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Abstract
Large-scale knowledge graphs have currently reached impressive sizes; however, they are still far from complete. In

addition, most existing methods for knowledge graph completion only consider the direct links between entities, ignoring

the vital impact of the semantics of relation paths. In this paper, we study the problem of how to better embed entities and

relations of knowledge graphs into different low-dimensional spaces by taking full advantage of the additional semantics of

relation paths and propose a novel relation path embedding model named as RPE. Specifically, with the corresponding

relation and path projections, RPE can simultaneously embed each entity into two types of latent spaces. Moreover, type

constraints are extended from traditional relation-specific type constraints to the proposed path-specific type constraints and

both of the two type constraints can be seamlessly incorporated into RPE. The proposed model is evaluated on the

benchmark tasks of link prediction and triple classification. The results of experiments demonstrate our method outper-

forms all baselines on both tasks. They indicate that our model is capable of catching the semantics of relation paths, which

is significant for knowledge representation learning.

Keywords Knowledge graph completion � Relation paths � Path projection � Type constraints � Knowledge representation

learning

1 Introduction

Large-scale knowledge graphs, such as Freebase [2],

WordNet [22], Yago [28], and NELL [6], are critical to

natural language processing applications, e.g., question

answering [8], relation extraction [26], and language

modeling [1]. These knowledge graphs generally contain

billions of facts, and each fact is organized into a triple

base format (head entity, relation, tail entity), abbreviated

as (h,r,t). However, the coverage of such knowledge graph

is still far from complete compared with real-world

knowledge [9]. Traditional knowledge graph completion

approaches, such as Markov logic networks [25], suffer

from feature sparsity and low efficiency.

Recently, encoding the entire knowledge graph into a

low-dimensional vector space to learn latent representa-

tions of entity and relation has attracted widespread

attention. These knowledge embedding models yield better

performance in terms of low complexity and high scala-

bility compared with previous works. Among these meth-

ods, TransE [5] is a classical neural-based model, which

assumes that each relation can be regarded as a translation

from head to tail and uses a score function S(h,r,t) to

measure the plausibility for triples. TransH [32] and

TransR [20] are representative variants of TransE. These

variants consider entities from multiple aspects, various

relations may stress on different aspects.

However, the majority of these approaches only exploit

direct links that connect head and tail entities to predict

potential relations between entities. These approaches do

not explore the fact that relation paths, which are denoted

as the sequences of relations, i.e., p ¼ ðr1; r2; . . .; rm), play
an important role in knowledge inference. For example, the
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successive facts J.K. Rowling !CreatedRole
Harry Potter

!DescribedIn
Harry Potter and the Philosopher’s Stone can be

used to infer the new triple (J.K. Rowling, WroteBook,

Harry Potter and the Philosopher’s Stone), which does not

appear in the original knowledge graph. Consequently,

using relation paths to learn meaningful knowledge

embeddings is a promising new research

direction [10, 12, 23, 29].

In this paper, we propose a novel relation path embed-

ding model (RPE) to explicitly model knowledge graph by

taking full advantage of the semantics of relation paths. By

exploiting the compositional path projection, RPE can

embed each entity into proposed path spaces for better

tackling various relations with multi-mapping properties.

Moreover, we extend the relation-specific type con-

straints [16] to the novel path-specific type constraints to

improve the prediction quality. Our model is evaluated on

three benchmark datasets with link prediction and triple

classification. Experimental results show that RPE out-

performs all baselines on these tasks, which proves the

effectiveness of our method and the importance of relation

paths.

The remainder of this paper is organized as follows. We

first provide a brief review of state-of-the-art knowledge

embedding models in Sect. 2. Two main intuitions of our

model are illustrated in Sect. 3. The details of RPE are

introduced in Sect. 4. The experiments and analyses are

reported in Sect. 5. Conclusions and directions for future

work are reported in the final section.

2 State-of-the-art

In this paper, We first concentrate on three classical

translation-based models that only consider direct links

between entities. The first translation-based model is

TransE inspired by [21]. TransE defines the score function

as Sðh; r; tÞ ¼ khþ r� tk for each triple (the bold lower-

case letter denotes a column vector). The score will

become smaller if the triple (h,r,t) is correct; otherwise, the

score will become higher. The embeddings are learned by

optimizing a global margin-loss function. This assumption

looks quite simple, but it was shown to achieve great

results empirically. However, TransE cannot address more

complex relations with multi-mapping properties well, i.e.,

1-to-N (bring out), N-to-1 (gender of), and N-to-N (work

with). To alleviate this problem, TransH projects entities

into a relation-dependent hyperplane by the normal vector

wr : hh ¼ h� wT
r hwr and th ¼ t� wT

r twr (restrict

kwrk2 ¼ 1). The corresponding score function is

Sðh; r; tÞ ¼ khh þ r� thk. TransE and TransH achieve

translations on the same embedding space, whereas TransR

assumes that each relation should be used to project entities

into different relation-specific embedding spaces since

different relations may place emphasis on different entity

aspects. The projected entity vectors are hr ¼ Mrh and

tr ¼ Mrt (the bold uppercase letter M denotes a matrix);

thus, the new score function is defined as

Sðh; r; tÞ ¼ khr þ r� trk. In addition, there are other novel

knowledge embedding models [14, 15] focusing on effi-

cient relation projection are evaluated in our experiments.

