
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Experimental estimation of the local heat-transfer
coefficient in coiled tubes in turbulent flow regime
To cite this article: F Bozzoli et al 2016 J. Phys.: Conf. Ser. 745 032034

 

View the article online for updates and enhancements.

Related content
Numerical analysis of the laminar forced
convective heat transfer in coiled tubes
with periodic ring-type corrugation
Pamela Vocale, Andrea Mocerino, Fabio
Bozzoli et al.

-

Mixed convection boundary-layer flow
about an isothermal solid sphere in a
nanofluid
L Tham, R Nazar and I Pop

-

Replacement of unsteady heat transfer
coefficient by equivalent steady-state one
when calculating temperature oscillations
in a thermal layer
M I Supel’nyak

-

This content was downloaded from IP address 79.133.107.151 on 03/10/2018 at 08:17

https://doi.org/10.1088/1742-6596/745/3/032034
http://iopscience.iop.org/article/10.1088/1742-6596/745/3/032072
http://iopscience.iop.org/article/10.1088/1742-6596/745/3/032072
http://iopscience.iop.org/article/10.1088/1742-6596/745/3/032072
http://iopscience.iop.org/article/10.1088/0031-8949/84/02/025403
http://iopscience.iop.org/article/10.1088/0031-8949/84/02/025403
http://iopscience.iop.org/article/10.1088/0031-8949/84/02/025403
http://iopscience.iop.org/article/10.1088/1742-6596/891/1/012357
http://iopscience.iop.org/article/10.1088/1742-6596/891/1/012357
http://iopscience.iop.org/article/10.1088/1742-6596/891/1/012357
http://iopscience.iop.org/article/10.1088/1742-6596/891/1/012357
http://oas.iop.org/5c/iopscience.iop.org/895702531/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


Experimental  estimation of the local heat-transfer coefficient 

in coiled tubes in turbulent flow regime 

 

 

F Bozzoli1,2, L Cattani1, A Mocerino1, S Rainieri1,2 

1 Department of Industrial Engineering, University of Parma, Parco Area delle Scienze 

181/A I-43124 Parma, Italy. 
2SITEIA.PARMA Interdepartmental Centre, University of Parma, Parco Area delle 

Scienze 181/A, I-43124 Parma, Italy. 

  

E-mail: fabio.bozzoli@unipr.it 

 
Abstract. Wall curvature is a popular heat transfer enhancement technique since it gives origin 

to the centrifugal force in the fluid: this phenomenon promotes local maxima in the velocity 

distribution that locally increase the temperature gradients at the wall by enhancing the heat 

transfer both in the laminar and in the turbulent flow regime. This geometry produces an 

asymmetrical distribution of the velocity field over the cross-section of the tube which lead to a 

significant variation in the convective heat-transfer coefficient along the circumferential 

angular coordinate: it presents higher values at the outer bend side of the wall surface than at 

the inner bend side. Although the irregular distribution of the heat transfer coefficient may be 

critical in some industrial applications, most of the authors did not investigate this aspect, 

mainly due to the practical difficulty of measuring heat flux on internal wall surface of a pipe. 

In the present investigation the local convective heat-transfer coefficient is experimentally 

estimated at the fluid-wall interface in coiled tubes when turbulent flow regime occurs; in 

particular, temperature distribution maps on the external coil wall are employed as input data 

of the inverse heat conduction problem in the wall and a solution approach based on the 

Tikhonov regularisation is implemented. The results, obtained with water as working fluid, are 

focused on the fully developed region in the turbulent flow regime in the Reynolds number 

range of 5000 to 12000. 

 

1. Introduction  
In order to save in materials and energy use, adopting techniques of heat transfer enhancement is 

mandatory in the design of commercial heat exchangers. Enhancement techniques can be separated 

into two categories: passive and active. Passive methods require no direct application of external 

power and they usually employ special surface geometries, which cause heat transfer enhancement.  

On the other hand, active schemes (e.g. electromagnetic fields and surface vibration) require 

external power for operation [1].   

