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h i g h l i g h t s

• Unobtrusive systems are useful for monitoring elderly behaviour and detect changes.
• Wearable devices for BLE indoor positioning and body motility are energy greedy.
• Digest mode for data sending to the Shared Repository is the most preferable way.
• Linked Open Data to share results is fundamental in a Smart City perspective.
• Frailty/MCI risk detection based on high-level geriatric (sub-)factors is effective.
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a b s t r a c t

A growing number of elderly people (65+ years old) are affected by particular conditions, such as Mild
Cognitive Impairment (MCI) and frailty, which are characterized by a gradual cognitive and physical
decline. Early symptoms may spread across years and often they are noticed only at late stages, when
the outcomes remain irrevocable and require costly intervention plans. Therefore, the clinical utility
of early detecting these conditions is of substantial importance in order to avoid hospitalization and
lessen the socio-economic costs of caring, while it may also significantly improve elderly people’s
quality of life. This work deals with a critical performance analysis of an Internet of Things aware
Ambient Assisted Living (AAL) system for elderly monitoring. The analysis is focused on three main
system components: (i) the City-wide data capturing layer, (ii) the Cloud-based centralized data
management repository, and (iii) the risk analysis and prediction module. Each module can provide
different operating modes, therefore the critical analysis aims at defining which are the best solutions
according to context’s needs. The proposed system architecture is used by the H2020 City4Age project
to support geriatricians for the early detection of MCI and frailty conditions.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Low birth rates and higher life expectancy are transforming
the composition of world population, with a marked transition
towards a much older population structure, a development al-
ready apparent, for example, in several EU Member States. The
population of the EU-28 on 1 January 2017 was estimated at 511.5
million, with a percentage of elderly people (aged 65 or over) of
19.4%, showing an increase of 0.2 percentage points compared
with the previous year and an increase of 2.4 percentage points
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compared with 10 years earlier. Another aspect of population
aging is the progressive aging of the older population itself, as
the relative importance of the very old is growing at a faster pace
than any other age segment of the EU’s population. As a result,
the share of older people in the total population will increase
significantly in the coming decades, as a greater proportion of the
post-war baby-boom generation reaches retirement. The share
of those aged 80 years or above in the EU-28’s population is
projected to more than double between 2017 and 2080, from 5.5%
to 12.7%.1 Similar conditions are typical of main industrialized
nations, like USA, China and Japan, where the percentage of
aging population is expected to rapidly grow (up to 37.70% in

1 http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_
structure_and_ageing.
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2050 in Japan2), despite, in some cases, a population decrease is
forecasted (like in Japan).

Aging processes result in some degree of decline in cogni-
tive capacity, usually including the following symptoms: forget-
fulness, decreased ability to maintain focus, decreased problem
solving capacity. If left unchecked, these symptoms often progress
into more serious conditions, such as dementia and depression,
or even Alzheimer’s disease (AD).3 Mild Cognitive Impairment
(MCI) is a condition in which people face memory problems more
often than that of the average person their age. These symptoms,
however, do not prevent them from carrying out normal activities
and are not as severe as the symptoms for Alzheimer’s disease.
Symptoms often include misplacing items, forgetting events or
appointments, and having trouble finding words [1]. According
to recent research, MCI is seen as the transitional state between
cognitive changes of normal aging and Alzheimer’s disease.4

If these warning signs are not timely caught and turn out into
more severe diseases, then this will imply a significant decrease
in the quality of life for both elderly people and their relatives,
but it also creates a burden for national health services, which
must face an evolving scenario for interventions. Given that the
demand for health care rises with age, countries with rapidly
aging populations must allocate more money and resources to
their health care systems. With health care spending as a share
of Gross Domestic Product (GDP) already high in most advanced
economies, it is difficult to increase spending while ensuring high
quality services in the case of publicly funded or government-
administered health care systems.5 Additionally, the health care
sector in many advanced economies faces common issues, includ-
ing labour and skills shortages, increased demand for long-term
home-care systems and the need to invest in new technologies.
All of these cost escalators make it more difficult for existing
systems to handle the increased prevalence of age-related chronic
diseases, therefore, in a very near future, aging population is
going to become an economic concern for all the citizens and one
of the greatest social and economic challenges for world societies
in the 21st century.

Recently, Information and Communication Technologies (ICTs),
in particular Internet of Things (IoT)-enabling technologies [2]
and devices, like smart-objects, connected sensors and actuators,
wearable sensors, mobile devices and so on, have allowed the
setup of the so-called Ambient Assisted Living (AAL) systems [3],
which can be seen as the application of ICTs in a person’s (es-
pecially an elder person) daily living and working environment,
in order to enable him/her to stay active longer, remain socially
connected and live independently into old age. Moreover, in the
very last years, the AAL approach is moving towards a City-
wide approach, considering the elderly people not just as subjects
with special needs, but as individuals being part of a community,
having own relational networks made up of relatives, friends
and formal/informal caregivers, and carrying out even complex
activities, both in a home and in a city context. This has been
made possible also by the recent advent of Big Data Manage-
ment and Analysis platform and tools [4], allowing the storage,
management, analysis and visualization of data collected from
unobtrusive sensors deployed at person, home and city level, and
characterized by high volume, velocity and variety. All collected
data are analysed with the aim of defining the behavioural profile

2 https://www.caixinglobal.com/2018-07-20/chart-chinas-aging-population-
101306922.html.
3 http://www.lifeextension.com/Protocols/Neurological/Age-Related-

Cognitive-Decline/Page-01.
4 https://www.ncbi.nlm.nih.gov/pubmed/14732621.
5 https://www.investopedia.com/articles/investing/011216/4-global-

economic-issues-aging-population.asp.

of each elderly person, in order to early detect any potential risk
related to Frailty and Mild Cognitive Impairments (MCI) and to
timely intervene.

In this context, this article extends the work presented in [5],
which focused on a performance analysis of the first three main
building blocks of an IoT-aware elderly monitoring system, i.e. the
data capturing layer in home and in city environments, the Cloud
data store and management layer and, the data analytics for
risk related to MCI and frailty detection layer. The first block
deals with the collection, through unobtrusive technologies and
devices, of data related to elderly’s behaviour during their daily
activities, both in indoor and outdoor environments. The second
block is in charge of storing, semantically enriching, managing
and providing all the collected data, in order to make them
available for further processing. Finally, the last block applies
novel risk detection algorithms on the gathered data in order to
define the risk related to MCI and frailty profile of each individual.

This system architecture (hardware and software modules,
tests, analysis, etc.) has been designed, developed and analysed
by all co-authors in the frame of the H2020-funded City4Age
project to help geriatricians in identifying the onset of MCI and
frailty conditions in elderly people. This paper represents the
result of authors’ work in the last three years within the project
and it aims to collect in a single document all the descriptions of
the main building blocks. Moreover, a first step of performance
evaluation is also presented (with several experimental results
obtained through different test campaigns, both in controlled test
environment and in pilot sites), together with some lessons learnt
analysis. In particular, this work provides a detailed description
of the above-mentioned system architecture components and
an updated performance analysis of each module, whose results
are used to drive a discussion about limitations of the current
system and suggestions on how to overcome them. The main
concerns are related to the potentially huge amount of data
generated and handled by the system, which does not have real-
time constraints, and therefore it can adopt intermediate buffers,
batch communications and asynchronous elaborations without
affecting performance. Currently, the actual users of the system
are quite limited, since they refer to highly specialized profiles,
such as geriatricians, domain experts, researchers, policy makers
and so on, who have access to aggregated and coarse-grained
data. However, computational times must be kept in a reasonable
range in order not to affect user experience, especially during the
data visualization and analysis phases.

The article is structured as follows. In Section 2 a brief
overview of similar works in the field of IoT-aware AAL and
elderly monitoring systems is presented, along with a critical
analysis with respect to the approach proposed by the City4Age
project. In Section 3, an overview of the City4Age project is
briefly presented, which fosters reader’s comprehension of the
technical details of the Personal Data Capturing System (PDCS),
the Shared Repository (SR), and the Risk Analysis Model and
Dashboard, deeply described in Section 4. Section 5 deals with the
performance analysis of these three components, while a critical
discussion about obtained results is carried out in Section 6.
Finally, in Section 7 the conclusions and future developments of
the work are drawn.

2. State of the art and related work

The concept of ‘‘Smart Cities’’ appears in the literature as a
sensing and intelligent city capable of providing different ser-
vices based on citizens’ demands by using their data collected
through different sources. The gathered data are used by the
so called ‘‘sensor consumers’’ i.e. researchers, companies and
governments, to create innovative solutions to foster the citizens’
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well-being [6]. In fact, the ‘‘smart’’ concept of a city is only the
final step of a complex process in which different innovative
solutions and technologies are involved. One of them is the In-
ternet of Things (IoT). IoT covers the necessity of having different
ways of obtaining data from different sources, in an obtrusive or
unobtrusive manner, by using a set of different common daily
devices. These devices have the advantage of being connected
to the Internet to send real information from their usage. Some
examples of data gathered by these devices are temperature
measures, presence of person in an environment, usage of dif-
ferent devices (coffee machines, TVs, doors. . . ) and so on. With
the inclusion of the IoT paradigm as a method to acquire data,
several authors have been able to present different approaches
with the aim of using these sensing devices to collect data and
exploit them in a city-wide context. For example, in [7], authors
outline the challenges of using IoT devices inside a city to create
the so called ‘‘Smart Cities’’. They review several architectures
to acquire data from different IoT based sensors and describe
what are the different purposes to be covered in order to acquire
useful data. In addition, authors describe a project called ‘‘Padova
Smart City’’, to show a real example of an architecture which is
capable to obtain data in a real scenario. Authors in [8], present
the current technical IoT architecture needed to deal with the
necessities of having a connected system thought IoT devices.
They describe the basic requirements to implement an IoT based
architecture in a smart environment and describe different key
challenges to improve it, e.g. the necessity of improving privacy, a
standardization of the software used by devices, an improvement
of data confidentiality, encrypted connections, improved network
security and so on. Other authors have similar ideas and present
approaches in which they describe what is the most suitable ar-
chitecture to use IoT devices to create ‘‘Smart Cities’’, like authors
in [9]. These researchers present a Cloud Centric Vision in which
they comprise the architecture needed to connect IoT based de-
vices to a Cloud server. They present different architectures and
discuss the importance of having different requirements for data
ownership, security and privacy. Moreover, authors present a
roadmap of the key technological developments in the context
of IoT that would impact in the future.