Multi-source information learning for knowledge graph

completion, which aims at utilizing heterogeneous data to

enrich knowledge embedding, is a promising research. For

instance, [33] employs the convolutional neural networks

(CNN) to learn embeddings from extra entity description

for zero-shot scenarios.

Another research direction focuses on improving the

prediction performance by using prior knowledge in the

form of relation-specific type constraints [7, 16, 30]. Note

that each relation should contain Domain and Range fields

to indicate the subject and object types, respectively. For

example, the relation HasChildren’s Domain and Range

types both belong to a person. By exploiting these limited

rules, the harmful influence of a merely data-driven pattern

can be avoided in part. For example, Type-constrained

TransE [16] imposes these constraints on the global mar-

gin-loss function to better distinguish similar embeddings

in latent space.

A third related direction is PTransE [19] and the path

ranking algorithm (PRA) [17]. PTransE considers relation

paths as translations between head and tail entities and

primarily addresses two problems: (1) exploits a variant of

PRA to select reliable relation paths and (2) explores three

path representations by compositions of relation embed-

dings. PRA, as one of the promising research innovations

for knowledge graph completion, has also attracted con-

siderable attention [11, 18, 24, 31]. It uses the path-con-

strained random walk probabilities as path features to train

linear classifiers for different relations. In large-scale

knowledge graphs, relation paths have great significance

for enhancing the reasoning ability for more complicated

situations. However, none of the aforementioned models

can take full advantage of the semantics of relation paths.

3 The intuitions

The semantics of relation path is a semantic interpretation

via composition of the meanings of its components. The

impact of the semantics can be observed from TransE

comprising multi-step relations: For the successive triples

h!r1 t0 !r2 t and a single triple h!r3 t, TransE considers

hþ r1 � t0, t0 þ r2 � t and hþ r3 � t. It thus implicitly
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expresses that the semantics of r3 is similar to the semantic

composition of p ¼ ðr1; r2Þ. However, the semantic simi-

larity between relation and corresponding relation paths

and the useful global graph structure are ignored by pre-

vious works. As shown in Table 1, for two entity pairs

(sociology, George Washington University) and (Planet of

the Apes, art director) from Freebase, we provide two

relations and four related relation paths (each relation is

mapped to two relation paths, denoted as a and b), which

are considered as having similar semantics to their

respective relations. However, the semantics of relation

paths cannot be captured by translation-based models, such

as Trans(E, H, R), because translation-based models only

exploit the direct links and do not consider the semantics of

relation paths.

Based on the semantic similarity, we propose a novel

relation path embedding model (RPE), whose projection

and type constraints of the specific relation are extended to

the specific path. Furthermore, the experimental results

demonstrate that by explicitly using the additional

semantics, RPE significantly outperforms all baselines on

link prediction and triple classification tasks.

Figure 1 illustrates the basic idea for relation-specific

and path-specific projections. Each entity is projected by

Mr andMp into the corresponding relation and path spaces.

These different embedding spaces hold the following

hypothesis: in the relation-specific space, relation r is

regarded as a translation from head hr to tail tr; likewise,

p�, the path representation by the composition of relation

embeddings, is regarded as a translation from head hp to

tail tp in the path-specific space. We design two types of

compositions to dynamically construct the path-specific

projectionMp without extra parameters. Moreover, we also

propose a novel path-specific type constraints to better

distinguish similar embeddings in different latent spaces.

Another intuition is the semantics of some relation paths

p is unreliable for reasoning new facts of that entity pair.

For instance, there is a common relation path

h !HasChildren
t0 !GraduatedFrom

t, but this path is meaningless for

inferring additional relationships between h and t. There-

fore, reliable relation paths are urgently needed. As Lao

et al. suggests [17], relation paths that end in many pos-

sible tail entities are more likely to be unreliable for the

entity pair. Therefore, we also rank the relation paths to

select reliable relation paths. Precisely, we denote all

entities constitute the entity set f, and all relations consti-

tute the relation set R. For a triple (h,r,t), Pall ¼
fp1; p2; . . .; pkg is the path set for the entity pair (h,t).