7th European Thermal-Sciences Conference (Eurotherm2016) IOP Publishing
Journal of Physics: Conference Series 745 (2016) 032034 doi:10.1088/1742-6596/745/3/032034

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Passive techniques are commercially more attractive because no power is required to facilitate the 

enhancement and among them treated surfaces, rough surfaces, displaced enhancement devices, swirl-

flow devices, surface-tension devices, coiled tubes, or flow additives are found [2].  

Wall curvature is one of the most frequently used passive techniques; its effectiveness occurs 

because it gives origin to the centrifugal force in the fluid: this phenomenon induces local maxima in 

the velocity distribution that locally increase the temperature gradients at the wall by maximising the 

heat transfer [3-5]. Dean [6] solved the simplified Navier–Stokes equations for a coiled pipe of small 

curvature showing that the flow is governed by the Dean number De = Re·δ1/2, where Re is the 

Reynolds number and   is the curvature ratio defined as the ratio of the pipe diameter to the coiling 

diameter. Both in the laminar and the turbulent flow regime the distributions of the velocity field over 

the cross-section of the tube are asymmetrical and they lead to a significant variation in the convective 

heat-transfer coefficient along the circumferential angular coordinate: it presents higher values at the 

outer bend side of the wall surface than at the inner bend side, [3,7,8]. 

The presence of an irregular distribution may be critical in some industrial applications, such as in 

those that involve a thermal process. For instance, in food pasteurisation, the irregular temperature 

field induced by the wall curvature could reduce the bacteria heat-killing or could locally overheat the 

product. However, most of the papers available in the scientific literature did not investigate this 

aspect, mainly due to the practical difficulty of measuring heat flux on internal wall surface of a pipe, 

and they presented the results only in terms of the Nusselt number averaged along the wall 

circumference. Only a few authors have studied the phenomenon locally, and most of them have 

adopted the numerical approach. To the Authors’s knowledge, only six papers  [9-14] have presented 

experimental results and only three of them reports the real local values of the convective heat transfer 

coefficient [9-11] while the others, neglecting heat conduction in the tube wall, estimate only the 

apparent local values [12-14]. 

Bai et al. [9] experimentally studied the turbulent heat transfer in helically coiled tubes using 

deionised water as the working fluid. The working fluid was heated by applying alternating current  in 

the tube wall and, in each cross section eight thermocouples were placed on the external surface of the 

tube wall.  The local heat-transfer distribution on the internal wall of the tube was estimated by solving 

the two-dimensional inverse heat conduction problem with the least-square method. As expected, they 

found that the local heat-transfer coefficient was not evenly distributed along the periphery of the 

cross section and that, in particular, at the outside surface of the coil, it was three or four times higher 

than that at the inside surface.  

Bozzoli et al. [10] focused their investigation on the fully developed region for the laminar flow 

regime in the Reynolds number range of 135 to 1050 and the Prandtl number range of 170 to 200. The 

temperature distribution maps on the external coil wall were employed as input data of the linear 

inverse heat conduction problem in the wall under a solution approach based on the Tikhonov 

regularisation method with the support of the fixed-point iteration technique to determine the proper 

regularisation parameter. The results showed that, at the outside surface of the coil, the Nusselt 

number is approximately five times larger than that at the inside surface and this ratio, in the 

conditions under test, is constant. 

Regarding local heat-transfer coefficient, some experimental data are discussed by Seban et al. [11] 

investigating the laminar flow for oil and the turbulent flow of water in tubes coils. These Authors 

correctly drew the attention to the difference between apparent and true local values: apparent heat 

transfer coefficient are obtained neglecting the circumferential heat conduction in the tube wall which 

means considering the average value of the convective heat flux instead of the punctual value. In terms 

of true heat transfer coefficient, the ratio of the outside to the inside coefficient found in this 

experimental campaign is about four for both the laminar and the turbulent flow case. However, no 

details about the approach adopted to estimate the punctual convective heat flux are given in this 

paper. 

Xin and Ebadian [12], Janssen and Hoogendoorn [13] and Hadik et al. [14] conducted extensive 

experimental campaigns with many different fluids on a wide range of curvature ratios and Reynolds 
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numbers. However, these Authors processed their data neglecting the circumferential heat conduction  

in the tube wall so the reported local heat-transfer coefficient are the apparent one and not the real one. 