Not only the design of the suitable architecture is needed to
use IoT devices in a city-wide context, but also, it is important
to apply these architectures to improve the well-being of the
citizens. For that reason, authors have been presented different
implementations to use IoT devices inside a ‘‘Smart City’’, for
example, in the health research field. In [10], authors present
a review of a set of different contributions to demonstrate the
importance of the IoT devices in the medical domain. They show
examples of how data can be integrated in a city by using IoT
devices and Fog computing, putting a special emphasis into the
possibility of being used by telemedicine to avoid medical costs in
the future. In addition, they present the eHealth protocol stack: an
IoT and Fog computing-based architecture to acquire data from
a user to provide medical services and an accurate information
about their health status. To do that, they present a set of different
devices which can be attached to the human body in order to
track its medical conditions. In addition, authors describe what
are the needed requirements to build a solid IoT based infrastruc-
ture and how to exploit the acquired medical data. Other authors,
like [11], present a brief description of the importance of using
IoT based devices to create ‘‘Smart Cities’’ and the importance of
using these technologies to create a healthy city to improve the
citizens’ health.

These contributions pave the way in which the IoT based
devices can play a pivotal role in order to obtain data from citi-
zens to provide different services and solutions. However, there
is a group of citizens which needs further attention and these

solutions can be beneficial in order to improve their well-being.
This group is the elderly citizens.

The aging of urban population has resulted in an increase
of the research in the area. The necessity of knowing how to
integrate this portion of the population in the city is introduc-
ing new ways of communication between citizens and the city.
Several projects have developed different solutions to address
this topic, trying to expand ambient assisted environments from
indoor spaces to outdoor and public environments, aiming to
create different services to improve the well-being of the citizens,
with attention to the elderly citizens’ needs. In general, these
projects gather data from citizens, store them securely and anal-
yse them to create an intervention-based system that can be used
in general or specific scenarios. These interventions can address
potential risk cases of degenerative diseases like MCI or frailty
and can inform geriatricians, caregivers or authorized persons to
help them.

PreventIT [12] is a system that uses smartphones and wrist-
bands to collect users’ data and identify possible risk factors based
on their behaviour. The users’ data are gathered both indoor and
outdoor and, based on these data, an intervention system detects
if the user has a health risk and needs an intervention from
external partners like geriatricians or caregivers. This solution can
be deployed in a city-wide context since the system is scalable.

FrailSafe [13] combines medical and technological objectives
to create a complete system that covers various objectives: (i)
understanding the frailty of elderly citizens; (ii) use the obtained
data to infer future outcomes; (iii) develop different tools to be
used to assist the citizens; (iv) create recommendation services to
prevent risky conditions. This project gathers individual data for
each user both indoor and outdoor using different data sources
such as GPS systems, movement sensors or smartphones. Data
are used to enrich the intervention system and make it more
accurate. However, this project is only focused in the individual
monitoring and intervention system; hence it is not prepared to
be used in a city-wide context because the adopted architecture
is not designed for large scale volume of data.

The Netstore [14] project aims to develop an innovative multi-
dimensional, personalized coaching system to support healthy
aging. This system supports elderly citizens by giving them hints
and suggestions for a healthy lifestyle based on the data acquired
from their daily activities. This project uses ICT based solutions
to extract user data from indoor and outdoor spaces and can be
scalable in a city-wide context to cover all citizens of a big city.
Using the acquired data, the project builds a virtual personalized
coach, which gives advice to improve the citizens well-being.

AGNES [15] uses ICT based solutions to extract data from users
in indoor spaces. The main idea of this approach is to create
a web-based social network to stimulate elderly citizens and
promote healthy behaviours. This web-based system provides
information about the health conditions of the monitored users.
The project gathers information about the users and shows it in
an easy way to be interpreted by informal careers, friends and
family members. The data obtained are shared over the Web
to have a remote access point; however, the project does not
gather data from outdoor spaces and it is not prepared to be
used in a city-wide context, because the architecture is focused
on obtaining data from indoor spaces without giving a scalability
process.

STIMULATE [16] presents an interesting approach based on
ICT tools to gather information about elderly citizens and make
suggestions about what is the best itinerary to take when they
need to move around the city. These itineraries are based on
the users’ capabilities and consider their physical conditions. The
platform uses a mobile device to help the users in their travels.
The project only considers outdoor spaces. This project does not
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gather data from indoor spaces and it is not prepared to be used
in a city-wide context because the project is designed to be used
only by few users.

eWALL [17] is a project that uses a ‘‘smart wall’’. This wall pro-
vides information about the health status of the monitored user,
giving information in real time about his/her clinical measures
such as cardiopulmonary conditions or neuromuscular move-
ments. The main objective is to promote the independent living of
elderly citizens by gathering information about their health status
in an indoor environment. This approach only gathers data from
indoor spaces, and it is prepared to be scalable in a city-wide
context. However, this project does not gather data from outdoor
spaces; nor it considers needs and performances of the elderly
citizens when they perform outdoor activities.

USEFIL [18] is a project which contains some similarities with
inCASA project [19] but using only open-source based solutions.
The project objective is to gather data from elderly citizens in
their home environment by using only low-cost IoT based so-
lutions. Gathered data are used to build a personalized profile
that will receive alerts about how they can improve their lives
to foster an indented living. This approach is focused mainly on
acquiring data from indoor spaces rather than outdoor spaces. In
addition, the project is not designed to be scalable in a city-wide
context.

CARE [20] creates automatic alarms based on the gathered
data from indoor monitoring. These alarms are used when the
system detects potential critical situations such as falls or health
risks. The main objective of this project is to create an intelli-
gent environment to detect critical situations related to elderly
citizen. This project only uses stationary technologies, so it is not
designed to gather data from wearables, smartphones or any type
of devices that can record data from the user when he/she is not
in the augmented environment. The project can be scalable to be
used in a city-wide context but limited only to indoor spaces.

The projects discussed so far do not share data through a
Linked Open Data approach, to give a semantic meaning to all
gathered and processed data in order to allow their access from
third parties. These data can be an invaluable source of knowl-
edge to improve the current systems or to create new ones. The
following projects make use of the Linked Open Data approach.

Smart Santander [21] is a city-wide based project. This project
tries to improve Santander citizens’ well-being by gathering data
in an unobtrusive manner. The project gathers data from citizens
in indoor and outdoor spaces by using a set of different ICTs
solutions, such as movement sensors, NFC, GPS or QR codes. In
addition, this project contains a module that can transform the
acquired data into semantic data to be shared to third parties and
try to develop new solutions that can improve the Santander’s
citizens life.

The Smart Odense [22] project is an initiative of the Municipal-
ity of Odense and the University of Southern Denmark with the
aim of improving the Odense citizens’ lives. This project deploys
different sensors in the city to monitor the citizens activities,
for example if a citizen uses the bike service the sensors will
record its usage in real time and will inform to the potential users
about where free parking lots for bicycles are. In addition, the
project tracks the most vulnerable citizens to know if they need
interventions and control the indicators that detect if they are at
risk being excluded from the community. This project contains
similarities with Smart Santander but only gathers data from
outdoor spaces.

ACTIVAGE [23] project presents an open framework for pro-
viding semantic interoperability of IoT platforms for active and
healthy aging. The project provides a set of different layers based
on IoT solutions to gather data from citizens and share it to third
parties by using the Linked Open Data principles. The core idea

of the project is to create an intelligent environment to mitigate
the frailty conditions and preserve the elderly citizens’ quality of
life by giving them a way to be self-independent.

The common feature of all these projects is the lack of a rule
engine-based reasoner, which can create new statements in order
to improve the meaning of the semantic data by using a set of
rules. A comparison among these projects is presented in Table 1,
which also outlines the differences with the City4Age project,
described in the following Section 3. The first two columns, titled
Indoor and Outdoor, depict the capability of the system to gather
data from indoor or outdoor spaces (a house is considered an
indoor space and a park is considered an outdoor space). The
City-Wide column depicts if the system covers city-wide demands
or is designed for a single location. The column Linked Data
Support illustrates if the solution follows the Linked Open Data
approach to share semantic data over the web. The last column,
called Reasoning Support, illustrates if the system can perform a
reasoning process to create new statements based on a set of
elicitation rules.

The presented approaches contain different features that cover
tailored situations, which make them useable under specific con-
ditions. However, they do not cover all features that the City4Age
project approach covers, as indicated in the last row in Table 1
and as it will be clearer after reading Section 3, because none of
them can provide a solution to gather data from different sources,
to store them securely, to give ability to select what data will
be semantically shared, to infer new knowledge by using a set
of rules and finally to provide a tool to share the data using a
semantic approach.

The architecture proposed in this article provides a tool for
gathering data from different IoT middlewares, for storing them
in a persistent combined relational/binary-JSON data store in
order to, lately, convert them into semantic data and share them
using a SPARQL [24] based endpoint. This approach tries to ex-
pand and share the gathered data using a reasoning process
with a set of elicitation rules that infers the converted semantic
data and creates new knowledge to be shared to third parties.
Data are converted into semantic data from a relational database
when third parties request the stored data. This solution is more
scalable and can process large volumes of data. In addition, this
allows defining what is the information that will be converted
into semantic data, making the selection of the desired data and
sharing it semantically over the web. Therefore, with this solution
data are acquired by different sources of IoT-based deployments
(in the context of a Smart City) and stored in a secured silo; then,
a set of different tools to exploit these data are provided, such as
analytical dashboards, big data analysis, or advanced intervention
systems. Moreover, a semantic annotation and inferring phase,
both on original and processed data, can be performed, in order
to extract further knowledge. Data sharing, through the use of a
SPARQL based endpoint, makes them available to be exploited by
governments, researchers or companies to create a gate through
which they can access the stored data and create new business
opportunities, research innovations or social improvements.

3. City4Age project description

City4Age [25,26] is a Horizon2020-funded research and inno-
vation project with the goal of enabling age-friendly cities, aiming
at the creation of an innovative framework based on ICT tools
and services that can be deployed and used by European cities to
enhance the early detection of risk related to frailty and MCI. It
provides also a wide range of personalized interventions that can
help the elderly population to improve their daily life by promot-
ing positive behaviour changes. The project includes six pilot sites
to test the outcomes of the research, which are located in Athens
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Table 1
Comparison of related work projects.
Project name Indoor Outdoor City-wide Linked Data Support Reasoning support

PreventIT Yes Yes Yes No No
FrailSafe Yes Yes No No No
Nestore Yes Yes Yes No No
AGNES Yes No No No No
STIMULATE No Yes Yes No No
eWALL Yes No Yes No No
inCASA Yes No No No No
USEFIL Yes No No No No
CARE Yes No Yes No No
S. Santander Yes Yes Yes Yes No
S. Odense No Yes Yes Yes No
ACTIVAGE Yes Yes Yes Yes No
City4ge Yes Yes Yes Yes Yes

(GR), Lecce (IT), Birmingham (UK), Madrid (ES), Montpellier (FR)
and Singapore. Fig. 1 shows the City4Age logical architecture [27],
where the leftmost part deals with the unobtrusive detection of
elderly behaviour patterns during their everyday life, in indoor
and outdoor environments, also at a city-wide scope. Collected
data are then stored and managed in a central repository, which
acts as a data source for novel behavioural analysis and risk
detection algorithms (the rightmost block). This step produces a
list of possible customized interventions for each subject, which
can be directly administered to the elderly, or after the evaluation
by a multidimensional assessment team. The smartphone plays a
central role in this architecture, acting in many cases as a gateway
for data transmission and as a terminal for interventions.

