

Vol.9 (2019) No. 4

ISSN: 2088-5334

An Automatic AW-SOM VHDL IP-core Generator
Daniele Giardino#, Marco Matta#, Sergio Spanò#*

#Department of Electronic Engineering, University of Rome Tor Vergata, Via Del Politecnico 1, Rome, 00133, Italy
 E-mail: *spano@ing.uniroma2.it

Abstract— In this paper, the authors present a MATLAB IP generator for hardware accelerators of All-Winner Self-Organizing
Maps (AW-SOM). AW-SOM is a modified version of Kohonen’s Self Organizing Maps (SOM) algorithm, which is one of the most
used Machine Learning algorithms for data clustering, and vector quantization. The architecture of the AW-SOM method is meant
for hardware implementations, and its main feature is a processing speed almost independent to the number of neurons since each of
them is processed in a parallel way; the parallelization can be easily exploited by hardware custom hardware designs. The IP
generator is built-in MATLAB and provides the user with the possibility to design a custom and efficient hardware accelerator.
Several settings can be set such as the number of features and the number of neurons. The target language is the VHSIC Hardware
Description Language (VHDL). The generated IP cores can be used for the training of the model and a built-in function of the
software can also check the clustering performances using its inference capabilities. The accelerators produced by the software have
been also characterized in terms of max frequency, hardware resources, and power consumption. The authors performed the
hardware implementations on a XILINX Virtex 7 xc7vx690t FPGA.

Keywords— clustering; AW-SOM; hardware acceleration; IP generator.

I. INTRODUCTION

In the several last years, Hardware Accelerators have been
increasingly used to speed-up applications in different fields
[1]-[2]. Hardware accelerators can be developed using
different technologies such as ASICs and FPGAs or other
Reconfigurable Architectures. Among these Hardware
architectures, FPGAs usually represent the most used
solution thanks to their flexibility and reconfiguration
capabilities. These features make possible the use of FPGAs
in several types of applications. [3]-[8]. The spread of
Machine Learning (ML) of the last years has further
increased the interest in hardware acceleration. This is
because ML algorithms are often characterized by the
necessity of parallel computing, which cannot be obtained
through classical microprocessor approaches.

Nowadays, several digital tools are available on the
market for the efficient implementation of ML models. As
stated before, this is because the flexibility and high
computing capabilities of FPGAs but also ASICs constitute
a rather significant option in this sense. The literature
provides hundreds of examples of FPGA/ASIC based
machine learning hardware accelerators. However, it needs
significant effort in designing these architectures, as the use
of hardware description languages (HDL) suggests.

Novel Machine Learning algorithms have been introduced
in several fields in recent years [9]-[19]. As said previously,

the growing interest in ML can be associated also to high
computing capabilities obtained using hardware
implementations of such artificial intelligence [20], [21].
Hardware acceleration is a key enabler also for advanced
networking applications [22] and can sensibly improve the
design and development of energy efficiency devices [23]-
[24].

In this paper, the authors present an optimized VHSIC
Hardware Description Language (VHDL) code IP generator
for All-Winner Self-Organizing-Maps (AW-SOM) [25].
AW-SOM algorithm is a modified version of Kohonen’s
Self-Organizing Maps (SOM) [26]. The original algorithm is
an unsupervised ML method, while the AW version is the
optimized counterpart for hardware implementations. Our IP
generator provides a powerful tool to produce flexible AW-
SOM networks since it is possible to set its parameters,
namely: the number of input features (spatial dimensions of
the net) and the number of neurons. The produced IP cores
can be employed for the speed-up of the learning phase. The
AW-SOM architecture can reduce the map's hardware
complexity without affecting the clustering performance.
The simplification is obtained by applying some
mathematical approximations to the original SOM algorithm.
This work is an extended update of the IP-core generator for
SOM [27].

1136

II. MATERIALS AND METHOD

The SOM algorithm proposed by Teuvo Kohonen [26] is
an unsupervised learning method that maps high
dimensional input data to a two-dimensional space.
Unsupervised learning finds application today in several
fields [27]-[33]. The core of the method is its neurons, which
can be represented using N-dimensional vectors �� called
weight vectors. The number of dimensions is related to the
number of features needed for the clustering/vector
quantization process. For this reason, the number of features
of the application is also referred to as “dimensions.”