Pðtjh; pi), the probability of reaching t from h following the

sequence of relations indicated by pi, can be recursively

defined as follows:

If pi is an empty path,

Pðtjh; piÞ ¼
1 if h ¼ t

0 otherwise

(
ð1Þ

If pi is not an empty path, then p0i is defined as r1; . . .; rm�1;

subsequently,

Pðtjh; piÞ ¼
X

t02Endðp0
i
Þ
Pðt0jh; p0iÞ � Pðtjt0; rmÞ ð2Þ

Endðp0i) is the set of ending nodes of p0i. RPE obtains the

reliable relation paths set Pfilter ¼ fp1; p2; . . .; pzg by

selecting relation paths whose probabilities are above a

certain threshold g.

4 Relation path embedding

In this section, we would introduce the novel path-specific

projection and type constraints and provide the details of

training RPE.

Table 1 Two examples of relation paths

entity pair (sociology, George Washington University)

relation /education/field_of_study/students_majoring./education/education/institution

relation

paths

a: /education/field_of_study/students_majoring./education/education/student ! /people/person/education./education/education/

institution

b:/people/person/education./education/education/major_field_of_study�1 !/education/educational_institution/

students_graduates./education/education/student�1

entity pair (Planet of the Apes, art director)

relation /education/field_of_study/students_majoring./education/education/institution

relation

paths
a: /film/film/sequel ! /film/film_job/films_with_this_crew_job./film/film_crew_gig/film�1

b: /film/film/prequel�1 ! /film/film/other_crew./film/film_crew_gig/film_crew_role

r�1 denotes the reverse of relation r
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4.1 Path-specific projection

The novel idea of RPE is that the semantics of reliable

relation paths is similar to the semantics of the relation

between an entity pair and both of them can be exploited

for reasoning. For a triple (h,r,t), RPE exploits projection

matrices Mr, Mp 2 Rm�n to project entity vectors h; t 2 Rn

in entity space into the corresponding relation and path

spaces simultaneously (m is the dimension of relation

embeddings, n is the dimension of entity embeddings, and

m may differ from n). The projected vectors (hr, hp, tr, tp)

in their respective embedding spaces are denoted as

follows:

hr ¼Mrh; hp ¼ Mph ð3Þ

tr ¼Mrt; tp ¼ Mpt ð4Þ

Because relation paths are those sequences of relations

p ¼ ðr1; r2; . . .; rmÞ, we dynamically use Mr to construct

Mp to decrease the model complexity. Subsequently, we

explore two compositions for the formation of Mp, which

are formulated as follows:

Mp ¼ Mr1 þMr2 þ . . .þMrm

ðaddition compositionÞ
ð5Þ

Mp ¼ Mr1 �Mr2 � . . .�Mrm

ðmultiplication compositionÞ
ð6Þ

where addition composition (ACOM) and multiplication

composition (MCOM) represent cumulative addition and

multiplication for path projection. Matrix normalization is

applied on Mp for both compositions. The new score

function is defined as follows:

Gðh; r; tÞ ¼ Sðh; r; tÞ þ k � Sðh; p; tÞ

¼ khr þ r� trk þ
k
Z

X
pi2Pfilter

Pðtjh; piÞ � PrðrjpiÞ

� khp þ p�i � tpk
ð7Þ

For path representation p�, we use

p� ¼ r1 þ r2 þ . . .þ rm, as suggested by PTransE. k is the

hyperparameter used to balance the knowledge embedding

score S(h,r,t) and the relation path embedding score

S(h,p,t). Z ¼
P

pi2Pfilter
Pðtjh; piÞ is the normalization factor,

and PrðrjpiÞ ¼ Prðr; piÞ=PrðpiÞ is used to assist in calcu-

lating the reliability of relation paths. In the experiments,

we increase the limitation on these embeddings, i.e.,

khk2 6 1, ktk2 6 1, krk2 6 1, khrk2 6 1, ktrk2 6 1,

khpk2 6 1, and ktpk2 6 1. By exploiting the semantics of

reliable relation paths, RPE embeds entities into the

Fig. 1 Simple illustration of

relation-specific and path-

specific projections
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relation and path spaces simultaneously. This method

considers the vital importance of reliable relation paths and

improves the flexibility of modeling more complicated

relations with multi-mapping properties.

4.2 Path-specific type constraints

In RPE, based on the semantic similarity between relations

and reliable relation paths, we extend the relation-specific

type constraints to novel path-specific type constraints. In

type-constrained TransE, the distribution of corrupted tri-

ples is a uniform distribution.