In the present paper, the estimation procedure presented in [10], is applied to estimate the local 

convective heat-transfer coefficient at the fluid-wall interface in coiled tubes investigating turbulent 

flow regime; the temperature distributions on the external wall of the coiled tube, which are acquired 

using the infrared technique, are adopted as input data of the inverse heat conduction problem in the 

wall of the tube. 

The purpose of this paper is presenting results which are representative of a wide range of technical 

applications; this data could be employed both as a useful benchmark for CFD results as well as in the 

design of coiled tube apparatuses.  

 

2. Experimental setup  
Two different helically coiled stainless steel type AISI 304 tubes were tested. They had smooth wall 

and they were characterised by eight coils following a helical profile along the axis of the tube. The 

tube internal diameter was 14 mm, and the wall thickness measured 1.0 mm. The helix diameter was 

of approximately 310 mm and 425 mm, respectively while the pitch was about 200 mm for both the 

pipes. This geometry yields a coiled pipe length L of approximately 8 and 10 m, respectively and a 

dimensionless curvature δ of 0.045 and 0.032, respectively.  

 

 

 

Figure 1. Sketch of the experimental setup. Figure 2. Particular of the test section. 

 

To minimise the heat exchange with the environment, the heated section was thermally insulated. A 

small portion of the external tube wall, near the downstream region of the heated section, was made 

accessible to an infrared imaging camera by removing the thermally insulating layer, and it was coated 

by a thin film of opaque paint of uniform and known emissivity.  

Therefore, the test section was taken approximately sufficiently far from the inlet section, in the 

region of the heated section where, according to [8,13], the turbulent boundary layers reached the 

asymptotic profiles. This condition makes the results obtained for this particular segment 

representative of the thermally fully developed region. 

The surface temperature distribution was acquired by means of a FLIR SC7000 unit, with a 640 x 

512 pixel detector array. A sketch of the experimental setup is reported in figure 1, and figure 2 shows 

a particular of the text section. 

 The inlet and the outlet fluid bulk temperatures were measured with type-T thermocouples. The 

bulk temperature at any location in the heat transfer section was then calculated from the power 

supplied to the tube wall. Volumetric flow rates were obtained by measuring the time needed to fill a 

volumetric flask placed at the outlet of the test section.  
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To investigate the heat transfer performance of coiled tubes in the turbulent flow regime, water was 

used as the working fluid. It is currently accepted that the effect of coil curvature is to suppress 

turbulent fluctuations arising in the flowing fluid, smoothing the emergence of turbulence and 

increasing the value of the Reynolds number required to attain a fully turbulent flow, with respect to a 

straight pipe [15]. Considering that the flow in curved pipes remains laminar up to Reynolds numbers 

higher at least by a factor of two than in straight pipes, in order to be sure that the flow regime was 

turbulent,  in the present investigation the Reynolds number range 5000−12000 was considered. In the 

temperature range characterising the experimental conditions, the Prandtl number of the working fluid 

varied in the range of 5-9.  

The working fluid was conveyed by a volumetric pump to an holding tank, and it entered the coiled 

test section equipped with stainless-steel fin electrodes, which were connected to a power supply, type 

HP 6671A. This setup allowed investigation of the heat transfer performance of the tube under the 

prescribed condition of uniform heat flux generated by the Joule effect in the wall. The heat flux 

provided to the fluid was selected to make the buoyancy forces negligible compared to inertial ones 

for the fluid velocity values investigated here. The coiled section was inserted horizontally in a loop 

completed by a secondary heat exchanger, fed with city water, to keep the working fluid temperature 

constant at the coil inlet. 

 

3. Estimation procedure 

The procedure, presented in [10], is here adopted to estimate the local convective heat-transfer 

coefficient in the coiled tubes under test. The temperature distribution maps on the external coil wall 

are employed as input data of the linear inverse heat conduction problem in the wall under a solution 

approach based on the Tikhonov regularisation method with the support of the fixed-point iteration 

technique to determine the proper regularisation parameter.  