In the traditional training model of SOM, a set of N-
dimensional input vectors , representing the examples for
the training process, are presented to the algorithm one at
time. After some epochs, eventually, the algorithm will learn
the patterns between the inputs, and every neuron will
represent a cluster.

The core of the update process relies on a winner neuron,
also known as Best-Matching-Unit (BMU), which is the
closest one to the considered input at time� . The update
formula for the weight vectors is shown in equation (1) and
it depends on the recognized winner through a radial-basis
function ℎ called neighborhood function. All the neurons
should be updated simultaneously. This last part is the core
of the parallel processing capability requested by the
algorithm.

������⃗ 	�
 1� ������⃗ 	��
 ℎ	�� ��⃗	�� � ������⃗ 	��� (1)

The classic SOM formulation usually includes a
neighborhood function, which is gaussian, as shown in
equation (2).

ℎ	�� �	��exp 	
‖������⃗ � ��������⃗ ‖�

2��
� (2)

where �� represents the winner neuron, � is the learning
rate and �� is the neighborhood radius.

A direct hardware implementation of equation (1) and (2)
is not optimized since it requires some heavy computations.
The issues with the resulting architecture are:

• Computation of the Euclidean distance between the
neurons and the winner neuron, which requires square
roots and squares.

• Multiplications and divisions.
• Computation of the exponential function requires

approximated forms or tabled values.
Some solutions to this problem are studied [34]-[35] as

follows:
• Using the Manhattan distance instead of the Euclidean

one. It is much simpler and effective in the processing
steps of SOM.

• Using base-2 functions, so every multiplication or
division can be achieved using simple arithmetic
shifters.

• Approximating � with 2, so the exponential function
can be computed similarly to the multiplications and
divisions using shifters.

By applying that substitution, we can formulate an
optimized neighborhood function for hardware:

ℎ��	�� 2
�

| !�����⃗ � "�������⃗ |

�# �$
 (3)

where 2% is the neighborhood radius. Notice that & and � are
now positive integer values, which drive the arithmetic
shifters.

A. The AW-SOM Algorithm

AW-SOM can boost the learning stage of SOM enhancing
is intrinsic parallel structure. The algorithm does not involve
the identification of the winner neuron, which, is a critical
part of the propagation delay of the architecture and the main
bottleneck. Moreover, increasing the number of neurons, the
comparison stages needed to find the winner neuron
increases too. This aspect leads to a higher critical path and a
lower clock frequency.

The suggested algorithm's fundamental concept is
straightforward and it is based on the following assumption:
if the input vector is similar enough (closer in the N-D
feature space) to the winner neuron, the former's coordinates
can be used straight in the neighborhood feature instead of
the latter's coordinates. This state is achieved after an
appropriate amount of epochs, as shown in [32]. Considering
this factor, the AW-SOM update formula is shown in eq. (4).

������⃗ 	�
 1� ������⃗ 	��
 ℎ'�	�� ��⃗	�� � ������⃗ 	��� (4)

The hardware optimized neighborhood function of (4) is
shown in (5).

ℎ'�	�� 2
�

| !�����⃗ �(⃗|

�# �$
 (5)

�� is the weight vector of the i-th neuron, � is the input
vector, & is the neighborhood radius, and � is the learning
rate. The last two parameters can be decreased during the
training process 5) is a modified AW-SOM version of the
classic neighborhood function of traditional SOM in eq. (3)
where the winner neuron has been substituted with the
examples input vector.

III. RESULTS AND DISCUSSION

The IP generator offers to the designers the possibility to
configure parameters and to generate the VHDL code using
a Graphical User Interface (GUI) realized as a MATLAB
App. The icon of the MATLAB app is shown in Fig. 1.

Fig. 1 AW-SOM IP generator icon of the MATLAB application

After the start-up, the program prompts the user to set the

parameters of the map as shown in Fig. 2.

1137

Fig. 2 Initial configuration prompt.