In our model, we incorporate the two type constraints

with a Bernoulli distribution. For each relation r, we denote

the Domainr and Ranger to indicate the subject and object

types of relation r. fDomainr is the entity set whose entities

conform to Domainr, and fRanger is the entity set whose

entities conform to Ranger. We calculate the average

numbers of tail entities for each head entity, named teh,

and the average numbers of head entities for each tail

entity, named het. The Bernoulli distribution with param-

eter teh
tehþhet

for each relation r is incorporated with the two

type constraints, which can be defined as follows: RPE

samples entities from fDomainr to replace the head entity

with probability teh
tehþhet

, and it samples entities from fRanger
to replace the tail entity with probability het

tehþhet
. The

objective function for RPE is defined as follows:

L ¼
X

ðh;r;tÞ2C

�
Lðh; r; tÞ þ k

Z

X
pi2Pfilter

Pðtjh; piÞ � PrðrjpiÞLðh; pi; tÞ
�

ð8Þ

L(h,r,t) is the loss function for triples, and Lðh; pi; tÞ is the
loss function for relation paths.

Lðh; r; tÞ ¼
X

ðh0;r;t0Þ2C00

maxð0; Sðh; r; tÞ þ c1 � Sðh0; r; t0ÞÞ

ð9Þ

Lðh; pi; tÞ ¼
X

ðh0;r;t0Þ2C00

maxð0; Sðh; pi; tÞ þ c2 � Sðh0; pi; t0ÞÞ

ð10Þ

We denote C ¼ fðhi; ri; tiÞ j i ¼ 1; 2. . .; tg as the set of all

observed triples and

C 0 ¼ fðh0i; ri; tiÞ [ ðhi; ri; t0iÞ j i ¼ 1; 2. . .; tg

as the set of corrupted triples, where each element of C 0 is
obtained by randomly sampling from f. C 00, whose element

conforms to the two type constraints with a Bernoulli

distribution, is a subset of C 0. The Max(0, x) returns the

maximum between 0 and x. c1 and c2 are the hyperpa-

rameters of margin, which separate correct triples and

corrupted triples. By exploiting these two types of prior

knowledge, RPE could better distinguish similar embed-

dings in different embedding spaces, thus allowing it to

achieve better prediction quality.

4.3 Training details

We adopt stochastic gradient descent (SGD) to minimize

the objective function. TransE or RPE (initial) can be

exploited for the initializations of all entities and relations

in practice. The score function of RPE (initial) without

using relation and path projections is as follows:

Gðh; r; tÞ ¼ Sðh; r; tÞ þ k � Sðh; p; tÞ

¼ khþ r� tk þ k
Z

X
pi2Pfilter

Pðtjh; piÞ � PrðrjpiÞ

� khþ p�i � tk
ð11Þ

We also employ this score function in our experiment as a

baseline. The projection matrices Ms are initialized as

identity matrices. RPE holds the local closed-world

assumption (LCWA) [9], where each relation’s domain

and range types are based on the instance level. Thus, the

type information is collected by accurate data provided by

knowledge graph or the entities shown in observed triples.
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Note that each relation r has the reverse relation r�1;

therefore, to increase supplemental path information, RPE

utilizes the reverse relation paths. For example, for the

relation path LeBron James !PlayFor
Cavaliers !BelongTo

NBA,

its reverse relation path can be defined as NBA !BelongTo�1

Cavaliers !PlayFor�1

LeBron James. For each iteration, we

randomly sample a correct triple (h,r,t) with its reverse

ðt; r�1; hÞ, and the final score function of our model is

defined as follows:

Fðh; r; tÞ ¼ Gðh; r; tÞ þ Gðt; r�1; hÞ ð12Þ

Theoretically, we can arbitrarily set the length of the

relation path, but in the implementation, we prefer to take a

smaller value to reduce the time required to enumerate all

relation paths. Moreover, as suggested by the path-con-

strained random walk probability Pðtjh; pÞ, as the path

length increases, Pðtjh; pÞ will become smaller and the

relation path will more likely be cast off.

In our model, we particularly concentrate on how to

better utilize presented relation paths to promote the per-

formance of knowledge representation learning. Further-

more, based on the semantics of relation paths, RPE is a

general framework. More sophisticated relation projection,

type constraints and external information are compatible

Table 2 Number of model

parameters and computational

complexity

Model #Parameters #Time complexity

SE [3] OðNenþ 2Nrm
2Þ Oð2n2NtÞ

SME (linear) [4] OðNenþ Nrmþ 4kðnþ 1ÞÞ Oð4nkNtÞ
SME (bilinear) [4] OðNenþ Nrmþ 4kðnsþ 1ÞÞ Oð4nksNtÞ
TransE [5] OðNenþ NrmÞ OðNtÞ
TransH [32] OðNenþ 2NrmÞ Oð2nNtÞ
TransR [20] OðNenþ Nrðnþ 1ÞmÞ Oð2mnNtÞ
PTransE (ADD, 2-hop) [19] OðNenþ NrmÞ OðpNtÞ
PTransE (MUL, 2-hop) [19] OðNenþ NrmÞ OðplNtÞ
RPE (PC) (this paper) OðNenþ NrmÞ OðpNtÞ
RPE (ACOM) (this paper) OðNenþ Nrðnþ 1ÞmÞ Oð2mnpNtÞ
RPE (PC ? ACOM) (this paper) OðNenþ Nrðnþ 1ÞmÞ Oð2mnpNtÞ

