
 

 

 

Vol.9 (2019) No. 4 

ISSN: 2088-5334 

An Automatic AW-SOM VHDL IP-core Generator 
Daniele Giardino#, Marco Matta#, Sergio Spanò#* 

#Department of Electronic Engineering, University of Rome Tor Vergata, Via Del Politecnico 1, Rome, 00133, Italy 
 E-mail: *spano@ing.uniroma2.it 

 
 
Abstract— In this paper, the authors present a MATLAB IP generator for hardware accelerators of All-Winner Self-Organizing 
Maps (AW-SOM). AW-SOM is a modified version of Kohonen’s Self Organizing Maps (SOM) algorithm, which is one of the most 
used Machine Learning algorithms for data clustering, and vector quantization. The architecture of the AW-SOM method is meant 
for hardware implementations, and its main feature is a processing speed almost independent to the number of neurons since each of 
them is processed in a parallel way; the parallelization can be easily exploited by hardware custom hardware designs. The IP 
generator is built-in MATLAB and provides the user with the possibility to design a custom and efficient hardware accelerator. 
Several settings can be set such as the number of features and the number of neurons. The target language is the VHSIC Hardware 
Description Language (VHDL). The generated IP cores can be used for the training of the model and a built-in function of the 
software can also check the clustering performances using its inference capabilities. The accelerators produced by the software have 
been also characterized in terms of max frequency, hardware resources, and power consumption. The authors performed the 
hardware implementations on a XILINX Virtex 7 xc7vx690t FPGA. 
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I. INTRODUCTION 

In the several last years, Hardware Accelerators have been 
increasingly used to speed-up applications in different fields 
[1]-[2]. Hardware accelerators can be developed using 
different technologies such as ASICs and FPGAs or other 
Reconfigurable Architectures. Among these Hardware 
architectures, FPGAs usually represent the most used 
solution thanks to their flexibility and reconfiguration 
capabilities. These features make possible the use of FPGAs 
in several types of applications. [3]-[8]. The spread of 
Machine Learning (ML) of the last years has further 
increased the interest in hardware acceleration. This is 
because ML algorithms are often characterized by the 
necessity of parallel computing, which cannot be obtained 
through classical microprocessor approaches. 

Nowadays, several digital tools are available on the 
market for the efficient implementation of ML models. As 
stated before, this is because the flexibility and high 
computing capabilities of FPGAs but also ASICs constitute 
a rather significant option in this sense. The literature 
provides hundreds of examples of FPGA/ASIC based 
machine learning hardware accelerators. However, it needs 
significant effort in designing these architectures, as the use 
of hardware description languages (HDL) suggests. 

Novel Machine Learning algorithms have been introduced 
in several fields in recent years [9]-[19].  As said previously, 

the growing interest in ML can be associated also to high 
computing capabilities obtained using hardware 
implementations of such artificial intelligence [20], [21]. 
Hardware acceleration is a key enabler also for advanced 
networking applications [22] and can sensibly improve the 
design and development of energy efficiency devices [23]-
[24]. 

In this paper, the authors present an optimized VHSIC 
Hardware Description Language (VHDL) code IP generator 
for All-Winner Self-Organizing-Maps (AW-SOM) [25]. 
AW-SOM algorithm is a modified version of Kohonen’s 
Self-Organizing Maps (SOM) [26]. The original algorithm is 
an unsupervised ML method, while the AW version is the 
optimized counterpart for hardware implementations. Our IP 
generator provides a powerful tool to produce flexible AW-
SOM networks since it is possible to set its parameters, 
namely: the number of input features (spatial dimensions of 
the net) and the number of neurons. The produced IP cores 
can be employed for the speed-up of the learning phase. The 
AW-SOM architecture can reduce the map's hardware 
complexity without affecting the clustering performance. 
The simplification is obtained by applying some 
mathematical approximations to the original SOM algorithm. 
This work is an extended update of the IP-core generator for 
SOM [27]. 
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II. MATERIALS AND METHOD 

The SOM algorithm proposed by Teuvo Kohonen [26] is 
an unsupervised learning method that maps high 
dimensional input data to a two-dimensional space. 
Unsupervised learning finds application today in several 
fields [27]-[33]. The core of the method is its neurons, which 
can be represented using N-dimensional vectors ��  called 
weight vectors. The number of dimensions is related to the 
number of features needed for the clustering/vector 
quantization process. For this reason, the number of features 
of the application is also referred to as “dimensions.” 

In the traditional training model of SOM, a set of N-
dimensional input vectors  , representing the examples for 
the training process, are presented to the algorithm one at 
time. After some epochs, eventually, the algorithm will learn 
the patterns between the inputs, and every neuron will 
represent a cluster. 