In the context of the City4Age risk modelling, a set of Geriatric
Factors (GEFs) and Geriatric Sub-Factors (GESs) have been defined
as quantitative indicators of the MCI and frailty risk associated
to an elderly person [28]. These indicators derive from the most
commonly used tools in current geriatrics practice, that measure
MCI and frailty based on behaviour and human activities mon-
itoring. A partial list of the defined GEFs and GESs is shown in
Table 2.

The numerical values of GEFs and GESs result from the ag-
gregation of data with a lower level of abstraction and a larger
basin of sources. Therefore, in order to address issues related
to heterogeneous data sources, low level technologies, semantic
interpretation and so on, the City4Age project has defined the
notion of Low-level Elementary Actions (LEAs). A LEA is the finest
grain atomic information used to detect behaviour of elderly
people. It is a structured data object that relates to start/stop
events of user basic actions and contains additional information
about time and position of the action that is being taken.

LEAs are grouped in macro-categories according to their scope,
such as (i) Person LEAs – for tracking user states about motility,
like standing, moving, walking, etc., but also for collecting data
about the usage of smartphone for calling and the number of
visits payed or received – (ii) Home LEAs – for tracking user
positions inside his/her home environment; for collecting data
about the usage of home appliances and furniture, like fridge, TV,
washing machines, cabinets, etc. – (iii) City LEAs – for tracking
user positions, both inside monitored places in the city being part
of the City4Age pilot scenarios (shops, offices, pharmacies, etc.)
and in outdoor spaces in the city (streets, parks, etc.); for tracking
the interaction of user with public transportation systems.

LEAs are collected as soon as they happen and sent asyn-
chronously to the central repository for further elaboration. Since
a large number of LEAs occurrences can be generated during the
day, the City4Age project has introduced the concept of Measure
as a daily indicator that synthetizes a set of occurrences of a given
LEA. For example, by analysing all LEAs related to the entering
and exiting of the user in a room (such as the bathroom), it can
be computed howmany times the user went to bathroom in a day

and the average time of permanence. These are typical examples
of Measures, generated on a daily basis, that make sense from a
geriatric point of view to assess changes of behaviour relevant for
MCI/Frailty. Starting from these and other daily Measures, GEFs
and GESs indicators can be computed in order to define a risk
profile of each elderly person on a monthly basis. A well-defined
and shared vocabulary of LEAs and Measures labels has also been
defined as a deliverable of the project, with the aim of providing
a common language for all low-level data producers.

In order to abstract low-level details without losing informa-
tion during the data acquisition process, the concept of Common
Data Format (CDF) has been introduced with the aim to define
a data object which is used to exchange data and information
with a uniform and shared meaning, hiding all technological low-
level details. In this way, data gathered by different devices, can
be treated in the same manner, avoiding concepts misalignment
and loss of knowledge. The CDF, along with the shared vocabulary
of LEAs and Measures labels, provides a first level of abstraction
with respect to raw data generated from sensors. There exist two
different CDFs, shown in Tables 3 and 4, used to transmit LEAs
and Measures to the City4Age Shared Repository.

4. Description of system architecture

This work defines a general architecture for unobtrusively col-
lecting data coming from a heterogeneous sensing infrastructure.
In particular, this work is focused on the first three layers of the
proposed solution, the so-called Personal Data Capturing System
(PDCS), the Shared Repository (SR) and the Risk Analysis Model
and Monitoring Dashboards (RAMMD), shown in Fig. 2 [29].

The main task of the Personal Data Capturing System is to
collect raw data from heterogeneous sensors deployed in physical
environments (independently of both their specific technologies
and communication protocols) and process them to calculate
LEAs and Measures to be sent to the Shared Repository. The PDCS
is internally composed of two main logical blocks. The Local Envi-
ronment Building Block (LEBB) provides a modular set of software
components (generally installed on smartphones or embedded
devices acting as gateways), which allows the communication
with different sensing technologies according to the respective
standards and protocols in a uniform way. This capability ab-
stracts the heterogeneity of the physical devices and provides a
high degree of expandability to include upcoming technologies.
The LEBB core logic translates raw data into LEAs and sends them,
through a well-defined REST APIs, to the Cloud Building Block
(CBB). It is in charge of performing further computations in order
to calculate Measures based on the given LEAs. Finally, the CBB is
in charge of sending both LEAs and Measures to the SR.

The Shared Repository integrates the data received from the
IoT infrastructure and provides a semantic meaning to those
data following the Linked Open Data paradigm. This process also
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Fig. 1. System architecture of the City4Age project. It collects elderly’s behavioural data through unobtrusive technologies and store them in a central shared
repository, so that risk detection algorithms can be applied on them to produce customized interventions.

Table 2
Excerpt of GEFs and GESs list.
Geriatric factors Geriatric sub-factors

Motility Walking, climbing stairs, still/moving, moving across rooms
Basic activities of daily living Bathing and showering, dressing, self-feeding, going out
Instrumental activities of daily living Ability to cook food, housekeeping, laundry, phone usage, new media communication, shopping, transportation
Socialization Paying/receiving visits, attending senior centres, attending other social places
Cultural engagement Visiting cultural or entertainment places, watching TV, reading
Environment Quality of housing, quality of neighbourhood
Health — Physical Falls, weight, weakness, pain, appetite, exhaustion, quality of sleep, visits to doctors, visit to health related places
Health — Cognitive Abstraction, attention, memory, mood

Table 3
LEA Common Data Format (CDF).
Property Description

action Name of the action
user ID of the user involved in the action.
pilot Identifier of the Pilot that uploaded the action
location Location where the action is executed.
position Geographical position at which the action took place.
timestamp Date and time at which the action was executed.
payload Set of measures values.
rating Value defining the uncertainty of the inferred action (1.0: certain, 0.0: unreliable)
extra Object containing additional, Pilot specific information that Pilots may want to add.

Table 4
Measure Common Data Format (CDF).
Property Description

user ID of the user to which the measures relate.
pilot Identifier of the Pilot that uploaded the Measure
interval_start Timestamp of the start of the time interval to which the measure relates.
interval_end Timestamp of the end of the time interval to which the measure relates.

Note: the following property duration can be used in alternative to this one
interval_duration Duration of the time interval to which the measure relates.

Note: the previous property interval_end can be used in alternative to this one.
payload Object containing additional sub-properties, as needed to further describe the action.
extra Object containing additional, Pilot specific information that Pilots may want to add.

enriches the gathered data applying spatial and temporal knowl-
edge eliciting rules, which improve the semantic knowledge and
ease the inference and querying processes. The SR is composed of
two modules: the Cloud Data Acquisition Layer, which allows to
manage large quantities of data in an efficient manner, and the
Semantic Data Access Layer, which performs the semantization
process over the stored data.

Finally, the Risk Analytics and Monitoring Dashboards block
combines domain knowledge with data-driven machine learning

techniques to derive health, well-being and lifestyle behaviour
quantifying factors and metrics able to predict the onset of MCI
and frailty conditions, starting from Measures. It is internally
composed of:

• the implementation of the City4Age MCI and frailty risk
model (also referred to as the Geriatric Model — GM), which
abstracts the main constructs of the domain in order to



604 A. Almeida, R. Mulero, P. Rametta et al. / Future Generation Computer Systems 97 (2019) 598–619

Fig. 2. Logical architecture of the proposed system. It consists of the Personal Data Capturing System (PDCS), the Shared Repository (SR) and the Risk Analysis Model
and Monitoring Dashboards (RAMMD) modules.

provide a synthetized risk profile for each individual, or
group/cluster within the observed population

• the Analytics REST API Service Layer, providing various in-
terfaces to and from the Analytics, for other internal sys-
tem modules and components, such as Intervention mod-
ules, and for applications and widgets targeted to end users
(caregivers, physicians, researchers. . . )

• the Analytics Dashboards, in particular the Individual Mon-
itoring Dashboard (IMD), an interactive collaborative tool
used by geriatricians and other stakeholders to refine the
risk detection process.

4.1. Personal Data Capturing System

The Personal Data Capturing System gathers large quantities
of data from the physical environment through a sensing infras-
tructure, at home and city level. Relevant types of collectable data
can be roughly grouped into the following categories:

• User motility: data related to user body activities, such as
motion, rest, sleep, walking, etc.

• Indoor/Outdoor localization: data involved in the process
of determining the position of the user inside a private or
public indoor place, such as user’s homes or shopping malls,
pharmacies, churches, etc., as well as data related to the
position of the user in outside places, like streets, parks, etc.

• User/Environment interaction: data related to user inter-
action with the surrounding environments, especially with
home appliances (TVs, HVACs, etc.) and public services, for
example public transportation.

Since several and heterogeneous technologies can be potentially
involved in the process of gathering data for the categories listed
above, the main rationale behind the adopted approach has been
to define a reference solution for each gathering sub-system. Each
of them is fully compliant with the LEBB-CBB architecture and
starts from the sensing requirements expressed by the six pilot
sites involved.

4.1.1. The motility sub-system
The reference architecture proposed for the User motility sub-

systems (Fig. 3) is based on a low-cost prototypal wristband,
associated with a smartphone, able to unobtrusively collect data
related to the body motility of the elderly user [30]. With re-
spect to the use of other commercial wristbands, this approach
allows for a more direct control of sensors and communication
interfaces, without involving third party APIs and services. In
particular, the wristband, by exploiting its 9-axis inertial sensors,
is able to classify the body posture of the elderly by analysing
the collected data with a machine learning approach [31], which
can be finely tuned according to user’s needs. The result of the
classification is then sent firstly to the smartphone, by exploiting
the embedded programmable BLE interface of the wristband, and
then to the CBB, through the smartphone Internet connection, for

further analysis. Therefore, the wristband, in conjunction with the
smartphone, plays the role of the LEBB of the PDCS.

Typical outputs of this module are the BODY_STATE_START/
BODY_STATE_STOP LEAs indicating the timestamp when the user
enters and leaves a particular body state (i.e. still, walking, laying,
etc.).

4.1.2. The Indoor/Outdoor Localization sub-system
The innovative solution proposed as a reference architecture

for the Indoor/Outdoor localization sub-system (Fig. 4), is based
on a wristband, associated with a smartphone, able to unobtru-
sively collect data related to user localization, both in indoor and
outdoor environments, by using the proper technologies [32].
The wristband, in fact, is equipped with a BLE interface, which
allows it to listen to BLE advertisements and to connect to a
smartphone at the same time. In indoor environment, it can
read the information broadcasted by a BLE beacon-based indoor
positioning infrastructure (one beacon per each room) and, after
calculating in which room the user is currently located by per-
forming a classification algorithm based on RSSI [33], it sends this
information to the smartphone and CBB, through the smartphone
Internet connection, for further analysis. In conjunction with the
smartphone, the wristband plays the role of the LEBB of the PDCS.