Algorithm 1 Learning RPE
Input: Training set C = {(h,r,t)}, entity set ζ, relation set R, entity and relation embedding

dimensions n and m, margins γ1 and γ2, balance factor λ.
Output: All knowledge embeddings of e and r, where e ∈ ζ and r ∈ R.
1: Pick up reliable relation path set Pfilter = {p} for each relation by Equations 1, 2.
2: for all k ∈ ζ ∪ R do
3: k ∈ ζ: k ← Uniform( −6√

n
, −6√

n
)

4: k ∈ R: k ← Uniform( −6√
m
, −6√

m
)

5: end for
6: for all r ∈ R do
7: Projection matrix Mr ← identity matrix
8: end for
9: loop
10: Cbatch ← Sample(C, B) // sample a mini-batch of size B
11: Tbatch ← ∅ // pairs of triples for learning
12: for (h,r,t) ∈ Cbatch do
13: (h ,r,t ) ← sampling a negative triple conformed to two type constraints
14: Tbatch ← Tbatch ∪ {(h,r,t), (h ,r,t )}
15: end for
16: Update embeddings based on Equations 7, 11 and 12

w.r.t. L = (h,r,t)∈Tbatch
L(h, r, t) + λ

Z pi∈Pfilter
P (t|h, pi) · Pr(r|pi)L(h, pi, t) ,

where L(h,r,t)= (h ,r,t )∈Tbatch
max(0, S(h, r, t) + γ1 − S(h , r, t ))

and L(h,pi,t)= (h ,r,t )∈Tbatch
max(0, S(h, pi, t) + γ2 − S(h , pi, t ))

17: Regularize the embeddings and projection matrices in Tbatch

18: end loop
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with it, and they can be easily incorporated into RPE to get

further improvements. Algorithm 1 gives the detailed

procedure of learning RPE with path-specific projection

and type constraints.

4.4 Complexity analysis

Table 2 lists the complexity (model parameters and time

complexity in an epoch) of classical baselines and our

models. We denote RPE only with path constraints as RPE

(PC), RPE only with ACOM path projection as RPE

(ACOM). Ne and Nr represent the numbers of entities and

relations. Nt denotes the number of triples for training. p is

the expected number of relation paths between the entity

pair, and l is the expected length of relation paths. n is the

dimension of entity embedding and m is the dimension of

relation embedding. k is the number of hidden units of a

neural network and s is the number of slice of a tensor. It is

noticed that RPE (PC) has the same number of model

parameters of TransE OðNenþ NrmÞ and RPE (ACOM),

RPE (PC ? ACOM) have the same numbers of model

parameters of TransR OðNenþ Nrðnþ 1ÞmÞ. Both TransE

and TransR are the classical models. In terms of time

complexity, RPE (PC) has the same magnitude of PTran-

sE(ADD, 2-hop) OðpNtÞ, both RPE(ACOM) and RPE(PC

? ACOM) retain in a magnitude Oð2mnpNtÞ similar to

TransR Oð2mnNtÞ. In practice, our models take roughly 9 h

for training, which can be accelerated by increasing the

value of threshold g. For comparison purposes, the efficient

implementations of classical knowledge embedding mod-

els1 are exploited.

5 Experiments

We evaluate our model on two classical large-scale

knowledge graphs: Freebase and WordNet. Freebase is a

large collaborative knowledge graph that contains billions

of facts about the real world, such as the triple (Beijing,

Locatedin, China), which describes the fact that Beijing is

located in China. WordNet is a large lexical knowledge

base of English, in which each entity is a synset that

expresses a distinct concept, and each relationship is a

conceptual-semantic or lexical relation. We use two subsets

of Freebase, FB15K and FB13 [5], and one subset of

WordNet, WN11 [27]. These datasets are commonly used

in various methods, and Table 3 presents the statistics of

them, where each column represents the numbers of entity

type, relation type and triples that have been split into

training, validation and test sets.

In our model, each triple has its own reverse triple for

increasing the reverse relation paths. Therefore, the total

number of triples is twice as many as the original datasets.

We utilize the type information provided by [34] for

FB15K. As for FB13 and WN11, we exploit the LCWA to

collect the type information, so we do not depend on the

auxiliary data, the domain and range of each relation are

approximated by the observed triples.

To examine the retrieval and discriminative ability of

our model, RPE is evaluated on two standard subtasks of

knowledge graph completion: link prediction and triple

classification. The experimental results and analyses are

concluded in the following two subsections.

5.1 Link prediction

The link prediction is a classical evaluation of knowledge

graph completion, it focuses on predicting the possible h or

t for test triples when h or t is missed. Rather than requiring

one best answer, it places more emphasis on ranking a list

of candidate entities from the knowledge graph. FB15K is

benchmark dataset to be employed for this task.