The user can choose the number of features, the number

of neurons and the bit size for all the weights. The neurons
can be initialized in a hexagonal, grid or random topology.
The initial position of the neurons can cover a certain
percentage of the N-d space e.g. 100% means that the last
neurons are placed in position2)#*+ � 1. The user can also
load a pre-defined matrix containing the initial weight values.
After the code generation trigger by the dedicated button, the
user will find in its working directory a certain number of
vhd files. The top-level file of the architecture is called
“AW-SOM.vhd.”

A. Input and output ports

The generated architecture provides several input and
output ports to control the AW-SOM as long with two
scanchains to read and write the neurons weights. The list of
the input ports and their function is shown in Table I.

TABLE I
LIST OF INPUT PORTS

Port name Description
clk System clock

rst Resets the entire system and all the registers.
Resets the weights register to their predefined
values.

en Enables the learning process.

scanin_en Loads the values of the input scanchain into the
weights registers.

scanout_en Enables the output scanchain to shift all the
values in the weights registers.

m_in Input scanchain.

x Input example vector.

b Neighborhood radius.

eta Learning rate.

The only output port is m_out which serially takes out the

values into the weights register if the scanout_en signal is
enabled.

B. Clustering results viewer feature

Our MATLAB application is also able to perform a
simulation of the clustering capabilities of the hardware
AW-SOM. This is possible after the VHDL code has been
generated even if not yet synthesized. The user can train the
net with an array of inputs for a certain number of epochs.
The software can show the results for a map of maximum 3
features. This limitation derives for obvious representation
limitations of dimensions up to 3.

As example, Fig. 3 shows the training results of a system
where have been used 3 features, 6 noisy clusters (each one
consisting of 100 inputs) randomly initialized in a 16 bits
quantized space. The map was randomly initialized with 16
neurons, the first plot is the initial state, and the second one
is the result of the training process. The green smaller dots
represent the input of the clusters and the blue larger dots
represent the neurons.

Fig. 3 Learning simulation results using 3 features, 16 neurons, 16 bits per
weight, random initialization.

C. Implementation results

In order to validate the IP generator, some Synthesis and
Place & Route have been performed using the Xilinx Vivado
2018.2 tool chain and the FPGA Virtex 7 xc7vx690t as a
target device. Experiments have been performed using
different AW-SOM configurations. In this section, authors
show experimental results for the following configurations:

• 8 bits for representing each weight of the neuron
• 1 to 4 features
• 16, 32, 64 and 128 neurons

We measured the following:
• number of required Look-Up-Tables (LUT)
• number of Flip-Flops (FF)
• dissipated dynamic power
• Maximum clock frequency
• Giga Connections Updates per Seconds (GCUPS)

The latter is a common quantity figure of neural networks
and represents how many weights are updated in a second.
The total number of LUT on the target device is 433200,
while the total number of FF is 866400. Notice that the
power has been estimated using a worst-case approach
considering an activity factor of 0.5 on every node of the
synthesized network. The implementation results of AW-
SOM architectures with 1, 2, 3 and 4 features are shown
respectively in Tables II, III, IV, and V. The AW-SOM IPs
have also been characterized in terms of power consumption

1138

that nowadays represents a crucial aspect both for embed
systems and desktop [36].

TABLE II
IMPLEMENTATION RESULTS OF 1 FEATURE ARCHITECTURES

N. of neurons 16 32 64 128
LUT 1238 2511 5027 10046
FF 384 768 1536 3072
Power (mW) 56 96 117 343
Clock (MHz) 176.56 178.83 173.85 175.32
GCUPS 2.8 5.72 11.13 22.44

TABLE III
IMPLEMENTATION RESULTS OF 2 FEATURES ARCHITECTURES

N. of neurons 16 32 64 128
LUT 1992 3978 7949 15892
FF 768 1536 3072 6144
Power (mW) 94 156 286 550
Clock (MHz) 163.03 163.1 158.63 156.32
GCUPS 5.22 10.44 20.3 40.02

TABLE IV
IMPLEMENTATION RESULTS OF 3 FEATURES ARCHITECTURES

N. of neurons 16 32 64 128
LUT 2935 5867 11603 23194
FF 1152 2304 4608 9216
Power (mW) 144 246 456 874
Clock (MHz) 157.65 151.81 150.15 149.43
GCUPS 7.57 14.57 28.83 57.38

TABLE V
IMPLEMENTATION RESULTS OF 4 FEATURES ARCHITECTURES

N. of neurons 16 32 64 128
LUT 3744 7492 14921 29856
FF 1536 3072 6144 12288
Power (mW) 208 353 652 1246
Clock (MHz) 147.73 150.82 147.75 146.11
GCUPS 9.45 19.3 37.77 74.81

To better understand the implementation results and the

quality of the generated architecture, we show the
implementation results in an aggregated form in Figs. 4, 5, 6,
7 and 8.