In outdoor environment, instead, it relies on the smartphone’s
GPS receiver to collect data about user’s position and compare it
with pre-defined Point of Interest (POI) locations, in order to gen-
erate the proper LEAs. However, if public commercial activities,
such as shops, markets, pharmacies and so on, are equipped with
BLE beacons, the wristband approach can be still used to better
refine user’s localization.

Typical outputs of this module are the POI_ENTER/POI_EXIT
LEAs, indicating the location type and/or the GPS coordinates (by
exploiting the GPS receiver of the smartphone).

It is worth noting that both functionalities of indoor localiza-
tion and body motility can be implemented on the same wrist-
band, if its hardware equipment supports MEMS, a BLE interface
and a customizable firmware.

4.1.3. The User/Environment Interaction sub-system
Given the numerous ways in which elderly people can inter-

act with their surrounding environment, in the context of this
work, this task has been focused on unobtrusively monitoring the
activation/deactivation of some household appliances, like oven,
coffee machine, vacuum cleaner, washing machine, and so on,
because their usage is tied to particular complex activities strictly
related to precise GESs (i.e. housekeeping, laundry, preparing
meals, personal hygiene, etc.). The reference architecture of the
proposed home appliances monitoring system (Fig. 5) is based
on a hybrid approach [34,35]. An unobtrusive smart meter con-
stantly measures the overall energy consumption, by counting the
blinks of the central power meter’s LED; then, it communicates
these values to a Cloud-based software module for appliance
disaggregation of devices having a well-defined power fingerprint
(like microwave oven, washing machine, fridge, etc.). In addition,
in order to detect the usage of devices with low power consump-
tion (for example TV or medical devices), especially when they



A. Almeida, R. Mulero, P. Rametta et al. / Future Generation Computer Systems 97 (2019) 598–619 605

Fig. 3. Hardware infrastructure of the Motility sub-system. It is based on a prototypal wristband, paired with a smartphone, able to detect some body activities of
the user.

Fig. 4. Hardware infrastructure of the Indoor/Outdoor Localization sub-system. It is based on a wristband, associated to a smartphone, which interacts with a BLE
beacon-based infrastructure for indoor positioning. For outdoor localization, it relies on smartphone’s GPS interface.

are used at the same time of other appliances, one or more BLE-
enabled or Wi-Fi-enabled smart plugs are used. They detect if the
attached load is on or off and send this information to the CBB for
further elaboration. By integrating power consumption data with
data collected by other monitoring systems, like the user motility
and indoor positioning system explained in Sections 4.1.1 and
4.1.2, it is possible to apply some activity recognition algorithms,
in order to identify which type of complex activity the user has
carried out.

4.1.4. The City4Age Data Capturing App
The smartphone represents the point of convergence for the

sub-systems described in Sections 4.1.1–4.1.3 because, in addition
to sharing its data connection to communicate the collected data
towards the CBB, it groups the LEBB functionalities of the above
sub-systems into a single application, that orchestrates all tasks.
The City4Age Data Capturing App is a smartphone application
that represents the bridge between external devices (such as
wristband or smart plug) and the CBB. It is the first step in trans-
forming user’s behaviour into LEAs, according to the City4Age
data model.

The City4Age Data Capturing App has a modular structure and
implements the following functionalities:

• Indoor localization: the App interacts with the wristband
(through the BLE interface) for detecting the indoor localiza-
tion of the user within his/her house and in the monitored
places in the City;

• Outdoor Localization: the App relies on the smartphone’s
GPS receiver to the user outdoor location;

• Still detection: by interacting with the wristband, the App
is able to detect the periods of time in which the user is
completely still while he/she is at home;

• Walking detection: by using sensors embedded in the
smartphone and freely available software libraries, the App
is also able to detect and track outdoor walking sessions of
the elderly user;

• Smart-plug interaction: the App periodically scans and
connects to the BLE smart-plugs installed at home to detect
if the monitored device is switched on or off;

• Phone usage detection: the App tracks time and duration
of all incoming, outgoing and missed calls

• Data gateway: the App collects data from the above mod-
ules, formats the related LEAs and forwards them to the
CBB by exploiting the smartphone data connection. If the
Internet connection is temporarily unavailable, the current
LEAs are stored in a local repository on the device and resent
as soon as the connection gets available again.

The City4Age Data Capturing App is self-starting, it runs on the
background and does not require any interaction from the user.
All data transmitted to the CBB are properly encrypted and pro-
tected, by using the common JWT token-based authentication
approach, in conjunction with a HTTPS encrypted communication
channel.

4.1.5. The Cloud Building Block
The Cloud Building Block is the first layer of data aggrega-

tion provided by the proposed architecture. It is implemented
as a Cloud-based service for each City adopting the proposed
approach. It is managed by local administrators and it deals
with the collection and forwarding of LEAs and with the calcu-
lation of Measures to be sent to the Shared Repository. Although
each Municipality is free to implement its own CBB service, the
City4Age project proposes a reference implementation [36]. On
the CBB, LEAs are stored in a local database that acts as a staging
area; then, on a daily basis, LEAs are automatically normalized
through Extract, Transform, Load (ETL) tools (like Pentaho6 Data
Integration). These ETL processes consist of extraction, filtering,
grouping, sorting, merging, performing computations, creating
new fields, changing fields’ format; these operations allow the
removal of redundant and useless data, the computation of Mea-
sures, the creation of the proper CDF data objects. Finally, another

6 https://www.hitachivantara.com/go/pentaho.html.

https://www.hitachivantara.com/go/pentaho.html


606 A. Almeida, R. Mulero, P. Rametta et al. / Future Generation Computer Systems 97 (2019) 598–619

Fig. 5. Hardware infrastructure of the User/Environment Interaction sub-system. It consists of a Smart meter, which measures the overall power consumption of the
flat, supported by a given number of smart plugs, used to monitor some low-power devices.

ETL process is launched to send LEAs and Measures to the Shared
Repository.

4.2. The Shared Repository

The Shared Repository acts as the centralized repository for all
data captured by the Personal Data Capturing System deployed in
each city. The Shared Repository manages and annotates the data
received from the cities, providing semantic meaning to the data
by using a properly defined ontology [37]. The Shared Repository
(see Fig. 6) is split into two main modules: (i) the Cloud Data
Acquisition Layer, and (ii) the Semantic Data Access Layer.

The Cloud Data Acquisition Layer is used to acquire data
from different sources, to store them in the Cloud, and to ag-
gregate/transform them. The Cloud Data Acquisition Layer is the
entry point for the IoT modules deployed in the cities. The aim of
this module is to manage the connections between different IoT
middle-wares, control the consistency of the data and persist it.
The Cloud Data Acquisition Layer supports three different levels
of abstraction for the data received from the cities:

• Low-level Elementary Actions (LEAs), which represent
short, conscious actions performed by the users (e.g. open
the fridge, leave the house, take the bus or use the oven).

• Activities, which represent more complex events composed
by LEAs (e.g. cooking a recipe or going to visit some family
members) [38].

• C4A Measures, which are a summary of the aggregated
actions of a user during a period of time (e.g. walked kilome-
tres, number of calls or number of visits to family members).

This way the cities can decide which information granularity is
better suited for their requirements or is more aligned with their
existing sensing infrastructure. The data acquisitions process is
done through three different endpoints: add_action, add_activity
and add_measure.

The Semantic Data Access Layer enriches the stored data with
semantic meaning. This module also uses a semantic rule rea-
soner to improve the stored information by inferring new state-
ments using knowledge eliciting rules [39] (see Table 5 for some
examples of the used rules). Additionally, this module also allows
third parties to explore and query the stored data by using a
REST, HTML and SPARQL endpoints. The aim of these endpoints
is to allow third parties such as governments, companies or
researchers to take advantage of the aggregated dataset, while
maintaining the users’ privacy.

When new data arrives to the Shared Repository, the workflow
is the following:

1. The Personal Data Capturing System installed in a city
performs a request to the Shared Repository using the
endpoint provided by the Cloud Data Acquisition Layer.

2. The REST Server (Nginx) manages the request and creates
an internal socket, pairing it with the Application Container
(uWGSI7).

3. The Application Server (Flask) receives the request from
the Application Container to the corresponding endpoint.
The Application Server processes the request, performing
the consistency checks on the received data and using the
Object Relational Mapper (SQLAlchemy8) to store the data
in the database (PostgreSQL9).

4. Once the data has been validated and stored, the Semantic
Data Access Layer starts the process of giving semantic
meaning to it. First, the Semantic Mapper (D2RQ10) ex-
tracts the data from the database and uses the semantic
mappings (see Fig. 7 for an example of a mapping) to
transform the data to semantic triples, using the City4Age
Ontology [37].

5. The Semantic Rule Engine (Jena Rule Engine11) receives the
resulting triples and applies the knowledge eliciting rules
(see Table 5 for an example of two rules) to infer more
relevant knowledge and enrich the existing data.

6. The enriched data are sent to the RDF Server (Fuseki12) to
make them available to third parties. The data in the RDF
Server has been anonymized striping it from any personal
information, in order to protect the users’ privacy. The RDF
Server offers three different endpoints. A REST endpoint, an
HTML endpoint, and a SPARQL [24] endpoint.

4.3. The Risk Analysis Model and monitoring dashboards

The MCI and frailty risk model designed in the scope of this
work has been formalized as a hierarchical Bayesian network
(Fig. 8), where a relatively small number (61 in total) of derived
higher-level nodes (Geriatric Factor — GEF, Geriatric Sub-factor
— GES, and Geriatric Factor Group — GFG) aggregate and sum-
marize a larger number (151) of various underlying Measure

7 https://uwsgi-docs.readthedocs.io/en/latest/.
8 https://www.sqlalchemy.org/.
9 https://www.postgresql.org/.

10 http://d2rq.org/.
11 https://jena.apache.org/documentation/inference/index.html.
12 https://jena.apache.org/documentation/serving_data/.

https://uwsgi-docs.readthedocs.io/en/latest/
https://www.sqlalchemy.org/
https://www.postgresql.org/
http://d2rq.org/
https://jena.apache.org/documentation/inference/index.html
https://jena.apache.org/documentation/serving_data/
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Fig. 6. Overview of the Shared Repository architecture. The Shared Repository is divided in two main modules, the Cloud Data Acquisition Layer and the Semantic
Data Access Layer.