5.1.1 Evaluation protocol

We follow the same evaluation procedures as used in

knowledge embedding models. First, for each test triple

(h,r,t), we replace h or t with every entity in f. Second,
each corrupted triple is calculated by the corresponding

score function S(h,r,t). The final step is to rank the original

correct entity with these scores in descending order.

Two evaluation metrics are reported: the average rank of

correct entities (Mean Rank) and the proportion of correct

entities ranked in the top 10 (Hits@10). Note that if a

corrupted triple already exists in the knowledge graph, then

it should not be considered to be incorrect. We prefer to

remove these corrupted triples from our dataset and call

this setting ‘‘filter’’. If these corrupted triples are reserved,

then we call this setting ‘‘raw’’. In both settings, if the

latent representations of entity and relation are better, then

a lower mean rank and a higher Hits@10 should be

achieved. Because we use the same dataset, the baseline

results reported in [5, 14, 15, 19, 20, 32] are used for

comparison.

Table 3 Statistics of the datasets

Dataset #Ent #Rel #Train #Valid #Test

FB15K 14,591 1345 483,142 50,000 59,071

FB13 75,043 13 316,232 5908 23,733

WN11 38,696 11 112,581 2609 10,544

1 https://github.com/thunlp/Fast-TransX.
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5.1.2 Implementation

We set the dimension of entity embedding n and relation

embedding m among {20, 50, 100, 120}, the margin c1
among {1, 2, 3, 4, 5}, the margin c2 among {3, 4, 5, 6, 7,

8}, the learning rate a for SGD among {0.01, 0.005,

0.0025, 0.001, 0.0001}, the batch size B among {20, 120,

480, 960, 1440, 4800}, and the balance factor k among

{0.5, 0.8, 1,1.5, 2}. The threshold g was set in the range of

{0.01, 0.02, 0.04, 0.05} to reduce the calculation of

meaningless paths.

Grid search is used to determine the optimal parameters.

The best configurations for RPE (ACOM) are n = 100,

m = 100, c1 ¼ 2, c2 ¼ 5, a ¼ 0:0001, B = 4800, k ¼ 1,

and g ¼ 0:05. We select RPE (initial) to initialize our

model, set the path length as 2, take L1 norm for the score

function, and traverse our model for 500 epochs.

5.1.3 Analysis of results

Table 4 reports the results of link prediction, in which the

first column is translation-based models, the variants of

PTransE, Multi-source information learning model DKRL,

and our models. As mentioned above, RPE only with

MCOM path projection is denoted as RPE (MCOM). The

numbers in bold are the best performance, and n-hop

indicates the path length n that PTransE exploits. From the

results, we can observe the followings.

(1) Our models significantly outperform the classical

knowledge embedding models (TransE, TransH, TransR,

TransD, and TranSparse) and PTransE on FB15K with the

metrics of mean rank and Hits@10 (‘‘filter’’). Most nota-

bly, compared with TransE, mean rank reduces by 29.6,

67.2% and Hits@10 rises by 49.0 and 81.5% in RPE

(ACOM). The results demonstrate that the path-specific

projection can make better use of the semantics of relation

paths, which are crucial for knowledge graph completion.

(2) RPE with path-specific type constraints and projection

(RPE (PC ? ACOM) and RPE (PC ? MCOM)) is a

compromise between RPE (PC) and RPE (ACOM). RPE

(PC) improves slightly compared with the baselines. We

believe that this result is primarily because RPE (PC) only

focuses on local information provided by related embed-

dings, ignoring some global information compared with the

approach of randomly selecting corrupted entities. (3) In

terms of mean rank, RPE (ACOM) has shown the best

performances. Especially compared with PTransE, it

achieves 14.5 and 24.1% error reductions in the ‘‘raw’’ and

‘‘filter’’ settings, respectively. In terms of Hits@10,

although RPE (ACOM) is 2.7% lower than TransD (bern)

on ‘‘raw’’, however, it gets 10.6% higher than the latter on

‘‘filter’’.