Fig. 4 Look-Up-Tables required.

Fig. 5 Flip-Flops required.

Fig. 6 Dynamic power consumption.

Fig. 7 Maximum clock frequency.

Fig. 8 Billions of Connections Updates per Second.

Figs. 4, 5 and 6 show how the architecture is almost

perfectly scalable in a linear way. Figs. 7 and 8 confirm the
main advantage of using AW-SOM instead of SOM: the
maximum clock frequency is almost independent to the
number of neurons of the net.

1139

IV. CONCLUSION

In this work, we proposed an optimized IP core generator
for hardware acceleration for All-Winner Self-Organizing
Maps. Our tool generates the network in VHDL language,
and it can accelerate the learning phase (training). The core
generator can be used in several fields, as health [38]-[39],
communications [40], etc. Thanks to its flexibility, it can be
used for any application that requires a huge number of
neurons or features still requiring low resources and low
power dissipation. In a future version of the software, we
will able to provide an AXI interface to the accelerator. This
feature would further enhance the implementation
capabilities of our AW-SOM IP core thanks to its
applications on System-of-Chips (SoCs) made of
microprocessors and FPGA on the same die.

REFERENCES
[1] G.C. Cardarilli, L. Di Nunzio, R. Fazzolari, and M. Re, “TDES

cryptography algorithm acceleration using a reconfigurable
functional unit” in 21st IEEE International Conference on
Electronics, Circuits and Systems, ICECS 2014, 2014, paper
7050011, pp. 419-422.

[2] G.C. Cardarilli, L. Di Nunzio, R. Fazzolari, S. Pontarelli, M. Re, and
A. Salsano, “Implementation of the AES algorithm using a
Reconfigurable Functional Unit” in ISSCS - International Symposium
on Signals, Circuits and Systems, Proceedings, 2011, paper 5978668,
pp. 97-100.

[3] F. Silvestri, S. Acciarito, G.C. Cardarilli, G.M. Khanal, L. Di Nunzio,
R. Fazzolari, and M. Re, “FPGA implementation of a low-power
QRS extractor” in Lecture Notes in Electrical Engineering, 2019,
paper 512, pp. 9-15.

[4] R. Ammendola and P. Loreti, “Design and evaluation of a scalable
engine for 3D-FFT computation in an FPGA cluster”, International
Journal on Advanced Science, Engineering and Information
Technology, vol. 9 (2), pp. 677-684, 2019.

[5] F. Silvestri, S. Acciarito, and G.M. Khanal, “Relationship between
mathematical parameters of modified Van der Pol Oscillator model
and ECG morphological features”, International Journal on
Advanced Science, Engineering and Information Technology, vol. 9
(2), pp. 601-608, 2019.

[6] Andrizal, R. Chadry, and A.I. Suryani, “Embedded System Using
Field Programmable Gate Array (FPGA) myRIO and LabVIEW
Programming to Obtain Data Patern Emission of Car Engine
Combustion Categories”, JOIV : International Journal on
Informatics Visualization, vol. 2 (2), 2018...

[7] A.R. Kardian, S.A. Sudiro, and S. Madenda, “Efficient
implementation of mean, variance and skewness statistic formula for
image processing using FPGA device”, Bulletin of Electrical
Engineering and Informatics, vol. 7 (3), pp. 386-392, 2018.

[8] Iswanto, O. Wahyunggoro, and A.I. Cahyadi, “Formation pattern
based on modified cell decomposition algorithm”, International
Journal on Advanced Science, Engineering and Information
Technology, vol. 7 (3), pp. 829-835, 2017.

[9] Andrizal, B. Bakhtiar, and R. Chadry, “Detection combustion data
pattern on gasoline fuel motorcycle with carburetor system”,
International Journal on Advanced Science, Engineering and
Information Technology, vol. 6 (1), pp. 107-111, 2016.