Table 5
Example of the knowledge-eliciting rules used by the semantic rule reasoner.
Rule ID Rule body Rule head

buildinglocation: (?subject rdf:type vocab:location),
(?subject vocab:location indoor ‘‘t’’),
(?subject vocab:location pilot id ?object)

(?subject schema:Place
city4age:Building)

registeredstatus: (?subject vocab:executed action date ?object)
greaterThan (?object, ‘‘2014-04 21T07:08:41’’8sd:dateTime)
lessThan(?object, ‘‘2014-08-21T07:08:41’’8sd:dateTime)

(?subject schema:actionStatus
‘‘registered’’)

Fig. 7. Example of a semantic mapping used to transform the relational data in semantic triples.

types. The data analytics module works on the adopted combined
knowledge- and data-driven approach based on this model, ex-
ploiting an ensemble of statistical, knowledge engineering and
machine learning algorithms.

The model transforms and contextualizes the acquired sensor
data into comprehensive determinants, commonly used and in-
terpreted by geriatricians in the current knowledge and practice
for the diagnosis and prediction of the onset of MCI and frailty
conditions. The model also comprises knowledge expansion and
refining mechanisms, in the general approach of studying and re-
solving classes of problem instances analytically [40]. In general,
in the network presented in Fig. 8, overall MCI/FrailtyRisk (OVL)
represents the top-level query variable, Measures represent evi-
dence variables, while GEFs and GESs represent hidden variables.
With its inner structure, the network is able to model:

• How the changes in acquired values of evidence variables
influence the basic geriatric domains, particularly the ac-
quired datasets of Measures of the behaviour of each ob-
served elderly citizen (a provisional geriatric care recipient
— CR). These include, for example, outdoor walking speed

(WALK_SPEED_OUTDOOR Measure, influencing the value of
the derived Walking GES), or the number of visits to shops
(SHOP_VISITS Measure, influencing the Shopping GES), or
the daily number of meals (MEALS_NUM Measure, can in-
fluence both the Ability to cook food GES and the Self-feeding
GES).

• How changes in geriatric functional features of behaviour,
quantified by GESs, in turn influence a number of higher-
level geriatric domains represented by GEFs. For example,
GESs capture the ability and quality of walking (Walking
GES, affecting the complete Motility GEF of a person), or
ability to prepare own meals (Ability to cook food GES, con-
stituting the IADL GEF).

• How the overall MCI and frailty level and risk status of a
person is influenced by a number of functional factors and
‘‘macro-domains’’ represented by the GEF and GFG nodes
respectively. For instance, the capability of the person to
perform coordinated movement independently on its own
(Motility GEF), or ability to carry out common Activities of
Daily Living (Basic ADL and Instrumental ADL GEFs).
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Fig. 8. An excerpt of network representation of the City4Age geriatric model. Main constructs: Measures (octagons), Geriatric Sub-Factors GES (hexagons), Geriatric
Factors GEF (rectangles).

In the ongoing work, data-driven methods, such as Hidden
Markov Model (HMM) [41] temporal clustering and latent feature
recognition, are used in conjunction with manually explored
correlations, data pivoting and mining, to discover additional
significant and relevant interdependencies among (i) nodes, (ii)
different Measures (including the pairs defined initially by do-
main experts as independent or unrelated), (iii) within specific
clusters or subgroups, or personal datasets in the observed pop-
ulation, and/or (iv) in specific time periods/intervals, across all
Pilot cities. The confirmed findings are then incorporated as new
or alternative relations and nodes in the model. The model is
used to compute a quantitative value for the overall MCI and
frailty risk and specific risks associated with main geriatric func-
tional domains, based on aggregation of Measures into Numerical
Statistical Indicators (NUIs) and then into normalized compara-
ble values for GESs, GEFs and GFGs. On the basis of monthly
NUIs from continuous time series of daily or weekly Measure
values, the values for GESs, GEFs, GFGs and OVL are derived,
each as a weighted linear combination of underlying node values,
normalized as a real number on Likert scale between 1 and 5,
a commonly and intuitively understandable representation in
geriatric practice. The computed data are then used to feed risk
detection algorithms. To this end, time series analysis is applied
to provide: (i) pattern recognition of historical data (detection of
frequent types of sequences), and (ii) forecasting of future values
based on historical trends.

In order to support further fine-grained risk and context as-
sessments and decision making by the geriatrician and caregiver
domain experts, the model formalization is exposed through a
series of navigable hierarchic interactive diagrams presenting the
time series of values of all abovementioned model variables (from
Measures to GFG and OVL) for each observed CR, on the Individual

Monitoring Dashboard (IMD), a collaborative Decision Support
System (DSS) environment (Fig. 9) provided in this work.

5. Performance analysis

This Section describes the tests carried out to evaluate per-
formance of each module described in Sections 4.1–4.3. The per-
formance considerations and envisioned deployment on Big Data
volumes and flows have been taken into account from the start
of concepting and development of all system components, as well
as the models. Tests related to PDCS have focused on sensing
device’s features and their non-functional requirements, as well
as the amount of data produced by each individual on daily–
weekly–monthly basis. The SR has been tested by measuring
response time and percentage of used resources by its internal
components (i.e. the Cloud Data Acquisition Layer, the Semantic
Data Access Layer and the Rule engine). Finally, the effectiveness
of the RAMMD has been evaluated by measuring the error be-
tween forecasted values and observed values. Section 5.1 contains
a brief description of the hardware and software setup used for
the execution of the reported tests.

5.1. Experimental settings

An instance of the Personal Data Capturing System has been
deployed in the Lecce Pilot site of the City4Age project. Twenty-
four elderly people (15 Women, 9 Men; 6 Couples, 12 Sin-
gles) have been equipped with a Samsung A5 2017 smartphone,
running a revised version of City4Age Data Capturing App to
overcome some technical limitations of the wristband. Elderly
houses (17 houses) have been also equipped with a BLE beacon
in kitchen, living room, bedroom and bathroom, for the indoor
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Fig. 9. Hierarchic interactive diagrams of the Individual Monitoring Dashboards. It shows GFG and GEF values and expert assessments on specific data points and
sets.

localization sub-system and with two smart-plugs, with a TV and
the washing machine attached to them, for the User/Environment
Interaction sub-system. Some commercial activities in the city
have been equipped with a BLE beacon in order to track the pres-
ence of the elderly in them. These places are: 3 Senior Centres, 2
Bakeries, 5 Pharmacies and 7 General Practitioners (GPs).

The CBB is based on the following components, running on the
same machine:

• An Apache Tomcat v7.0 (JDK 7) servlet container where the
CBB REST API is deployed;

• An Ubuntu Server machine (14.04 LTE) with WSO2 ESB, BRS
and AS modules;

• An Ubuntu Server machine (14.04 LTE) where Pentaho Data
Integration (PDI) 7.0 is deployed;

• An Ubuntu Server machine (14.04 LTE) where MongoDB
3.213 is deployed.

The Shared Repository tests have been executed in a dedicated
server based on an Intel(R) Xeon(R) E5606 processor at 2.13 GHz
of clock speed, with 8 GB of RAM memory at 1333Mhz clock
speed (In dual channel mode) and a 500 GB ATA disk with
maximum transferred speed ratio at 300 MB/s and 7200 nominal
media rotation rate.

Table 6 summarizes the data stored in the Shared Reposi-
tory and used for the performance analysis of Section 5.3. This
data was captured during the City4Age deployment in the six
project cities during the pilot phase (see [42] for more detailed
information).

Using the real data captured by the six pilot cities in the
experiments ensures the applicability and fairness of the results.

13 https://www.mongodb.com/.

The real usage of the Shared Repository during the piloting phase
can be seen in Fig. 10. We have used these data to model the
experiments in order to simulate the real conditions.

Tests related to the performance of the Risk Analysis and
Prediction are based on Measures data coming from Birmingham
pilot and all tests have been executed on the Analytics sandbox
VM based on dual Intel R⃝ Xeon R⃝ E5-2603 type processor cores at
1.7 GHz clock speed and 128 GB of DDR4 RAM at 2400 MHz clock
speed. The Analytics run over the directly accessed data stored
in the Shared Repository (PostgreSQL v10), utilizing Hibernate v5
Object-Relational Mapper wherever viable in all Java EE8 code
implementations, as it is the complete Analytics REST API Service
Layer, and the Monitoring Dashboards, and most of the analytics
logic, using the available suitable algorithm and ML libraries,
like the Signaflo library for time series analysis in Java. Latest
recently released version 5 of Oracle-sponsored GlassFish (Sept.
201714) is the main application server running the Analytics
REST Services, including the back-end that supports the Analytics
Dashboards, with the advanced front-end data visualization and
annotation features of the Dashboards being developed in Oracle
JET15 open-source JavaScript framework.

5.2. Performance analysis of the Personal Data Capturing System

From a performance point of view, the most critical compo-
nent of the sensing layer of the PDCS is the device chosen for
the implementation of the wristband-based approach for motility
and indoor localization, explained in Sections 4.1.1 and 4.1.2. At
the time the City4Age project started (December 2015), the only

14 https://javaee.github.io/glassfish/.
15 https://www.oracle.com/webfolder/technetwork/jet/globalSupport-
releaseNotes.html.

https://www.mongodb.com/
https://javaee.github.io/glassfish/
https://www.oracle.com/webfolder/technetwork/jet/globalSupport-releaseNotes.html
https://www.oracle.com/webfolder/technetwork/jet/globalSupport-releaseNotes.html
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Table 6
Data used during the experiments for the Shared Repository.
City LEAs C4A measures Registered users

Birmingham 178 159,581 35
Athens 0 457,848 44
Lecce 1,005,835 280,135 24
Madrid 29,777 2125 56
Singapore 55,932 8,569 19
Montpellier 310,589 49,864 18

Fig. 10. Distribution of the Shared Repository usage during the piloting phase.

device suitable for project’s needs was the CC2650STK prototypal
board, also known as SensorTag,16 produced by Texas Instru-
ments. It is based on an open platform that allows the definition
of customized algorithms for reading and elaborating raw data
from a set of embedded sensors, such as MEMS accelerometers
and gyroscopes, temperature, humidity and light sensors, etc.
Moreover, it is equipped with a programmable BLE interface,
which allows the communication with several devices based on
this standard protocol, like smartphone and beacons.

Once the algorithms for detecting body motility and indoor lo-
calization have been implemented on the SensorTag, real life val-
idation showed some functional and non-functional limitations
described in the following:

• Power consumption: the algorithm based on a machine
learning approach used for the motility detection makes an
extensive use of the MEMS accelerometers, while the indoor
positioning algorithm heavily relies on the BLE interface.
Their combined working cycles require a quite big amount
of power that rapidly depletes the CR2032 coin battery
(240 mAh) that feeds the SensorTag, making the device
barely working the whole day;

• Battery replacement: replacing the battery in the SensorTag
requires removing the rubber protection, opening the plastic
case, replacing the battery and reassembling the case. This
sequence of operations can be quite difficult for elderly
people;

• Disconnections and data buffering: when the wristband
is out of the range of the smartphone, the BLE connection
between the two devices is temporary broken. It happened

16 http://www.ti.com/ww/en/wireless_connectivity/sensortag/.

very often in same houses when the smartphone was in
the opposite room with respect to the user wearing the
wristband. Although data buffering techniques have been
implemented both on the SensorTag and in the City4Age
Data Capturing App, the limited memory of the wristband
(up to 148 KB of memory for code and data) actually allows
the buffering for at most a couple of hours of activity;

• Form factor: the device’s form factor has been considered
uncomfortable and cumbersome by some elderly, who were
reticent to wear it;

• Waterproofness: the SensorTag is not waterproof and it has
been considered as a great hindrance during daily activities,
like personal hygiene, laundry, washing dishes, etc.

