
following two corollaries of Theorem 5.

Corollary 9. Under the same hypotheses ofTheorem 5, one has

𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚+1

= 𝑊(𝛼+𝛽)𝑙(2𝑛+1)+𝑟 + (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)(𝑙+𝑟)𝑞𝑛𝑙𝑊(𝛼+𝛽+1)
𝑙+𝑟

Σ1,2𝑚+1
+ (𝑊(𝛼+𝛽)
𝑙(2𝑛+1)+𝑟

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)𝑙+𝑟 )2 Σ2,2𝑚+1,

(48)

where

Σ1,2𝑚+1 = (−1)𝛿𝑛 Δ(2𝑚+1)(𝑑−2)−𝛼 𝑚∑
ℎ=0

(2𝑚 + 1𝑚 − ℎ )

⋅ ((−1)(𝑑+𝑟) 𝑞𝑟)𝑚−ℎ (2ℎ + 1) 𝑊(𝛼+𝛽+1)(𝑙+𝑟)(2ℎ+1)𝑊(𝛽)
𝑙(2ℎ+1)

,

Σ2,2𝑚+1 = (−1)𝛿𝑛 Δ(2𝑚+1)(𝑑−2)−𝛼 𝑚∑
ℎ=1

(2𝑚 + 1𝑚 − ℎ )
⋅ ((−1)(𝑑+𝑟) 𝑞𝑟)𝑚−ℎ Rℎ𝑞𝑛𝑙(2ℎ+1)𝑊(𝛽)

𝑙(2ℎ+1)

,
Rℎ =Rℎ (𝑊(𝛼+𝛽)𝑙(2𝑛+1)+𝑟
+ (−1)𝛿𝑛+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)𝑙+𝑟 , (−1)𝛿𝑛+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)𝑙+𝑟 ) ;

(49)

moreover we have

Δ2 | 𝑊(𝛼+𝛽)
𝑙(2𝑛+1)+𝑟

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)𝑙+𝑟 . (50)

Proof. We only need to consider the numerator of W2ℎ+1 in
(20) ofTheorem 5 and use equality (29) of Proposition 7 with𝐴 = 𝑛𝑙, 𝐵 = 𝑙 + 𝑟, 𝛾 = 𝛿𝑛 + 1, and𝐷 = 𝛼 + 𝛽. Finally equality
(50) is obvious when 𝛼 + 𝛽 = 3, 4, thanks to rule (5), and if𝛼 + 𝛽 = 2, that is, 𝛼 = 𝛽 = 1, we have from rule (6)

Δ2𝑊(1)𝑙(𝑛+1)+𝑟𝑊(1)𝑙𝑛 = 𝑊(2)𝑙(2𝑛+1)+𝑟 + (−1)𝑛𝑙+1 𝑞𝑛𝑙𝑊(2)𝑙+𝑟
= 𝑊(2)𝑙(2𝑛+1)+𝑟 + (−1)𝛿𝑛+1 𝑞𝑛𝑙𝑊(2)𝑙+𝑟 (51)

since 𝛽 = 1 corresponds to 𝛿 ≡ 𝑙 mod 2.

Corollary 10. Under the same hypotheses of Theorem 5, if 𝛿 =0, for all positive integers 𝑛, one has
𝑛∑
𝑘=1

(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚

= 𝑊(1)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(1)2(𝑙+𝑟)𝑞2𝑛𝑙𝑊(1)
2(𝑙+𝑟)

Σ1,2𝑚
+𝑊(1)2(𝑙(2𝑛+1)+𝑟) (𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) Σ2,2𝑚
+ 𝑛(2𝑚𝑚 )((−1)𝑑+𝑟 𝑞𝑟Δ2(𝑑−2))𝑚

(52)

with

Σ1,2𝑚
= Δ2𝑚(𝑑−2) 𝑚∑

ℎ=1

( 2𝑚
𝑚 − ℎ) ((−1)𝑑+𝑟 𝑞𝑟)𝑚−ℎ

𝑊(1)
2(𝑙+𝑟)ℎ𝑊(1)
2𝑙ℎ

, (53)

Σ2,2𝑚
= Δ2𝑚(𝑑−2) 𝑚∑

ℎ=1

( 2𝑚
𝑚 − ℎ) ((−1)𝑑+𝑟 𝑞𝑟)𝑚−ℎ Sℎ𝑞2𝑛𝑙ℎ𝑊(1)

2𝑙ℎ

,
Sℎ = Sℎ (𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟), 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) .