Table 5 presents the separated evaluation results by

mapping properties of relations on FB15K. Mapping

properties of relations follows the same rules in [5], and the

metrics are Hits@10 on head and tail entities. From

Table 4, we can conclude that (1) RPE (ACOM) outper-

forms all baselines in all mapping properties of relations. In

particular, for the 1-to-N, N-to-1, and N-to-N types of

relations that plague knowledge embedding models, RPE

(ACOM) improves 4.1, 4.6, and 4.9% on head entity’s

prediction and 6.9, 7.0, and 5.1% on tail entity’s prediction

compared with previous state-of-the-art performances

achieved by PTransE (ADD, 2-hop). (2) RPE (MCOM)

does not perform as well as RPE (ACOM), and we believe

that this result is because RPE’s path representation is not

consistent with RPE (MCOM)’s composition of projec-

tions. Although RPE (PC) improves little compared with

PTransE, we will indicate the effectiveness of relation-

specific and path-specific type constraints in triple classi-

fication. (3) We use the relation-specific projection to

construct path-specific ones dynamically; then, entities are

encoded into relation-specific and path-specific spaces

simultaneously. The experiments are similar to link

Table 4 Evaluation results on link prediction

Metric Mean rank Hits@10(%)

Raw Filter Raw Filter

E [3] 273 162 28.8 39.8

LFM [13] 283 164 26.0 33.1

TransE [5] 243 125 34.9 47.1

SME (linear) [4] 274 154 30.7 40.8

SME (bilinear) [4] 284 158 31.3 41.3

TransH (unif) [32] 211 84 42.5 58.5

TransH (bern) [32] 212 87 45.7 64.4

TransR (unif) [20] 226 78 43.8 65.5

TransR (bern) [20] 198 77 48.2 68.7

TransD (unif) [14] 211 67 49.4 74.2

TransD (bern) [14] 194 91 53.4 77.3

TranSparse (separate, S, unif) [15] 211 63 50.1 77.9

TranSparse (separate, S, bern) [15] 187 82 53.3 79.5

PTransE (ADD, 2-hop) [19] 200 54 51.8 83.4

PTransE (MUL, 2-hop) [19] 216 67 47.4 77.7

PTransE (ADD, 3-hop) [19] 207 58 51.4 84.6

DKRL(CNN)?TransE [33] 181 91 49.6 67.4

RPE (initial) 207 58 50.8 82.2

RPE (PC) 196 77 49.1 72.6

RPE (ACOM) 171 41 52.0 85.5

RPE (MCOM) 183 43 52.2 81.7

RPE (PC ? ACOM) 184 42 51.1 84.2

RPE (PC ? MCOM) 186 43 51.7 76.5
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prediction, and the results of experiments further demon-

strate the better expressibility of our model.

5.2 Triple classification

Triple classification is recently proposed by [26], it aims to

predict whether a given triple (h,r,t) is true, which is a

binary classification problem. We conduct this task on

three benchmark datasets: FB15K, FB13 and WN11.

5.2.1 Evaluation protocol

We set different relation-specific thresholds fdrg to per-

form this task. For a test triple (h,r,t), if its score S(h,r,t) is

below dr, then we predict it as a positive one; otherwise, it

is negative. fdrg is obtained by maximizing the classifi-

cation accuracies on the valid set.

5.2.2 Implementation

We directly compare our model with prior work using the

results about knowledge embedding models reported

in [20] for WN11 and FB13. Because [19] does not eval-

uate PTransE’s performance on this task, we use the code

of PTransE that is released in [19] to complete it. FB13 and

WN11 already contain negative samples. For FB15K, we

use the same process to produce negative samples, as

Table 5 Evaluation results on FB15K by mapping properties of relations (%)

Tasks Predicting head entities (Hits@10) Predicting tail entities (Hits@10)

Relation category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

SE [3] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME (linear) [4] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME (bilinear) [4] 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE [5] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH (unif) [32] 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8

TransH (bern) [32] 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

TransR (unif) [20] 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1

TransR (bern) [20] 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

TransD (unif) [14] 80.7 85.8 47.1 75.6 80.0 54.5 80.7 77.9

TransD (bern) [14] 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2

PTransE (ADD, 2-hop) [19] 91.0 92.8 60.9 83.8 91.2 74.0 88.9 86.4

PTransE (MUL, 2-hop) [19] 89.0 86.8 57.6 79.8 87.8 71.4 72.2 80.4

PTransE (ADD, 3-hop) [19] 90.1 92.0 58.7 86.1 90.7 70.7 87.5 88.7

TranSparse (separate, S, unif) [15] 82.3 85.2 51.3 79.6 82.3 59.8 84.9 82.1

TranSparse (separate, S, bern) [15] 86.8 95.5 44.3 80.9 86.6 56.6 94.4 83.3

RPE (initial) 83.9 93.6 60.1 78.2 82.2 66.8 92.2 80.6

RPE (PC) 82.6 92.7 44.0 71.2 82.6 64.6 81.2 75.8

RPE (ACOM) 92.5 96.6 63.7 87.9 92.5 79.1 95.1 90.8

RPE (MCOM) 91.2 95.8 55.4 87.2 91.2 66.3 94.2 89.9

RPE (PC ? ACOM) 89.5 94.3 63.2 84.2 89.1 77.0 89.7 87.6

RPE (PC ? MCOM) 89.3 95.6 45.2 84.2 89.7 62.8 94.1 87.7

Table 6 Evaluation results of triple classification (%)