Taking into account these functional drawbacks, which actually
limit the usefulness of the device in doing its task, and the non-
functional user requirements, which could limit the correct use
even of a properly working wristband, in order not to affect
the operation of the whole project, it was decided not to con-
tinue with the wristband-based approach. Instead, it has been
decided to implement the indoor localization and the body motil-
ity systems directly on the smartphone (together with outdoor
localization already implemented) and invite users to carry al-
ways the smartphone with them, even in indoor environment, by
providing them with a belt clip case. By doing so, all the requested
collecting features are implemented on a single device with high
computational capabilities and power autonomy. Furthermore,
the smartphone OS allows to create customized application in-
teracting with open libraries (like Google Awareness APIs17) that
provides ready-to-go functionalities for automatically detecting,
for example, when the user is still or is walking.

17 https://developers.google.com/awareness/.

http://www.ti.com/ww/en/wireless_connectivity/sensortag/
https://developers.google.com/awareness/
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Fig. 11. Environment setup for the tests of the smartphone based Indoor
Localization system.

This fall-back plan, obtained at almost no cost since the smart-
phone was already part of the equipment of each user partici-
pating to the project experimentation, has allowed to generate
a constant data flow to feed the SR and, consequently, the risk
detection algorithms. In addition, it has demonstrated the flex-
ibility and versatility of the whole PDCS architecture, which is
completely device and technology agnostic, provided that the LEA
and Measure’s CDFs are respected as output format of the data
gathering process.

The proposed Indoor Localization system has been validated
through some supervised tests. A small apartment of approxi-
mately 70 m2 has been equipped with a BLE beacon (BlueBeacon
Mini18) for each room (except for the Livingroom, where two
beacons was placed, given its breadth), as shown in Fig. 11 (white
circles). The beacons have been placed at one metre from the
ground. Then, a path within this environment has been defined
and the testing user, equipped with the smartphone (Samsung A5
2017) in his trousers’ right pocket, has followed it, stopping for a
while in the spots indicated with the red full circles on the map
(Fig. 11). The user remained in each position for 3 BLE scanning
cycles (5 s for each cycle) and the path was repeated for 8 times.
The number of false positives for each room detection has been
measured and shown in Table 7.

Results show that, by accurately choosing the beacon position
inside the room, it is possible to achieve an accuracy in detecting
the current room above the 86% on average.

It is worth noting that the validation presented above is only
an excerpt of the many tests that have been performed and
that are currently being performed on the Personal Data Cap-
turing System, in particular on the Indoor/Outdoor Localization
and Motility sub-systems. Other more accurate results will be
presented in upcoming works.

From a data throughput point of view, the first months of
experimentation of this smartphone-based PDCS implementation
allowed to note that the quantity of data transmitted to the
CBB depends on how the elderly moves in monitored places and
how he/she is physically active. In fact, since each detection sub-
system triggers a LEA only when a change of state is detected,
if the user frequently changes room and frequently alternates

18 https://blueup.myshopify.com/products/bluebeacon-mini.

periods of body activity with periods of rest, then a high number
of LEAs are detected and sent. On the contrary, when the user per-
forms prolonged periods of continuous activity (or inactivity) in
the same location, then the rate of state changes is low, therefore
this situation corresponds to low data transmission. The same
holds for LEAs related to the usage of the phone for calling, the TV
and the washing machine: the more the user activate/deactivate
them, the more LEAs are sent. In terms of data volume, the most
numerous LEAs are those related to the walking outdoor use case.
In order to track user’s speed and distance, when a walking body
state is recognized by the related module of the City4Age Data
Capturing App, a BODY_STATE_IN reporting LEA is sent every 5 s,
containing the GPS position and speed of the user. Therefore, a
30 min walk produces about 360 LEAs.

Table 8 gives an overview of the amount of data related to a
typical user, summarized by analysing the data produced by the
most representative users involved in the first three months of
experimentation in the Lecce pilot. The table reports the number
of LEAs, per each category, produced by a typical user on a daily,
weekly and monthly basis. It is worth noting that the number
of LEAs does not scale up linearly with time, since some daily
activities are not performed every day.

In Table 8 it can be seen that each person produces about
1300 LEAs per day. On average, each LEA contains about 350 Byte
of data, therefore the expected total amount of data generated
per day by each elderly is in the order of 0.445 MB, with a
projection of 14 MB per month. If a city has a population of
1.000.000 inhabitants, of which 25% are 65+ years old, this means
that the potential volume of data generated in a year is about
42 TB. Concerning the LEBB, which represents each single data
source, this daily volume is perfectly manageable, both in terms
of buffering size and data bandwidth; however, the CBB must be
properly setup in order to satisfy all concurrent requests, taking
into account the actual number of involved citizens.

Particular countermeasures had to be taken in order to over-
come some issues related to an improper use of the smartphone
by elderly people. Sometimes, in fact, they inadvertently shut
down the app for data collection, or shut down the Bluetooth, the
GPS or the mobile data connection interfaces from the operating
system, making impossible the data collection and communica-
tion, therefore affecting data throughput and the validity of the
risk detection algorithms.

Regarding Measures’ throughput, currently the Lecce pilot
foresees 44 Measures. They are computed on a daily basis starting
from the collected LEAs and sent to the Shared Repository (with
the same frequency). If, during the day, there have not been
produced LEAs for the computation of a given Measure, it is sent
anyway, with a default zero value. Therefore, the throughput of
Measures is constant over the time.

5.3. Performance analysis of the Shared Repository

The Shared Repository is the cloud infrastructure that receives
the data from all the cities taking part in the City4Age project. In
this section we analyse the different working modes of the Shared
Repository and how different configuration decision can affect
the system performance. The results are discussed in Section 6.2,
where we analyse the advantages and disadvantages of each
working mode and offer guidelines for the system usage. All the
experiments have been modelled using the real data captured
from the pilot cities as discussed in Section 5.1.

The tests defined to analyse the Shared Repository perfor-
mance have been divided in two groups: (i) the Cloud Data
Acquisition Layer tests and (ii) the Semantic Data Access Layer
tests. To analyse the Cloud Data Acquisition Layer two different
experiments have been performed, aimed to assess its perfor-
mance while receiving multiple C4A Measures in a single call

https://blueup.myshopify.com/products/bluebeacon-mini
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Table 7
Error rate of the smartphone based Indoor Localization system in detecting the current room.
Room Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8

Bedroom 1 2 0 1 0 0 2 0
Livingroom 0 0 0 0 0 0 0 0
Kitchen 0 0 0 0 0 0 0 0
Livingroom 0 0 0 0 0 0 0 0
Bathroom 2 1 0 1 0 1 0 1
Livingroom 1 1 0 1 0 1 1 0
Bedroom 0 0 1 1 0 1 1 1
False positives 4 4 1 4 0 3 4 2
Error percentage 19,05% 19,05% 4,76% 19,05% 0,00% 14,29% 19,05% 9,52%

Average error percentage 13.10%

Table 8
Average amount of LEAs produced by each subject, on a daily, weekly and monthly basis.
LEA Day Week Month

POI_ENTER/POI_EXIT for Home indoor related POIs 40 300 1340
POI_ENTER/POI_EXIT for City monitored POIs 6 40 170
BODY_STATE_START/BODY_STATE_STOP for Still state 22 180 700
BODY_STATE_START/BODY_STATE_IN/BODY_STATE_STOP for Walking state 1180 8000 33000
APPLIANCE_ON/APPLIANCE_OFF for TV 12 90 350
APPLIANCE_ON/APPLIANCE_OFF for Washing Machine 2 2 4
PHONE_IN/OUT_START/STOP for calls 6 58 220

Total 1268 8670 35784

Fig. 12. Elapsed time while sending request to the Cloud Data Acquisition Layer.
The bars with the horizontal pattern show the real-time mode and the bars with
the vertical pattern the digest mode.

where the measures are sent in an integrated batch file (digest
mode) or receiving the same amount of C4A Measures in multiple
concurrent calls (real-time mode). The Shared Repository sup-
ports both modes, allowing each city to select one. The number
of individual user Measures sent have been varied, comparing
both modes with the same number of C4A Measures (taking into
account the real data usage during the pilot phase). This allows
to evaluate what is the preferred behaviour for the cities while
uploading the user data. While performing these experiments
both the response times (see Fig. 12) and the used memory (see
Fig. 13) have been measured.

For the Semantic Data Access Layer, both the query perfor-
mance of the Shared Repository and the performance of the Rule
Engine have been evaluated. In the case of the query performance,
a comparison between retrieving the same information via SQL
and SPARQL [24] queries has been carried out. The Semantic
Data Access Layer has multiple endpoints that allow the data
to be queried using either of the options. The SPARQL endpoint
allows for a more expressive syntax, retrieving the data as an

Fig. 13. Used memory while sending request to the Cloud Data Acquisition
Layer. The bars with the horizontal pattern show the real-time mode and the
bars with the vertical pattern the digest mode.

ontology. The number of elements retrieved by the queries has
been varied, comparing the same number of elements for both
systems. While performing these experiments both the response
times (see Fig. 14) and the used memory (see Fig. 15) have been
measured.

In the case of the Rule Engine, the usage of a persistence
method (Apache Jena – TDB [43]) versus a volatile storage model
(non-TDB) has been analysed. The TDB is a component of the
Jena framework used to store and query RDF data, while sup-
porting the full range of the Jena APIs. The TDB can be used
as a high-performance RDF store on a single machine. On the
other hand, the volatile storage model for the rules only used
temporary files. The Shared Repository can be configured to use
either of the working modes. To analyse the difference between
these two approaches we have measured three different metrics
during the execution of the rules: the memory usage variation
along the execution (see Fig. 16), the CPU usage variation along
the execution (see Fig. 17), and the elapsed time to execute all
rules (see Fig. 18). The test has been carried out by using all the
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Fig. 14. Elapsed time while querying the data. The bars with the horizontal
pattern show the SPARQL queries and the bars with the vertical pattern the
SQL queries.

Fig. 15. Used memory while querying the data. The bars with the horizontal
pattern show the SPARQL queries and the bars with the vertical pattern the
SQL queries.

available data to better test the performance. It combines both
the semantic entailment and the ad-hoc rule execution. On a real
environment the process would be done incrementally as new
data arrives to the repository.