(54)

Moreover, if 𝛿 = 1 and 𝑛 is even, one gets
𝑛∑
𝑘=1

(−1)𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚

= (𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) Σ3,2𝑚
(55)

with

Σ3,2𝑚 = Δ2𝑚(𝑑−2) 𝑚∑
ℎ=1

( 2𝑚
𝑚 − ℎ) ((−1)𝑑+𝑟 𝑞𝑟)𝑚−ℎ

⋅ Tℎ𝑞2𝑛𝑙ℎ𝑊(2)
2𝑙ℎ

,
Tℎ = Tℎ (𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟), 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) ,
Δ2 | 𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟).

(56)

Finally, if 𝛿 = 1 and 𝑛 is odd, one obtains
𝑛∑
𝑘=1

(−1)𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚

= −Σ4,2𝑚 − (𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) Σ3,2𝑚
− (2𝑚𝑚 )((−1)𝑑+𝑟 𝑞𝑟Δ2(𝑑−2))𝑚

(57)
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with

Σ4,2𝑚
= 2Δ2𝑚(𝑑−2) 𝑚∑

ℎ=1

( 2𝑚
𝑚 − ℎ) ((−1)𝑑+𝑟 𝑞𝑟)𝑚−ℎ

𝑊(2)
2(𝑙+𝑟)ℎ𝑊(2)
2𝑙ℎ

. (58)

Proof. According to the parity of 𝛿+1, the numeratorW2ℎ of
(22) in the identity (21) of Theorem 5 corresponds to (37) or
(38) of Proposition 8 with 𝐷 = 𝛿 + 1, 𝐴 = 𝑛𝑙, 𝐵 = 𝑙 + 𝑟, and𝛾 = 𝑛𝛿 + 1. In particular, taking into account the values ofU
defined in (23), we easily find identity (52) and the remaining
identities (55) and (57), by means of equalities (37) and
(38), respectively. Finally, from rule (6), we obviously haveΔ2𝑊(1)
2𝑙(𝑛+1)+2𝑟

𝑊(1)
2𝑙𝑛
= 𝑊(2)
2(𝑙(2𝑛+1)+𝑟)

− 𝑞2𝑛𝑙𝑊(2)
2(𝑙+𝑟)

.
3. Applications and Divisibility Properties

From now on we suppose that 𝑑 ≥ 1 and 𝑙 > 0, 𝑟 ≥ −2𝑙, in
order to ensure that the functions𝑊(𝑑)

2𝑘𝑙+𝑟
are polynomials for

all positive integers 𝑘. Clearly assigning different suitable val-
ues to the parameters 𝛿, 𝑑, 𝑙, 𝑟 in our formulas, we can easily
obtain many interesting relations for polynomial sequences
satisfying (1). In particular, for well-known sequences as
Fibonacci, Lucas, Pell, and Chebyshev polynomials, having𝑞(𝑥) = 1 or 𝑞(𝑥) = −1, our general formulas (19) and (21)
resume many identities related to their power sums, also
with alternating sign. Obviously, these identities enclose also
the similar identities on Fibonacci, Lucas, and Pell numbers
when we evaluate the corresponding polynomial sequences
in 𝑥 = 1. For instance, we easily retrieve the results presented
in [4, 13] or the ones in [5], respectively, related to the sums of
alternating sign powers of Fibonacci and Lucas numbers, to
odd powers of Chebyshev polynomials, and to sum of powers
of Fibonacci and Lucas polynomials. On the other hand, for
polynomials with 𝑞(𝑥) ̸= ±1, such as Jacobsthal 𝐽𝑛(𝑥) and
Jacobsthal–Lucas polynomials 𝑗𝑛(𝑥), which have 𝑝(𝑥) = 1,𝑞(𝑥) = 2𝑥 and 𝑑 = 1 or 𝑑 = 2, we obtain identities concerning
the sums of powers of the rational functions 𝐽2𝑘𝑙+𝑟(𝑥)/(2𝑥)𝑙𝑘
and 𝑗2𝑘𝑙+𝑟(𝑥)/(2𝑥)𝑙𝑘. We leave to the reader the exploration of
the numerous variants arising from general formulas (19) and
(21) by conveniently changing the involved parameters.