Datasets WN11 FB13 FB15K

TransE (unif) [5] 75.9 70.9 77.8

TransE (bern) [5] 75.9 81.5 85.3

TransH (unif) [32] 77.7 76.5 78.4

TransH (bern) [32] 78.8 83.3 85.8

TransR (unif) [20] 85.5 74.7 79.2

TransR (bern) [20] 85.9 82.5 87.0

PTransE (ADD, 2-hop) [19] 80.9 73.5 83.4

PTransE (MUL, 2-hop) [19] 79.4 73.6 79.3

PTransE (ADD, 3-hop) [19] 80.7 73.3 82.9

RPE (initial) 80.2 73.0 68.8

RPE (PC) 83.8 77.4 77.9

RPE (ACOM) 84.7 80.9 85.4

RPE (MCOM) 83.6 76.2 85.1

RPE (PC ? ACOM) 86.8 84.3 89.8

RPE (PC ? MCOM) 85.7 83.0 87.5
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suggested by [27]. The hyperparameter intervals are the

same as link prediction. The best configurations for RPE

(PC ? ACOM) are as follows: n = 50, m = 50, c1 ¼ 5,

c2 ¼ 6, a ¼ 0:0001, B = 1440, k ¼ 0:8, and g ¼ 0:05,

taking the L1 norm on WN11; n = 100, m = 100, c1 ¼ 3,

c2 ¼ 6, a ¼ 0:0001, B = 960, k ¼ 0:8, and g ¼ 0:05, tak-

ing the L1 norm on FB13; and n = 100, m = 100, c1 ¼ 4,

c2 ¼ 5, a ¼ 0:0001, B = 4800, k ¼ 1, and g ¼ 0:05, taking

the L1 norm on FB15K. We exploit RPE (initial) for ini-

tiation, and we set the path length as 2 and the maximum

epoch as 500.

5.2.3 Analysis of results

Table 6 lists the results for triple classification on different

datasets, and the evaluation metric is classification accu-

racy. The results demonstrate that (1) RPE (PC ? ACOM),

which takes good advantage of path-specific projection and

type constraints, achieves the best performance on all

datasets; (2) RPE (PC) achieves 4.5, 6.0 and 13.2%

improvements on different datasets compared with RPE

(initial); thus, path-specific constraints can raise the

determinability of knowledge embedding model experi-

mentally. Moreover, lengthening the distances for similar

entities in embedding space is essential to specific tasks.

(3) In contrast to WN11 and FB13, the significant

improvements on FB15K indicate that although LCWA

can compensate for the loss for type information, the actual

relation-type information is predominant.

5.2.4 Hyperparameter selection

Theoretically speaking, our models are most affected by

learning rate, margin and embedding dimension. RPE

exploits thepre-trainedmodels for training.Thuswechoose a

relatively small learning rate for refinement, such as 0.0001.

We make a comparison of RPE (ACOM) and RPE (PC ?

ACOM) with different hyperparameters (margin c1 and

dimension of entity embedding n) as shown in Figure 2. c1 is
tuned in the definite range {1, 2, 3, 4, 5} and n is tuned in the

definite range {20, 40, 60, 80, 100, 120}. Other parameters

keep the optimal settings explained in Sect. 5.2.2. From the

figure, we can see that: (1) Even without hyperparameter

selection RPE can maintain high classification ability. The

whole accuracies of RPE (ACOM) and RPE (PC? ACOM)

exceed 75 and 77%, respectively. (2) In the condition of fine

granularity, the margin and embedding dimension play an

important role in model learning.

6 Conclusions and future work

In this paper, we propose a novel relation path embedding

model (RPE) for knowledge graph completion. To the best of

our knowledge, this is the first time that a path-specific pro-

jection has been proposed, and it simultaneously embeds

each entity into relation and path spaces to learn more

meaningful embeddings.We also put forward the novel path-

specific type constraints based on relation-specific con-

straints to better distinguish similar embeddings in the latent

space. Extensive experiments show that RPE outperforms all

baseline models on link prediction and triple classification

tasks. Moreover, the path-specific projection and constraints

introduced by RPE are quite open strategies which can be

easily incorporated into many other translation-based and

multi-source information learning models.

In the future, we will explore the following directions:

(1) Incorporate other potential semantic information into

the relation path modeling, such as the information pro-

vided by those intermediate nodes connected by relation

paths. (2) With the booming of deep learning for natural

language processing [35], we plan to use convolutional

Fig. 2 Hyperparameter tuning

for RPE. The vertical axis is the

accuracy of triple classification.

The left horizontal axis

represents the margin c1 and the

right represents the dimension

of entity embedding n
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neural networks or recurrent neural networks to learn

relation path representation in an end-to-end fashion. (3)

Explore relation path embedding in other applications

associated with knowledge graphs, such as distant super-

vision for relation extraction and question answering over

knowledge graphs.
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