All these experiments have allowed us to test the most critical
elements in the Shared Repository performance wise. In the case
of the Cloud Data Acquisition Layer and the query mode of the
Semantic Data Access Layer, the system allows to configure which
option will be used (real-time vs digest mode, and SPARQL vs
SQL) by each deployment, allowing the users to balance the
performance versus extra features. In the case of the Rule Engine,
the TDB mode offers more advantages both in performance and
features. For this reason, the TDB mode is the only supported
mode in the final version of the Rule Engine. These points are
further discussed in Section 6.2.

5.4. Performance validation of risk analysis and prediction through
monitoring dashboards

In this section we show how prediction models of care re-
cipient’s risk associated with deterioration in individual geriatric

Fig. 16. Memory usage of the Semantic Rule Engine while executing the rules
(persistent (TDB) vs volatile mode (Non-TDB)).

Fig. 17. CPU usage of the Semantic Rule Engine while executing the rules
(persistent (TDB) vs volatile mode (Non-TDB)).

Fig. 18. Elapsing time for the rule execution (persistent (TDB) vs volatile mode
(Non-TDB)).
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domains, as well as MCI and frailty, were developed and assessed.
In particular, we used AutoRegressive Integrated Moving Average
(ARIMA) [44] models to fit and predict (forecast) three future
values of time series comprising monthly values of high-level
factors and groups of the geriatric model, namely GES, GEF, GFG
and OVL. The choice of the forecast horizon was derived from
the geriatric health care expertise, according to which 3 months
is a critical period for detecting early signs of deterioration and
applying timely health care interventions. We quantified how
close model predictions are to the actual outcomes using standard
forecast accuracy metrics i.e. Mean Error (ME), Mean Absolute
Error (MAE) and Mean Absolute Percentage Error (MAPE).

ARIMA models cater to a collection of standard structures in
time series data [45] and as such have been used in a number
of various fields [46,47], including healthcare and well-being
analytics and prevention [48–50], for performing comprehensive
time-series forecasts.

Specifically, a rule of thumb in relevant ARIMA applications is
that about two years of monthly values are needed to enable the
model to ‘‘learn’’ repetitive seasonal patterns. Given that our data
is acquired for less than two years, we placed the focus in this
work on the non-seasonal ARIMA models. These models combine
time series differencing with autoregression and moving average
model [51], i.e. a time series xi is ARIMA(p, d, q) if it can be
represented as in (1):

x(d)
i = α + φ1x

(d)
i−1 + · · · + φpx

(d)
p−1 + wi + θ1wi−1 + · · · + θqwi−q (1)

with φp ̸= 0, θq ̸= 0 and σ 2
ω > 0. The parameters p and q

are called autoregressive and moving average orders, d is degree
of differencing involved, wi is a Gaussian white noise sequence
and α represents mean (called ‘‘drift’’ when d = 1). To find
the optimal model, we implemented a function that conducts a
search over possible models within constraints provided for p,
d, q and returns the model with the lowest Akaike Information
Criterion (AIC) [52] value. The steps of the algorithm are shown
in Fig. 19. The prediction models were built and deployed using
Java time series library [53].

The analysis included 1615 time series comprised of consec-
utive monthly geriatric factor values (GES, GEF, GFG and OVL)
acquired for care recipients of the Birmingham pilot. Each of the
time series contained 18 data points (from January 2017 until
July 2018), including imputed values in cases where the value of
variable is missing, and each is represented with a real number
on the Likert scale (1–5). Missing values are imputed using the
weighted moving average (WMA) algorithm with window size
of 2, i.e. 2 left and 2 right values are taken into account. If all
observations in the current window are missing, the window
size is increased until there are at least two values present. The
rationale behind this choice is simple; as the number of acquired
observations is arguably too few to allow exploiting seasonal
patterns in health-related behaviours, an obvious alternative to
approximate missing observations is to use observations made in
a couple of preceding and following months. After experimenting
with different weights, we obtained values 1

2 for observations at
positions i − 1, i + 1 and 1

4 for observations at positions i − 2,
i + 2. Thus, a missing value at a position i in time series x was
computed via the following equation (2):
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1
4
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)
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It was observed that the optimal model for approximately 30%
of analysed time series was found to be the random walk model
i.e. ARIMA (0, 1, 0).

The following standard metrics (3) were used to evaluate
model forecasting performance:

ME =

n∑
i=1

yi − xi
n

, MAE =

n∑
i=1

|yi − xi|
n

,

MAPE =
100%
n

n∑
i=1

|
yi − xi

xi
|

(3)

where yi is a forecasted value, xi is an observed value and n is
the number of forecasted points. MAPE is the most commonly
used error metrics which expresses by how many percentage
points the forecasts are ‘‘off the mark’’ compared to the actual
values. The (relative percentage) forecasting accuracy can be thus
expressed as MAPE deducted from 100% (100% – MAPE). The
mean absolute error, or MAE, is calculated as the average of
the absolute forecast error values; it is in the original unit of
predicted values. A MAE of zero indicates no error. Mean error
(ME), also called the forecast bias, shows whether the model
has tendency to over forecast (positive error) or under forecast
(negative error).

Fig. 20 provides a summary of performance measures indicat-
ing predictive capability and accuracy of the forecasting models.
In particular, the figure shows average accuracy metrics values
for forecasts from August 2017 until July 2018. Each of the sub-
diagrams contains three lines, two of which present forecasting
errors aggregated over GES, GEF and GFG, with forecast horizon
of 1 month (dotted lines) and 3 months (dashed lines). For the
sake of clarity, for the OVL factor, representing the overall frailty
of a care recipient, a single solid line is used to present forecasting
errors with the horizon of 3 months. The reason behind separat-
ing OVL from remaining geriatric factors is due to being the main
parameter exploited in the prediction and assessment of MCI and
frailty risk by the geriatric experts and caregivers in individual
monitoring.

The average percentage accuracies of forecasts with the 3-
month horizon for the period from August 2017 to January 2018
are 87.82% (aggregated over all factors) and 88.78% (aggregated
over OVL). In the following six months, from February 2018 until
July 2018, falling into the second year of monitoring, the average
accuracy scores rose to respectively 89.36% and 91.13%. Average
MAE of 0.30 is the lowest for the OVL forecasts. Finally, the
average values of MEs, of −0.04, −0.06 and −0.07, corresponding
respectively to forecasts aggregated over all factors with forecast
horizons of 1 and 3 months and the OVL factor with a horizon of
3 months, suggest that obtained forecasts are close to unbiased
in all three cases.

6. Discussion

In this Section, results illustrated in Section 5 are recalled and
further commented on a global scope, in order to highlight critical
issues for each component and to provide the best overall system
configuration to overcome such problems.

6.1. The Personal Data Capturing System

From a data capturing perspective, the PDCS has been based,
since the beginning, on a low-cost, unobtrusive and best-effort
approach. The goal was to improve the acquisition of data related
to elderly behaviour by using unobtrusive technologies that do
not interfere with everyday life activities, but able to provide
digitalized data to feed automatic risk detection algorithms. These
algorithms are used to define a risk profile for each subject with
respect to MCI and frailty conditions, in order to support geria-
tricians during their common practice and to provide customized
interventions.
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Fig. 19. Pseudo-code for finding optimal ARIMA model.

Fig. 20. Resulting metrics of errors in forecasting using ARIMA method on data aggregated from Birmingham pilot.

For these reasons, the main challenge of PDCS has been the
adoption of the wristband-based approach for body motility and
indoor localization. As deeply discussed in Section 5.2, this ap-
proach, although being effective and valid, is highly device de-
pendent, especially from a power autonomy point of view. The
investigation aimed to make the wristband approach useable in
real life is in an active phase. The first step is to search for
a rechargeable battery wristband, which allows users an easy
recharging procedure. General hardware and software require-
ments for such device are: a programmable BLE interface, embed-
ded inertial MEMS sensors, rechargeable and long-lasting battery,
open platform or open APIs for customized app development.
Many commercial fitness tracker wristbands provide inertial sen-
sors and (often) open APIs to retrieve collected data. However,
none of them provides customizable access to BLE interface to
implement the indoor localization system. Prototypal wearable
solutions are more suitable for this purpose.

However, taking into account the whole lifecycle of the
City4Age project, which provides a set of interventions based on
collected data, mainly consisting in SMS, WhatsApp and Mes-
senger text messages, also these aspects could be considered in
order to find a solution that minimizes costs on a global scale.
Considering the original Lecce pilot setup, for the data collection
it foresees the wristband and the smartphone: the latter, beside
acting as a gateway for data forwarding, acts also as a terminal
for visualizing the customized intervention messages.

Recent technological advances, and the resulting price fall, in
the field of high-performance smartwatches (like Huawei Watch
2, Apple Watch, Samsung Gear) made it possible to include in
a single wearable device inertial MEMS, BLE and GPS interfaces,

together with a 4G/LTE module, allowing them to be independent
from a paired smartphone for calls and data connectivity to the
cellular network. Moreover, they also have open OS for creating
customized standalone application, which can run completely
on the smartwatch. Therefore, both the Indoor/Outdoor local-
ization system and the body motility system can be completely
implemented on the smartwatch, which can also manage the
data transmission phase towards the local server, without need-
ing an associated smartphone. Finally, the 4G interface can also
be exploited for interventions, by using phone calls, SMS and
third-party messaging apps.

In this perspective, with a look towards the exploitation of
the entire City4Age project, the possibility to replace the couple
smartphone + wristband for data collection, data forwarding and
intervention displaying, with a single 4G smartwatch (e.g. the
Huawei Watch 2) could be a valid alternative. Such device, in
fact, can offer almost the same capabilities of a smartphone for
implementing the indoor localization and the motility algorithms,
although with some limitations, but natively including the GPS
feature for outdoor localization. All collected data can be sent to
the CBB through the 4G interface embedded in the smartwatch
(or a paired smartphone when available), thus allowing a con-
tinuous data flow. By exploiting these communication interfaces,
the smartwatch can become also a terminal for interventions,
being it able to receive and send SMS and messages of the
available IM applications. Obviously, the battery duration must
be considered also in this case, in order to guarantee that the
smartwatch can operate uninterruptedly at least from waking up
to bedtime. A positive feature of such smartwatch is the easiness
of the recharging procedure, very similar to the smartphone one,
to which elderly people are accustomed.
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Finally, regarding the User/Environment interaction
sub-system, in order to foster a more effective smart city ap-
proach, a valuable feature would be to collect information about
power consumption directly from energy provider companies,
by interconnecting with their Cloud services that are becoming
more and more common. In recent years, in fact, many providers
offer Web Services that give the users the possibility to access
their consumption data, read from the central metre in their flats
(generally) every 15 min and stored in a Cloud platform. This
would allow to avoid the installation of the smart meter in each
house, but to reuse a publicly available service, although with a
lower resolution in power measurement.