This estimation procedure is based on a simplified 2-D model of the test section (sketched in figure 

3) formulated by assuming that the temperature gradient is almost negligible along the axis of the tube. 

In the 2-D solid domain, the steady-state energy balance equation is expressed in the (r,α) 

coordinate system in the form: 
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where qg is the heat generated by the Joule effect in the wall, k is the wall thermal conductivity and 

 is the angular coordinate. 

The following two boundary conditions completed the energy balance equation: 
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which is applied on surface S2 and where Renv is the overall heat-transfer resistance between the tube 

wall and the surrounding environment with temperature Tenv; 
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which is applied on surface S1 and where q is the local convective heat flux at the fluid-internal wall 

interface, assumed to be varying with the angular coordinate . 

To express the problem in the discrete domain, the convective heat flux distribution can be 

simplified by considering that it is described by a continuous piecewise linear function. In this way, 

the heat flux distribution can be defined by the vector q = [q1,q2,q3,…,qn]T.   
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Figure 3.  

Geometrical domain with a 

coordinate system. 

 

Proceeding this way the direct problem becomes linear with respect to the heat flux q(α) and its 

discrete version can be described as follows: 

 

0qTXqT  , (4) 

where T is the vector of the discrete temperature data at the external coil surface, q is the heat flux 

vector at the fluid-internal wall interface, Tq=0 is a constant term and X is the sensitivity matrix.  

The sensitivity matrix X was calculated using the two-point difference approach: 
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where Ti is the temperature value at the i sensor position obtained by solving equations (1-3) with an 

internal heat flux distribution as defined in equation (5). In the same way, the constant term Tq=0  was 

obtained by imposing a null internal heat flux. This set of equations was easily solved by the finite 

element method. 

The direct formulation of the problem is concerned with the determination of the temperature 

distribution on the tube external wall when the convective heat flux vector q is known. In the inverse 

formulation considered here, q is instead regarded as being unknown, whereas the surface temperature 

Y is measured.  

As the inverse problem is ill-posed, in order to cope with the presence of noise in the measured 

temperature some type of regularisation is required. The Tikhonov regularisation method [16] makes it 

possible to reformulate the original problem as a well-posed problem that consists of minimising the 

following objective function: 
2

2

2
2

2
)( LqTXqYq 0q  J , >0, (6) 

where 
2

2
 stands for the square of the 2-norm,  is the regularisation parameter, L is a discrete 

derivative operator and T is the distribution of the external surface temperature derived from a direct 

numerical solution of the problem obtained by imposing a given convective heat flux distribution on 

the internal wall side q. Often, L is the zero, first or second derivative operator: in this work the 

second-order derivative formulation was chosen to preserve the local variation in the heat-flux 

distribution. An appropriate choice of  is a crucial point to find a reliable approximation of the 

wanted solution and, in this paper, this choice  is made by the fixed-point method, [17].  
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Once the heat-flux distribution at the fluid-wall interface compatible with the experimental 

temperature data has been determined through the strategy described above, the local convective heat-

transfer coefficient can be easily determined, as follows: 
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where q(α) is the heat flux distribution estimated under the solution approach based on the Tikhonov 

regularisation method, Tb is the bulk-fluid temperature on the test section, calculated from the energy 

balance on the heated section as described in [5,8] and T(α,r=rint) is temperature distribution on the 

tube internal wall efficiently estimated by numerically solving the direct problem by imposing a 

convective heat flux equal to q(α).   

 

4. Results   

Figure 4  reports a representative temperature map of a portion of the coil tube  with some explicative 

text labels. The figure clearly reveals that the tube wall is colder at the outer bend side of the coil than 

at the inner bend side while the temperature gradients are almost negligible along the axis of the tube.  

This observation confirms that adopting a 2-D numerical model for this type of problem is appropriate 

for the flow conditions under test. 

 

 

 

Figure 4: Representative infrared image 

of the coil wall (Re = 7443, Pr = 8).  

 Figure 5. Temperature distribution on the coil external 

wall at the text section (Re = 7443, Pr = 8). 

 

The temperature values on the test section wall along the whole circumference are reported in 

figure 5, where the angular coordinate origin is taken at the inner side of the coil. This distribution was 

obtained processing multiples thermal images of the test section, taken from different point of view 

around the coil.  