Now,we point out some divisibility properties for polyno-
mials obtained by multiplying our sum of powers with other
suitable polynomials, generalizing the results on the so-called
Melham sums, or Melham convolutions, introduced in [3]
and studied in [5–9]. At the same time, we will show that the
divisibility properties conjectured in [3] and proved in [5, 9]
are only special cases of analogous properties for polynomials
defined by recurrence (1) and simple consequences of Corol-
lary 9.

3.1. Odd Powers. From (19) and (48), we recognize that the
polynomial

𝑞𝑛𝑙(2𝑚+1) 𝑚∏
𝑗=0

𝑊(𝛽)
𝑙(2𝑗+1)

𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑙𝑘 )2𝑚+1 (59)

is equal to

𝑞𝑛𝑙(2𝑚+1) 𝑚∏
𝑗=0

𝑊(𝛽)
𝑙(2𝑗+1)

((−1)𝛿𝑛

⋅ Δ(2𝑚+1)(𝑑−2)−𝛼 𝑚∑
ℎ=0

(2𝑚 + 1𝑚 − ℎ ) ((−1)𝑑+𝑟 𝑞𝑟)𝑚−ℎ

⋅W2ℎ+1) ,
(60)

or equivalently to the product

𝑞𝑛𝑙(2𝑚+1) 𝑚∏
𝑗=0

𝑊(𝛽)
𝑙(2𝑗+1)

(𝑊(𝛼+𝛽)
𝑙(2𝑛+1)+𝑟

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)(𝑙+𝑟) )
⋅ 𝐹,

(61)

where

𝐹 = Σ1,2𝑚+1𝑞𝑛𝑙𝑊(𝛼+𝛽+1)
𝑙+𝑟

+ (𝑊(𝛼+𝛽)
𝑙(2𝑛+1)+𝑟

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)𝑙+𝑟 ) Σ2,2𝑚+1.
(62)

We need to pay attention in order to state the correct
divisibility property involving the polynomial 𝑊(𝛼+𝛽)

𝑙(2𝑛+1)+𝑟
+

(−1)𝑛𝛿+1𝑞𝑛𝑙𝑊(𝛼+𝛽)
(𝑙+𝑟)

. Indeed, if 𝑑 ≥ 3, the factor Δ(2𝑚+1)(𝑑−2)−𝛼
in (60) is a polynomial because (2𝑚+1)(𝑑−2)−𝛼 is a positive
even integer (we recall that, by definition, 𝛼 ∈ {1, 2} and𝛼 ≡ 𝑑 mod 2), so we may state that

(𝑊(𝛼+𝛽)
𝑙(2𝑛+1)+𝑟

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)(𝑙+𝑟) ) | 𝑞𝑛𝑙(2𝑚+1) 𝑚∏
𝑗=0

𝑊(𝛽)
𝑙(2𝑗+1)

⋅ 𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑙𝑘 )2𝑚+1 ,
(63)

but when 𝑑 = 2 or 𝑑 = 1, the term Δ(2𝑚+1)(𝑑−2)−𝛼 is not a
polynomial since it has a negative even exponent. Thus, in
these two cases, we have to take into account the fact that
the presence of this term is balanced by the even powers of Δ
nested in the sum on the right member of (19). In particular,
from Corollary 9, we know