The core of the update process relies on a winner neuron, 
also known as Best-Matching-Unit (BMU), which is the 
closest one to the considered input at time� . The update 
formula for the weight vectors is shown in equation (1) and 
it depends on the recognized winner through a radial-basis 
function ℎ called neighborhood function. All the neurons 
should be updated simultaneously. This last part is the core 
of the parallel processing capability requested by the 
algorithm. 

������⃗ 	� 
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The classic SOM formulation usually includes a 
neighborhood function, which is gaussian, as shown in 
equation (2). 
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where ��  represents the winner neuron, �  is the learning 
rate and �� is the neighborhood radius. 

A direct hardware implementation of equation (1) and (2) 
is not optimized since it requires some heavy computations. 
The issues with the resulting architecture are: 

• Computation of the Euclidean distance between the 
neurons and the winner neuron, which requires square 
roots and squares.  

• Multiplications and divisions. 
• Computation of the exponential function requires 

approximated forms or tabled values. 
Some solutions to this problem are studied [34]-[35] as 

follows: 
• Using the Manhattan distance instead of the Euclidean 

one. It is much simpler and effective in the processing 
steps of SOM. 

• Using base-2 functions, so every multiplication or 
division can be achieved using simple arithmetic 
shifters. 

• Approximating � with 2, so the exponential function 
can be computed similarly to the multiplications and 
divisions using shifters. 

By applying that substitution, we can formulate an 
optimized neighborhood function for hardware: 
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where 2% is the neighborhood radius. Notice that & and � are 
now positive integer values, which drive the arithmetic 
shifters.  

A. The AW-SOM Algorithm 

AW-SOM can boost the learning stage of SOM enhancing 
is intrinsic parallel structure. The algorithm does not involve 
the identification of the winner neuron, which, is a critical 
part of the propagation delay of the architecture and the main 
bottleneck. Moreover, increasing the number of neurons, the 
comparison stages needed to find the winner neuron 
increases too. This aspect leads to a higher critical path and a 
lower clock frequency. 

The suggested algorithm's fundamental concept is 
straightforward and it is based on the following assumption: 
if the input vector is similar enough (closer in the N-D 
feature space) to the winner neuron, the former's coordinates 
can be used straight in the neighborhood feature instead of 
the latter's coordinates. This state is achieved after an 
appropriate amount of epochs, as shown in [32]. Considering 
this factor, the AW-SOM update formula is shown in eq. (4). 
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The hardware optimized neighborhood function of (4) is 
shown in (5). 
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��  is the weight vector of the i-th neuron, �  is the input 
vector, & is the neighborhood radius, and � is the learning 
rate. The last two parameters can be decreased during the 
training process 5) is a modified AW-SOM version of the 
classic neighborhood function of traditional SOM in eq. (3) 
where the winner neuron has been substituted with the 
examples input vector. 

III.  RESULTS AND DISCUSSION 

The IP generator offers to the designers the possibility to 
configure parameters and to generate the VHDL code using 
a Graphical User Interface (GUI) realized as a MATLAB 
App. The icon of the MATLAB app is shown in Fig. 1. 

 

 
Fig. 1 AW-SOM IP generator icon of the MATLAB application 

 
After the start-up, the program prompts the user to set the 

parameters of the map as shown in Fig. 2. 
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Fig. 2 Initial configuration prompt. 

 
The user can choose the number of features, the number 

of neurons and the bit size for all the weights. The neurons 
can be initialized in a hexagonal, grid or random topology. 
The initial position of the neurons can cover a certain 
percentage of the N-d space e.g. 100% means that the last 
neurons are placed in position2)#*+ � 1. The user can also 
load a pre-defined matrix containing the initial weight values. 
After the code generation trigger by the dedicated button, the 
user will find in its working directory a certain number of 
vhd files. The top-level file of the architecture is called 
“AW-SOM.vhd.” 

A. Input and output ports 

The generated architecture provides several input and 
output ports to control the AW-SOM as long with two 
scanchains to read and write the neurons weights. The list of 
the input ports and their function is shown in Table I. 

 

TABLE I 
LIST OF INPUT PORTS 

Port name Description 
clk System clock 

rst Resets the entire system and all the registers. 
Resets the weights register to their predefined 
values. 

en Enables the learning process. 

scanin_en Loads the values of the input scanchain into the 
weights registers. 

scanout_en Enables the output scanchain to shift all the 
values in the weights registers. 

m_in Input scanchain. 

x Input example vector. 

b Neighborhood radius. 

eta Learning rate. 

 
The only output port is m_out which serially takes out the 

values into the weights register if the scanout_en signal is 
enabled. 

 
 

B. Clustering results viewer feature 

Our MATLAB application is also able to perform a 
simulation of the clustering capabilities of the hardware 
AW-SOM. This is possible after the VHDL code has been 
generated even if not yet synthesized. The user can train the 
net with an array of inputs for a certain number of epochs. 
The software can show the results for a map of maximum 3 
features. This limitation derives for obvious representation 
limitations of dimensions up to 3. 