6.2. The Shared Repository

Both main modules of the Shared Repository (the Cloud Data
Acquisition Layer and the Semantic Data Access Layer) need to
be analysed separately to better assess their performance and
limitations. In the case of the Cloud Data Acquisition Layer, the
most influencing factor is the selected mode to send the data
collected by the Personal Data Capturing System to the repository.
The Shared Repository supports two modes: the real-time mode,
in which each computed measure is sent to the repository in real
time and the digest-mode, in which a set of measures are sent
in the same request at some predefined time periods. In terms of
performance, using the real-time mode takes significantly more
time to process the same amount of measures than the digest
mode (see Fig. 12), but none of the modes offer a significant
advantage regarding the used memory (see Fig. 13). The digest-
mode requires fewer requests to the Cloud Data Acquisition Layer,
thus resulting in shorter times to send the same amount of data to
the Shared Repository. Functionally, the decision of using one of
the modes depends on the requirements of each city. Employing
one of the modes over the other will be determined by the needs
of the city, having to balance the need for real-time analytics with
the resource usage. In many cases, the city will only be interested
in the aggregated information to analyse the risks related to the
elders’ behaviour. In these situations, using the digest mode will
be the recommended option, as it will reduce the processing
requirements of the Shared Repository.

In the case of the Semantic Data Access Layer, two are the
factors that will influence the performance: the technology used
to query the data and the execution of knowledge eliciting rules.
In the first case, the Shared Repository allows to use either
SPARQL queries or SQL ones. In terms of performance, SQL queries
are faster (see Fig. 14) and use less memory (see Fig. 15). When
retrieving 300,000 elements, the SPARQL query will take more
than ten seconds. This operation times must be considered by
the cities when deciding to use the Semantic Data Access Layer.
The memory usage differences are not so relevant and should
not be a deciding factor when choosing one of the technolo-
gies. Functionally, the Linked Open Data [54] approach has the
advantage of offering a more expressive and interoperable data
querying mechanism when compared to traditional databases.
Linked Open Data assures that the stored information will be
shareable, extensible, and easily re-useable. The Linked Open
Data paradigm avoids the existence of information silos, which
usually appear due to the lack of connections between datasets
and the format incompatibilities. Once again cities will have to
weight their requirements and choose between a more efficient
approach using traditional SQL and a more interoperable and
re-useable approach using SPARQL. From the security point of
view, cities should also analyse the vulnerabilities of the semantic
querying frameworks [55]. While solutions like Apache Shiro [56]
and query sanitation can reduce some of the security risks, the
security is less addressed in the semantic frameworks that in the
traditional databases, mainly due to their lower popularity.

Finally, in the case of the Rule Engine, it can be configured
to work in two different modes: the volatile mode or the per-
sistent mode using the Apache Jena — TDB. As can be seen in
Figs. 16 and 17 there are not notable differences in maximum
used memory and maximum CPU allocation between both ap-
proaches, although the volatile mode used a bit more overall
memory along the process. As can be seen in Fig. 18, the per-
sistent mode is slightly faster than the volatile mode. This is
due to the internal implementation of the Rule Engine, which
uses temporal files, which results in slower read/write operations.
Functionally the persistent mode is in one hand more robust,
allowing for an easier system recovery and in the other more op-
timizable, as the new inferences knowledge is stored and reused,
instead of having to infer it every time that the system is reset.
Taking this into account, it is strongly recommended that the
cities use the persistent method.

6.3. The Risk Analysis Model and dashboard predictions

Conditions such as MCI and frailty are characterized by gradual
decline that may spread across years and be hardly noticed by
seniors and their carers before the late stages, when the out-
comes remain irrevocable [57,58]. Therefore, the clinical utility
of forecasting is of substantial importance in order to avoid hos-
pitalization and lessen the socio-economic cost of caring, while it
may also significantly improve the quality of life of senior citizens.
The risk analysis approach adopted in this work combines domain
knowledge with machine learning techniques to derive health,
well-being and lifestyle quantifying factors and metrics able to
predict onset of MCI and frailty. To that end, time series are
used to provide the statistical setting for describing the fluctu-
ating heterogeneous data and projecting the data series into the
future [59].

Time series forecasting is performed by using the
well-established Box-Jenkins ARIMA forecasting method. Anal-
ysed data are collected by the Birmingham pilot, as they are
currently the most complete, considering individual care recip-
ient level, among all the pilot sites in the project. Each data
series comprises monthly values of a specific factor of the geri-
atric model and a care recipient, starting from the beginning of
monitoring period (January 2017) and ending with the final ob-
servation made in July 2018 (18 data points). Main characteristic
of the acquired data is, though, a significant person-to-person
and situational context-dependent variability, including seasonal
patterns detected in the data of occasional subjects by now, and
more are to be expected and handled by the analytics in the fu-
ture (conveniently exploiting SARIMA variation). This summarizes
the rationale for employing a quick straightforward extensible
univariate forecasting method, robust to various underlying data
distributions, integrated into the Dashboards. Other, and more
complex, ML-based methods in City4Age Analytics are exploited
for mainly data-driven recognition of features, new knowledge
characterization and multivariate risk assessment from lower-
level raw variables (LEAs, Measures), as elaborated in our relevant
authored works [41,60]. The presented method of univariate
assessment and prediction is transferable to similar problem
settings, e.g. as currently applied in analysis and prediction of
wider-scoped urban well-being level (with more factor variables
and increased variations in the time series) in projects such as
PULSE.19

Forecast accuracy is evaluated using forecasts starting from
August 2017. Forecasting performances are calculated on two
levels of aggregation, across all factors and groups and over the

19 PULSE (Participatory Urban Living for Sustainable Environments. Horizon
2020 Grant #727816), www.project-pulse.eu.

http://www.project-pulse.eu
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OVL only, and two forecast horizons, of 1 and 3 months. Bias
metric, represented by the mean error, shows that forecasts for
OVL had tendency to be lower than actual values (under-forecast)
in the initial months, with improvement over time, reaching
values close to zero (unbiased) in the final two months (June and
July 2018). It has been observed that the forecasts with horizon
of 3 months were slightly less accurate compared with forecasts
with horizon of 1 month. In addition, average MAPE accuracy of
forecasts with horizon of 3 months for OVL were lower compared
to those over all factors. In general, all error metrics showed
an inclination towards performance improvement over time, as
more data points were used in the model training process. It
seems promising that the forecasting accuracy will continue to
improve as more data points are available.

The results obtained in the analysis demonstrate the generally
satisfactory forecasting performance and therefore validate the
overall usefulness of data-driven forecasting approach for assess-
ing risk associated with specific geriatric domains and MCI and
frailty in the presented setting.

6.4. Global discussion

Results and discussions carried out so far, obtained after al-
most two years of experimentation, allow us to re-evaluate the
initial approach undertook by the City4Age approach, also taking
into account all technological improvements followed from the
beginning of the project (December 2015).

Regarding the Personal Data Capturing System, the driving
factor is unobtrusiveness. Since the beginning, one of the main
pillars of the proposed solution was to put the smartphone at
the centre of the sensing architecture, by exploiting its different
communication interfaces (BLE, GPS, Wi-Fi, 4G) and its growing
acceptance by elderly during their daily activities. Current pilot
installations demonstrate that this approach is valid and produce
good results in term of data throughput. However, with recent
improvements in the field of 4G smartwatches, accompanied by a
general decrease of their cost, the data collecting and forwarding
task can be accomplished with a far more unobtrusive device,
provided that its power autonomy is sufficient at least for the
whole day.

In order to pursue a valuable Smart City perspective, data
related to elderly behaviour on a home and/or City scope should
be retrieved from already existing sensing infrastructure, rather
than deploying several sensing networks, often not communicat-
ing each other. For this purpose, an open and facility managed
BLE beacon infrastructure could be a valuable solution for the user
indoor positioning in public spaces, like shops, pharmacies, super-
markets, etc. By publicly sharing beacons’ IDs, user localization
inside these places could be also easily shared, with the neces-
sary privacy and security countermeasures. Analogous situation
could be related to other services, like transportation and energy
provision. Data related to the use of public transportation or
power consumption inside buildings could be managed directly
by service providers, which could also share them with final users
and third parties, guaranteeing the proper privacy level.

Another critical factor of the proposed solution is the modal-
ity how collected data are sent to the Shared Repository. The
field of application this solution has been thought for, i.e. the
early detection of MCI and frailty conditions, does not have real-
time constraints for data communication and analysis, therefore
the preferable way should be the digest mode communication,
where blocks of data are cumulatively sent at specified time
intervals. This operating mode has the advantage of being faster
than real-time communication, which, in turn, implies less power
consumption for sensing devices.

Recalling the Smart City perspective, the most important data
managed and generated by the whole system architecture must

be shared with third parties, in order to allow further elaboration,
mainly for research purpose. To this end, the provision of SPARQL
endpoints for data sharing should be enforced. Currently they
suffer of higher latency with respect to SQL queries and relational
database, but provided data are more shareable, extensible and
easily reusable.

Finally, the last critical aspect of the proposed solution is the
effectiveness of the Risk Analysis and Prediction Model. The fac-
torization in the geriatric model reduces the complexity of mon-
itored parameters, potential relations between behaviour varia-
tions and the number of scoped Measure variables, while still
capturing the typical observed complex interdependencies, with
all the Factors, Sub-factors, and other higher-level nodes be-
ing properly defined, maximally conditionally independent from
each other. Assessing the effectiveness of the model still requires
further months of experimentation, in order to consider a suf-
ficient temporal horizon for the refinement of the algorithms
and defining what is the best forecast horizon. Another point
to evaluate over time is the adequacy of the set of Measures
currently considered, verifying if they are comprehensive enough
to correctly detect the actual behaviour of the elderly person, or
useful enough for profiling care recipients.

7. Conclusions

This work presented a critical performance analysis of an IoT-
aware AAL system for elderly monitoring. The analysis of the
city-wide data capturing layer, i.e. the Personal Data Capturing
System, showed that sensing device’s unobtrusiveness and power
autonomy are critical factors for setting up a sensing infrastruc-
ture able to collect data in a continuous and unbiased way. The
Shared Repository, i.e. the Cloud-based centralized data manage-
ment repository, offers its best performances when operating in
digest mode, with a persistent mode rule engine; although SQL
queries are generally faster than SPARQL queries, the Linked Open
Data interface should be preferred when sharing data collected
by the system to third parties. Finally, the Risk Analysis and
Prediction Model based on the concepts of GES, GEF, GFG and OVL
provides its best results with the ARIMA method with a forecast
horizon of 1 month. Currently, this setup is the optimal one for
the early detection of MCI and frailty conditions, which do not
require real-time interventions.

Future works are mainly focused on searching for wristband
devices or smartwatches able to implement the needed function-
alities, providing at the same time a good power autonomy, and
on further refining the risk prediction model, by analysing the
upcoming new data and implementing semi-supervised learn-
ing that integrates the expert geriatric assessments on specific
granular data as referent baseline labelled cases.
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