Δ2 | (𝑊(𝛼+𝛽)
𝑙(2𝑛+1)+𝑟

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)(𝑙+𝑟) ) (64)

and it is easy to verify that Δ2 is the greatest positive even
power of Δ which is a polynomial factor of 𝑊(𝛼+𝛽)

𝑙(2𝑛+1)+𝑟
+

(−1)𝑛𝛿+1𝑞𝑛𝑙𝑊(𝛼+𝛽)
(𝑙+𝑟)

. Therefore, for 𝑑 ∈ {1, 2}, the correct
statement is

𝑊(𝛼+𝛽)
𝑙(2𝑛+1)+𝑟

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)(𝑙+𝑟)Δ2 | 𝑞𝑛𝑙(2𝑚+1) 𝑚∏
𝑗=0

𝑊(𝛽)
𝑙(2𝑗+1)

⋅ 𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑙𝑘 )2𝑚+1
(65)
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in order to preserve in the factor 𝐹 the correct amount of
positive even powers of Δ balancing the term Δ(2𝑚+1)(𝑑−2)−𝛼.

Moreover we observe that when 𝑟 = 0 and 𝑑 odd, that is,𝛼 = 1, the following binomial identity

𝑚∑
ℎ=0

(2𝑚 + 1𝑚 − ℎ ) (−1)𝑑(𝑚−ℎ) (2ℎ + 1)
= (−1)𝑚𝑑2 (1 + (−1)𝑑) (2𝑚 + 1)(2𝑚𝑚 )

(66)

ensures thatΣ1,2𝑚+1 = 0 since𝑊(𝛼+𝛽+1)(𝑙+𝑟)(2ℎ+1)
/𝑊(𝛽)
𝑙(2ℎ+1)

= 𝑊(𝛽+2)
𝑙(2ℎ+1)

/
𝑊(𝛽)
𝑙(2ℎ+1)

= Δ2. Thus, with a similar reasoning as before we
have for ≥ 3, 𝑑 odd,
(𝑊(𝛽+1)
𝑙(2𝑛+1)

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛽+1)𝑙 )2 | 𝑞𝑛𝑙(2𝑚+1) 𝑚∏
𝑗=1

𝑊(𝛽)
𝑙(2𝑗+1)

⋅ 𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(𝑑)2𝑙𝑘𝑞𝑙𝑘 )
2𝑚+1

(67)

and for 𝑑 = 1
(𝑊(𝛽+1)
𝑙(2𝑛+1)

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛽+1)𝑙 )2
Δ4 | 𝑞𝑛𝑙(2𝑚+1) 𝑚∏

𝑗=1

𝑊(𝛽)
𝑙(2𝑗+1)

⋅ 𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(1)2𝑙𝑘𝑞𝑙𝑘 )
2𝑚+1 .

(68)

We resume all these results in the following theorem.

Theorem 11. For integers 𝑑, 𝑙, 𝑟, 𝑚, 𝑡, 𝑛, 𝛿, with 𝑑 ≥ 1, 𝑙 >0, 𝑟 ≥ −2𝑙, 𝑚 ≥ 0, 𝑡, 𝑛 ≥ 1, and 𝛿 ∈ {0, 1}, considering a
polynomial sequence (𝑊(𝑑)𝑖 (𝑥))+∞𝑖=0 satisfying recurrence (1), we
have the following divisibility relations:

(𝑊(𝛼+𝛽)
𝑙(2𝑛+1)+𝑟

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)(𝑙+𝑟) ) | 𝑞𝑛𝑙(2𝑚+1) 𝑚∏
𝑗=0

𝑊(𝛽)
𝑙(2𝑗+1)

⋅ 𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑙𝑘 )2𝑚+1 , ∀𝑑 ≥ 3
(69)

𝑊(𝛼+𝛽)
𝑙(2𝑛+1)+𝑟

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛼+𝛽)(𝑙+𝑟)Δ2 | 𝑞𝑛𝑙(2𝑚+1) 𝑚∏
𝑗=0

𝑊(𝛽)
𝑙(2𝑗+1)

⋅ 𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑙𝑘 )2𝑚+1 , if 𝑑 ∈ {1, 2}
(70)

where 𝛼, 𝛽 ∈ {1, 2} and 𝛼 ≡ 𝑑 mod 2, 𝛽 ≡ 𝛿 + 𝑙 + 1 mod 2.