As example, Fig. 3 shows the training results of a system 
where have been used 3 features, 6 noisy clusters (each one 
consisting of 100 inputs) randomly initialized in a 16 bits 
quantized space. The map was randomly initialized with 16 
neurons, the first plot is the initial state, and the second one 
is the result of the training process. The green smaller dots 
represent the input of the clusters and the blue larger dots 
represent the neurons. 

 

 
Fig. 3  Learning simulation results using 3 features, 16 neurons, 16 bits per 
weight, random initialization. 

C. Implementation results 

In order to validate the IP generator, some Synthesis and 
Place & Route have been performed using the Xilinx Vivado 
2018.2 tool chain and the FPGA Virtex 7 xc7vx690t as a 
target device. Experiments have been performed using 
different AW-SOM configurations. In this section, authors 
show experimental results for the following configurations: 

• 8 bits for representing each weight of the neuron  
• 1 to 4 features  
• 16, 32, 64 and 128 neurons 

We measured the following: 
• number of required Look-Up-Tables (LUT) 
• number of Flip-Flops (FF) 
• dissipated dynamic power 
• Maximum clock frequency 
• Giga Connections Updates per Seconds (GCUPS) 

The latter is a common quantity figure of neural networks 
and represents how many weights are updated in a second. 
The total number of LUT on the target device is 433200, 
while the total number of FF is 866400. Notice that the 
power has been estimated using a worst-case approach 
considering an activity factor of 0.5 on every node of the 
synthesized network. The implementation results of AW-
SOM architectures with 1, 2, 3 and 4 features are shown 
respectively in Tables II, III, IV, and V. The AW-SOM IPs 
have also been characterized in terms of power consumption 

1138



that nowadays represents a crucial aspect both for embed 
systems and desktop [36]. 

TABLE II 
IMPLEMENTATION RESULTS OF 1 FEATURE ARCHITECTURES 

N. of neurons 16 32 64 128 
LUT 1238 2511 5027 10046 
FF 384 768 1536 3072 
Power (mW) 56 96 117 343 
Clock (MHz) 176.56 178.83 173.85 175.32 
GCUPS 2.8 5.72 11.13 22.44 

TABLE III 
IMPLEMENTATION RESULTS OF 2 FEATURES ARCHITECTURES 

N. of neurons 16 32 64 128 
LUT 1992 3978 7949 15892 
FF 768 1536 3072 6144 
Power (mW) 94 156 286 550 
Clock (MHz) 163.03 163.1 158.63 156.32 
GCUPS 5.22 10.44 20.3 40.02 

TABLE IV 
IMPLEMENTATION RESULTS OF 3 FEATURES ARCHITECTURES 

N. of neurons 16 32 64 128 
LUT 2935 5867 11603 23194 
FF 1152 2304 4608 9216 
Power (mW) 144 246 456 874 
Clock (MHz) 157.65 151.81 150.15 149.43 
GCUPS 7.57 14.57 28.83 57.38 

TABLE V 
IMPLEMENTATION RESULTS OF 4 FEATURES ARCHITECTURES 

N. of neurons 16 32 64 128 
LUT 3744 7492 14921 29856 
FF 1536 3072 6144 12288 
Power (mW) 208 353 652 1246 
Clock (MHz) 147.73 150.82 147.75 146.11 
GCUPS 9.45 19.3 37.77 74.81 

 
To better understand the implementation results and the 

quality of the generated architecture, we show the 
implementation results in an aggregated form in Figs. 4, 5, 6, 
7 and 8. 

 

 
Fig. 4 Look-Up-Tables required. 

 

 
Fig. 5  Flip-Flops required. 

 

 
Fig. 6  Dynamic power consumption. 

 

 
Fig. 7 Maximum clock frequency. 

 

 
Fig. 8 Billions of Connections Updates per Second. 

 
Figs. 4, 5 and 6 show how the architecture is almost 

perfectly scalable in a linear way. Figs. 7 and 8 confirm the 
main advantage of using AW-SOM instead of SOM: the 
maximum clock frequency is almost independent to the 
number of neurons of the net. 
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IV.  CONCLUSION 

In this work, we proposed an optimized IP core generator 
for hardware acceleration for All-Winner Self-Organizing 
Maps. Our tool generates the network in VHDL language, 
and it can accelerate the learning phase (training). The core 
generator can be used in several fields, as health [38]-[39], 
communications [40], etc. Thanks to its flexibility, it can be 
used for any application that requires a huge number of 
neurons or features still requiring low resources and low 
power dissipation. In a future version of the software, we 
will able to provide an AXI interface to the accelerator. This 
feature would further enhance the implementation 
capabilities of our AW-SOM IP core thanks to its 
applications on System-of-Chips (SoCs) made of 
microprocessors and FPGA on the same die.  
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