[10] A.O. Mulani and P.B. Mane, “Watermarking and cryptography based
image authentication on reconfigurable platform”, Bulletin of
Electrical Engineering and Informatics, vol. 6 (2), pp. 181-187, 2017.

[11] G. Capizzi, G. and G. Tina. "Long-term operation optimization of
integrated generation systems by fuzzy logic-based management",
Energy, vol. 32 (7), pp. 1047-1054 , 2007.

[12] G. Capizzi, G. Lo Sciuto, P. Monforte, and C. Napoli, "Cascade feed
forward neural network-based model for air pollutants evaluation of
single monitoring stations in urban areas.", International Journal of
Electronics and Telecommunications, vol. 61 (4), pp. 327-332, 2015.

[13] P. Loreti, L. Bracciale, and A. Caponi, "Push Attack: Binding
Virtual and Real Identities Using Mobile Push Notifications", Future
Internet, vol. 10 (2), p. 13, 2018.

[14] F. Beritelli, G. Capizzi, G. Lo Sciuto, C. Napoli, and F. Scaglione,
"Automatic heart activity diagnosis based on Gram polynomials and
probabilistic neural networks", Biomedical engineering letters, vol. 8
(1), pp. 77-85, 2018.

[15] M. Matta, G.C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino,
M. Re, F. Silvestri, and S. Spanò, “Q-RTS: a real-time swarm
intelligence based on multi-agent Q-learning”, Electronics Letters,
vol. 55 (10), pp. 589-591, 2019.

[16] L. Bracciale, P. Loreti, and G. Bianchi. "The sleepy bird catches
more worms: revisiting energy efficient neighbor discovery", IEEE
Transactions on Mobile Computing, vol. 15 (7), pp. 1812-1825, 2015.

[17] D. Giardino, M. Matta, F: Silvestri, S. Spanò, and V. Trobiani,
“FPGA Implementation of Hand-written Number Recognition Based
on CNN”, International Journal on Advanced Science, Engineering
and Information Technology, vol. 9 (1), pp. 167-171, 2019.

[18] G.C. Cardarilli, R. Fazzolari, D. Giardino, M. Matta, M. Re, F.
Silvestri, and S. Spanò, “Efficient Ensemble Machine Learning
Implementation on FPGA Using Partial Reconfiguration”, in
International Conference on Applications in Electronics Pervading
Industry, Environment and Society, 2018. pp. 253-259.

[19] G. Susi, L.A. Toro, L. Canuet, M.E. López, F. Maestú, C.R. Mirasso,
and E. Pereda, “A neuro-inspired system for online learning and
recognition of parallel spike trains, based on spike latency, and
heterosynaptic STDP”, Frontiers in Neuroscience, vol. 12, 2018.

[20] M. Salerno, G. Susi, and A. Cristini, “Accurate latency
characterization for very large asynchronous spiking neural
networks” in BIOINFORMATICS 2011 - Proceedings of the
International Conference on Bioinformatics Models, Methods and
Algorithms, 2011, pp. 116-124.

[21] G. Susi, A. Cristini, and M. Salerno, “Path multimodality in a
feedforward snn module, using lif with latency model”, Neural
Network World, vol. 26 (4), pp. 363-376, 2016.

[22] A. Detti, M. Orru, R. Paolillo, G. Rossi, P. Loreti, L. Bracciale, and
N. Blefari Melazzi, "Application of information centric networking
to NoSQL databases: the spatio-temporal use case", in 2017 IEEE
International Symposium on Local and Metropolitan Area Networks
(LANMAN), 2017, pp. 1-6.

[23] P. Loreti, A. Catini, M. De Luca, L. Bracciale, G. Gentile, and C. Di
Natale, “The Design of an Energy Harvesting Wireless Sensor Node
for Tracking Pink Iguanas”, Sensors, vol. 19 (5), p. 985, 2019.

[24] L. Bracciale, A. Catini, G. Gentile, and P. Loreti, “Delay tolerant
wireless sensor network for animal monitoring: The Pink Iguana
case”, in Lecture Notes in Electrical Engineering, 2017, paper 429,
pp. 18-26.