For this case, the distribution of the convective heat transfer coefficient restored by the 

minimisation procedure presented above is reported in figure 6. The 95% confidence interval 

associated with the estimated values was determined by parametric bootstrap [10]. These data, as 

expected, highlight that the convective heat transfer coefficient is minimal close to the inner bend side 

of the coil, and it reaches its maximum at the outer bend side. Moreover, figure 6 shows the effect of 

torsion induced by the coil pitch: it creates a rotation force that affects the flow pattern. 

Consequentially, the location of the minimum Nusselt number shifts slightly from zero to higher 

angular coordinate values. 

In figure 6 it is reported also the “apparent” convective heat transfer coefficient, estimated 

following the procedures suggested by many Authors [12-14] which neglect the heat conduction in the 
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tube wall. Comparing real and apparent heat transfer coefficient values it is clear that neglecting heat 

conduction in the tube wall misleads the estimated convective heat transfer distribution, increasing the 

minimum local values and decreasing the maximum ones. 

The whole estimation procedure was repeated for various Reynolds number values and 

representative results for the turbulent regime are plotted in figure 7. To locally compare the Nusselt 

distributions estimated for the various Re values, the shifting effect of the torsion was compensated by 

introducing a relative angle α*  whose origin was taken where the Nusselt number reaches its 

minimum.  

Figure 8 reports the Nu/Numax ratio for various Reynolds numbers: by accounting for the 

experimental uncertainty, it can be stated that this ratio is almost independent of the Reynolds number, 

analogously to the laminar fluid flow in coils [10]. The best fit of these experimental Nu/Numax 

distributions is plotted in figure 9 and compared to the distribution found by Bozzoli et al. [10] for the 

laminar regime. Some differences between the behaviour in the two different flow regimes can be 

observed: in the turbulent regime, at the outside surface of the coil, the Nusselt number is about ten 

times larger than that at the inside surface while in the laminar regime it is only five time larger. 

Moreover, in turbulent regime the Nu/Numax pattern shows a typical “V-shape” while in the laminar 

regime the pattern is more flat near the outside surface of the coil. 

  
Figure 6. Restored convective heat-transfer 

coefficient distribution with 95% confidence 

interval and apparent distribution ( Re = 7443, Pr 

= 8). 

Figure 7. Restored convective heat-transfer 

coefficient distribution for different Reynolds 

number values. 

  

  
Figure 8. Normalised local Nusselt number for 

different Reynolds numbers. 

Figure 9. Normalised local Nusselt number and 

comparison with the data for laminar regime [10]. 

-3 -2 -1 0 1 2 3
0

5000

10000

15000

 (rad)

h
in

t (
W

/m
2
K

)

 

 

real

apparent

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

600

700

800

* (rad)

N
u

 

 

Re=5384

Re=5601

Re=6153

Re=6527

Re=6546

Re=7164

Re=7443

Re=7551

Re=9218

Re=10028

Re=12218

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

* (rad)

N
u

/N
u m

a
x

 

 
Re=5384

Re=5601

Re=6153

Re=6527

Re=6546

Re=7164

Re=7443

Re=7551

Re=9218

Re=10028

Re=12218

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

* (rad)

N
u

/N
u m

a
x

 

 

turbulent

laminar [10]

7th European Thermal-Sciences Conference (Eurotherm2016) IOP Publishing
Journal of Physics: Conference Series 745 (2016) 032034 doi:10.1088/1742-6596/745/3/032034

7



5. Conclusions 

In this paper, it is experimentally investigated the local convective heat transfer coefficient in coiled 

tubes when turbulent flow regime is present.  

The results showed that the variation in the convective heat transfer coefficient along the boundary 

of the duct section is very significant: at the outside surface of the coil, the Nusselt number is 

approximately ten times larger than that at the inside surface and this ratio is almost independent of the 

Dean number.  

The purpose of this paper is presenting results which are representative of a wide range of technical 

applications; this data could be employed both as a useful benchmark for CFD results as well as in the 

design of coiled tube apparatuses. 
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