Furthermore, when 𝑟 = 0
(𝑊(𝛽+1)
𝑙(2𝑛+1)

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛽+1)𝑙 )2 | 𝑞𝑛𝑙(2𝑚+1) 𝑚∏
𝑗=1

𝑊(𝛽)
𝑙(2𝑗+1)

⋅ 𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(2𝑡+1)2𝑙𝑘𝑞𝑙𝑘 )2𝑚+1 ,
(𝑊(𝛽+1)
𝑙(2𝑛+1)

+ (−1)𝑛𝛿+1 𝑞𝑛𝑙𝑊(𝛽+1)𝑙 )2
Δ4 | 𝑞𝑛𝑙(2𝑚+1) 𝑚∏

𝑗=1

𝑊(𝛽)
𝑙(2𝑗+1)

⋅ 𝑛∑
𝑘=1

(−1)𝛿𝑘(𝑊(1)2𝑙𝑘𝑞𝑙𝑘 )
2𝑚+1 .

(71)

We observe that the previous theorem allows us to give
a refinement for Corollary 7 in [13]. Indeed, if we consider
Chebyshev polynomials, that is, 𝑝(𝑥) = 2𝑥, 𝑞(𝑥) = −1, Δ2 =4(𝑥2 − 1), and (𝑊(1)𝑖 (𝑥))+∞𝑖=0 = (𝑈𝑖−1(𝑥))+∞𝑖=0 , (𝑊(2)𝑖 (𝑥))+∞𝑖=0 =(2𝑇𝑖(𝑥))+∞𝑖=0 , with the choices 𝛿 = 1, 𝑙 = 1, we have 𝛽 = 1 and,
thanks to rule (6),

(2𝑇2𝑛+1 (𝑥) − 2𝑇1 (𝑥))2Δ4 = (Δ2𝑈𝑛 (𝑥)𝑈𝑛−1 (𝑥))
2

Δ4
= 𝑈2𝑛 (𝑥)𝑈2𝑛−1 (𝑥) .

(72)

So, omitting the trivial factor (−1)𝑛 = 𝑞𝑛(2𝑚+1), relation (71)
becomes

𝑈2𝑛 (𝑥)𝑈2𝑛−1 (𝑥) | 𝑚∏
𝑗=1

𝑈2𝑗 (𝑥) 𝑛∑
𝑘=1

(𝑈2𝑘−1 (𝑥))2𝑚+1 (73)

or equivalently (since 2 | 𝑈2𝑘−1(𝑥) for all 𝑘 ≥ 1 and𝑇1(𝑥) = 𝑥)
(𝑇2𝑛+1 (𝑥) − 𝑥)2 | Δ4 𝑚∏

𝑗=1

𝑈2𝑗 (𝑥) 𝑛∑
𝑘=1

(𝑈2𝑘−1 (𝑥))2𝑚+1 . (74)

Finally we point out that, unfortunately, the statement of
Corollary 7 in [13] is wrong. It asserts (in our notations) that
for integers𝑚 ≥ 0, 𝑛 ≥ 1