[25] G.C. Cardarilli, L. Di Nunzio, R. Fazzolari, M. Re, and S. Spanò,
“AW-SOM, an Algorithm for High-speed Learning in Hardware
Self-Organizing Maps”, IEEE Transactions on Circuits and Systems
II: Express Briefs, 2019.

[26] T. Kohonen, “The self-organizing map”, in Proceedings of the IEEE,
1990, vol. 78 (9), pp. 1464-1480.

[27] D. Giardino, M. Matta, M. Re, F. Silvestri, and S. Spanò, “IP
Generator Tool for Efficient Hardware Acceleration of Self-
organizing Maps”, in International Conference on Applications in
Electronics Pervading Industry, Environment and Society, 2018. pp.
493-499.

[28] E. De Luca, F. Fallucchi, R, Giuliano, G. Incarnato, and F. Mazzenga,
“Analysing and visualizing tweets for U.S. president popularity”,
International Journal on Advanced Science, Engineering and
Information Technology, vol. 9 (2), pp. 692-699, 2019

[29] A.K. Dubey, U. Gupta, and S. Jain, “Comparative study of K-means
and fuzzy C-means algorithms on the breast cancer data”,
International Journal on Advanced Science, Engineering and
Information Technology, vol. 8 (1), pp. 18-29, 2018.

[30] M.F.A. Saputra, T. Widiyaningtyas, and A.P. Wibawa, “Illiteracy
Classification Using K Means-Naïve Bayes Algorithm”, JOIV:
International Journal on Informatics Visualization, vol. 2 (3), 2018.

[31] H.M. Rahman, N. Arbaiy, M. S. Che Lah, and N. Hassan,
“Exploratory Study of Kohonen Network for Human Health State
Classification”, JOIV : International Journal on Informatics
Visualization, vol. 2 (3), 2018.

[32] L.C. Lee, C.Y. Liong, and A.A. Jemain, “Applying fourier-transform
infrared spectroscopy and self-organizing maps for forensic
classification of white-copy papers”, International Journal on
Advanced Science, Engineering and Information Technology, vol. 6
(6), pp. 1033-1039, 2016.

[33] A.P. Rahmadini, P. Kristalina, and A. Sudarsono, “Optimization of
fingerprint indoor localization system for multiple object tracking

1140

based on iterated weighting constant - KNN method”, International
Journal on Advanced Science, Engineering and Information
Technology, 8 (3), vol. pp. 998-1007, 2018.

[34] H. Hikawa and Y. Maeda: “Improved Learning Performance of
Hardware Self-Organizing Map Using a Novel Neighborhood
Function”, IEEE Transactions on Neural Networks and Learning
Systems, vol. 26 (11), pp. 2861-2873, 2015.

[35] M.A De Abreu De Sousa and E. Del-Moral-Hernandez, “Comparison
of three FPGA architectures for embedded multidimensional
categorization through Kohonen’s self-organizing maps”, in
Proceedings – IEEE International Symposium on Circuits and
Systems, 2017.

[36] G. Iazeolla and A. Pieroni, “Power management of server farms”,
Applied Mechanics and Materials, pp. 453-459, 2014

[37] Ricci, E., Cianca, E., Rossi, T., Diomedi, M., & Deshpande, P.
“Performance evaluation of novel microwave imaging algorithms for

stroke detection using an accurate 3D head model”. Wireless
Personal Communications, 96(3), 3317-3331.

[38] Alsayat, A., El-Sayed, H. “Efficient genetic K-Means clustering for
health care knowledge discovery” 2016 IEEE/ACIS 14th
International Conference on Software Engineering Research,
Management and Applications, SERA 2016, art. no. 7516127,

[39] Quitadamo, L.R., Abbafati, M., Cardarilli, G.C., Mattia, D., Cincotti,
F., Babiloni, F., Marciani, M.G., Bianchi, L. “Evaluation of the
performances of different P300 based brain-computer interfaces by
means of the efficiency metric” (2012) Journal of Neuroscience
Methods, 203 (2), pp. 361-368.

[40] Gao, W., Qian, G., Xu, H. “SOM clustering analysis for
telecommunication customer segmentation” (2009) Proceedings -
International Conference on Management and Service Science,
MASS 2009, art. no. 5301514,

1141