𝑚∏
𝑗=0

𝑈2𝑗 (𝑥) 𝑛∑
𝑘=1

(𝑈2𝑘−1 (𝑥))2𝑚+1
= (𝑇2𝑛+1 (𝑥) − 𝑥)𝑄2𝑚 (𝑥, 𝑇2𝑛+1) ,

(75)

where 𝑄2𝑚(𝑥, 𝑦) is an integer coefficients polynomial of two
variables with degree 2𝑚 in 𝑦. But a simple calculation when𝑚 = 0, 𝑛 = 1 shows that the left member of (75) is𝑈0(𝑥)𝑈1(𝑥) = 2𝑥, which obviously can not be divided by the
factor𝑇3(𝑥)−𝑥 = 4𝑥3−4𝑥 in the right member. Equality (75)
also fails in the case ≥ 1. For instance, when𝑚 = 1 and 𝑛 = 1,
we get

8𝑥3 (4𝑥2 − 1) = 𝑈0 (𝑥)𝑈2 (𝑥)𝑈31 (𝑥)
= (𝑇3 (𝑥) − 𝑥)𝑄2 (𝑥, 𝑇3 (𝑥))
= 4𝑥 (𝑥2 − 1)𝑄2 (𝑥, 4𝑥3 − 𝑥)

(76)
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and clearly 4𝑥(𝑥2 − 1) ∤ 8𝑥3(4𝑥2 − 1). The correct statement
is the one given by (70), which reveals that when 𝑚, 𝑛 are
positive integers, we needΔ2 as extra factor in the leftmember
of (75) in order to obtain a real equality.

3.2. Even Powers. When we deal with sums involving even
powers, considering identity (21) and the results of Corol-
lary 10, from (52), we easily find that for the difference

D𝑑 = 𝑛∑
𝑘=1

(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚

− (𝑊(1)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(1)2(𝑙+𝑟)𝑞2𝑛𝑙𝑊(1)
2(𝑙+𝑟)

Σ1,2𝑚
+ 𝑛(2𝑚𝑚 )((−1)𝑑+𝑟 𝑞𝑟Δ2(𝑑−2))𝑚)

(77)

the following divisibility relation holds for all 𝑑 ≥ 2:
𝑊(1)2(𝑙(2𝑛+1)+𝑟) (𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) |
𝑞2𝑚𝑛𝑙 𝑚∏
𝑗=1

𝑊(1)2𝑙𝑗 D𝑑, (78)

and if 𝑑 = 1
𝑊(1)2(𝑙(2𝑛+1)+𝑟) (𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) |
Δ2𝑚𝑞2𝑚𝑛𝑙 𝑚∏

𝑗=1

𝑊(1)2𝑙𝑗 D1, (79)

since in this case we need to balance the factor Δ−2𝑚 inD1.
When 𝛿 = 1 and 𝑛 is even, from (55) with 𝑑 ≥ 2, we have

(𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) | 𝑞2𝑚𝑛𝑙 𝑚∏
𝑗=1

𝑊(2)2𝑙𝑗
⋅ 𝑛∑
𝑘=1

(−1)𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚 .

(80)

In the case 𝑑 = 1, we have to consider the presence of the
factorΔ−2𝑚 in the term Σ3,2𝑚, so we apply the same reasoning
we have done in the previous subsection, in order to preserve
the positive even powers of Δ nested in (𝑊(2)

2(𝑙(2𝑛+1)+𝑟)
−𝑞2𝑛𝑙𝑊(2)

2(𝑙+𝑟)
)Σ3,2𝑚. Thus, since from Corollary 10 we know thatΔ2 | 𝑊(2)

2(𝑙(2𝑛+1)+𝑟)
− 𝑞2𝑛𝑙𝑊(2)

2(𝑙+𝑟)
, we find the divisibility relation

for 𝑛 even
𝑊(2)
2(𝑙(2𝑛+1)+𝑟)

− 𝑞2𝑛𝑙𝑊(2)
2(𝑙+𝑟)Δ2

= 𝑊(1)2(𝑙(𝑛+1)+𝑟)𝑊(1)2𝑛𝑙 | 𝑞2𝑚𝑛𝑙 𝑚∏
𝑗=1

𝑊(2)2𝑙𝑗
⋅ 𝑛∑
𝑘=1

(−1)𝑘(𝑊(1)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚 .

(81)

In the last case 𝛿 = 1, 𝑛 odd, corresponding to equality (57),
if we consider the sum

S𝑑 = 𝑛∑
𝑘=1

(−1)𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚 + Σ4,2𝑚

+ (2𝑚𝑚 )((−1)𝑑+𝑟 𝑞𝑟Δ2(𝑑−2))𝑚 ,
(82)

we have

𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟) | 𝑞2𝑚𝑛𝑙 𝑚∏
𝑗=1

𝑊(2)2𝑙𝑗 S𝑑,
𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟) | Δ2𝑚𝑞2𝑚𝑛𝑙 𝑚∏

𝑗=1

𝑊(2)2𝑙𝑗 S1,
(83)

since we need to balance the factor Δ−2𝑚 in S1.
When 𝑟 = 0, taking into account the following binomial

identity,

𝑚∑
ℎ=1

( 2𝑚
𝑚 − ℎ) (−1)𝑑(𝑚−ℎ)

= 12 ((1 + (−1)𝑑)2𝑚 − (−1)𝑚𝑑 (
2𝑚
𝑚 )) ,

(84)

we also obtain further simplifications of the previous rela-
tions.

Indeed, when 𝑑 is odd, from (84), (53), and (58), we get

Σ1,2𝑚 = (−1)𝑚+1 Δ2𝑚(𝑑−2)2 (2𝑚𝑚 ) ,
Σ4,2𝑚 = (−1)𝑚+1 Δ2𝑚(𝑑−2) (2𝑚𝑚 ) .

(85)

In particular, the right members of equalities (55) and (57)
differ only by a minus sign; thus we have for all positive
integers 𝑛 and 𝑡

(𝑊(2)2𝑙(2𝑛+1) − 𝑞2𝑛𝑙𝑊(2)2𝑙 ) | 𝑞2𝑚𝑛𝑙 𝑚∏
𝑗=1

𝑊(2)2𝑙𝑗
⋅ 𝑛∑
𝑘=1

(−1)𝑘(𝑊(2𝑡+1)2𝑙𝑘𝑞𝑘𝑙 )2𝑚 ,
𝑊(2)
2𝑙(2𝑛+1)

− 𝑞2𝑛𝑙𝑊(2)
2𝑙Δ2 = 𝑊(1)2𝑙(𝑛+1)𝑊(1)2𝑛𝑙 | 𝑞2𝑚𝑛𝑙 𝑚∏

𝑗=1

𝑊(2)2𝑙𝑗
⋅ 𝑛∑
𝑘=1

(−1)𝑘(𝑊(1)2𝑙𝑘𝑞𝑘𝑙 )
2𝑚 .

(86)

We resume all these results in the following theorem.
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Theorem 12. For integers 𝑑, 𝑙, 𝑟, 𝑚, 𝑡, 𝑛, 𝛿, with 𝑑 ≥ 1, 𝑙 > 0,𝑟 ≥ −2𝑙, 𝑚 ≥ 0, 𝑡, 𝑛 ≥ 1, and 𝛿 ∈ {0, 1}, considering a
polynomial sequence (𝑊(𝑑)𝑖 (𝑥))+∞𝑖=0 satisfying recurrence (1),
one has the following divisibility relations:

𝑊(1)2(𝑙(2𝑛+1)+𝑟) (𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) |
𝑞2𝑚𝑛𝑙 𝑚∏
𝑗=1

𝑊(1)2𝑙𝑗 D𝑑,
(𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) | 𝑞2𝑚𝑛𝑙 𝑚∏

𝑗=1

𝑊(2)2𝑙𝑗
⋅ 𝑛∑
𝑘=1

(−1)𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚 , 𝑛 odd,

𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟) | 𝑞2𝑚𝑛𝑙 𝑚∏
𝑗=1

𝑊(2)2𝑙𝑗 S𝑑, 𝑛 even,
𝑊(1)2(𝑙(2𝑛+1)+𝑟) (𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟)) |
Δ2𝑚𝑞2𝑚𝑛𝑙 𝑚∏

𝑗=1

𝑊(1)2𝑙𝑗 D1,
𝑊(2)
2(𝑙(2𝑛+1)+𝑟)

− 𝑞2𝑛𝑙𝑊(2)
2(𝑙+𝑟)Δ2 = 𝑊(1)2(𝑙(𝑛+1)+𝑟)𝑊(1)2𝑛𝑙 |

𝑞2𝑚𝑛𝑙 𝑚∏
𝑗=1

𝑊(2)2𝑙𝑗 𝑛∑
𝑘=1

(−1)𝑘(𝑊(1)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚 , 𝑛 odd

𝑊(2)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(2)2(𝑙+𝑟) | Δ2𝑚𝑞2𝑚𝑛𝑙 𝑚∏
𝑗=1

𝑊(2)2𝑙𝑗 S1,
𝑛 even,
∀𝑑 ≥ 2,

(87)

where

D𝑑 = 𝑛∑
𝑘=1

(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚

− (𝑊(1)2(𝑙(2𝑛+1)+𝑟) − 𝑞2𝑛𝑙𝑊(1)2(𝑙+𝑟)𝑞2𝑛𝑙𝑊(1)
2(𝑙+𝑟)

Σ1,2𝑚
+ 𝑛(2𝑚𝑚 )((−1)𝑑+𝑟 𝑞𝑟Δ2(𝑑−2))𝑚) ,

S𝑑 = 𝑛∑
𝑘=1

(−1)𝑘(𝑊(𝑑)2𝑙𝑘+𝑟𝑞𝑘𝑙 )
2𝑚 + Σ4,2𝑚

+ (2𝑚𝑚 )((−1)𝑑+𝑟 𝑞𝑟Δ2(𝑑−2))𝑚 .

(88)

Furthermore, if 𝑟 = 0
(𝑊(2)2𝑙(2𝑛+1) − 𝑞2𝑛𝑙𝑊(2)2𝑙 ) | 𝑞2𝑚𝑛𝑙 𝑚∏

𝑗=1

𝑊(2)2𝑙𝑗
⋅ 𝑛∑
𝑘=1

(−1)𝑘(𝑊(2𝑡+1)2𝑙𝑘𝑞𝑘𝑙 )2𝑚 ,
𝑊(2)
2𝑙(2𝑛+1)

− 𝑞2𝑛𝑙𝑊(2)
2𝑙Δ2 = 𝑊(1)2𝑙(𝑛+1)𝑊(1)2𝑛𝑙 | 𝑞2𝑚𝑛𝑙 𝑚∏

𝑗=1

𝑊(2)2𝑙𝑗
⋅ 𝑛∑
𝑘=1

(−1)𝑘(𝑊(1)2𝑙𝑘𝑞𝑘𝑙 )
2𝑚 .

(89)

4. Conclusions

We have found formulas which give a clear, interesting,
and comprehensive synthesis of many identities related to
power sums of well-known families of polynomials and, in
general, for a wide class of functions satisfying recurrence
(1). We think that these formulas, beyond their intrinsic
beauty, could be useful in applications. Indeed many of the
polynomials satisfying recurrence (1), such as Chebyshev and
Jacobsthal–Lucas polynomials, have several applications in
physics and engineering, for example, concerning solutions
of partial and ordinary differential equations or good approx-
imations of functions using polynomials. In some calcula-
tions power sums may arise and our formulas give a simpler
form to these sums (also with alternating sign), providing
relatively easy summations avoiding powers of polynomials.
Moreover divisibility relations between polynomials, which
also generalize the ones considered by Melham for Fibonacci
and Lucas numbers in [3], could give other additional
information related to the knowledge of the factorization of
the power sums and convolutions involved. Finally, thanks to
Girard–Waring formulas, we have also proved the equivalents
of the two conjectures presented in [3] for all the polynomial
sequences defined by (1).
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