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ABSTRACT

The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is

investigated, and an effort to disentangle the role played by the individual components to the global predictability is

done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic

atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, increasing

the model predictive skill in the ocean. In fact, in regions characterized by strong air–sea coupling, the atmosphere

initial condition affects forecast skill for several months. In particular, the ENSO region, eastern tropical Atlantic,

andNorthPacific benefit significantly from the atmosphere initialization.On themainland, the effect of atmospheric

initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects

forecast skill in the following seasons.Winter forecasts in thehigh-latitudeplains benefit from the snow initialization,

while the impact of soil moisture initial state is particularly effective in the Mediterranean region and central Asia.

However, the initialization strategy basedon the full value techniquemaynot be thebest choice for land surface,

since soil moisture is a strongly model-dependent variable: in fact, initialization through land surface reanalysis

does not systematically guarantee a skill improvement. Nonetheless, using a different initialization strategy for

land, as opposed to atmosphere and ocean, may generate inconsistencies. Overall, the introduction of a realistic

initialization for land and atmosphere substantially increases skill and accuracy.However, further developments in

the procedure for land surface initialization are required for more accurate seasonal forecasts.

1. Introduction

Seasonal scale has recently become a crucial time

frame for climate forecast, owing to its socioeconomic

relevance. In the last decade, important advances have

been achieved, thanks to the development of fully

coupled general circulation models (CGCMs) initial-

ized for seasonal prediction (Kug et al. 2008; Kim et al.

2012). Dynamical predictions are based on the as-

sumption that large-scale and long-lasting anomalies

will convey predictive skill to seasonal forecast. In

particular, the ocean provides ‘‘hidden’’ memory to

the climate system (Hoskins and Schopf 2008), en-

abling fully coupled models to produce skillful pre-

dictions up to one year ahead or more (Blender and

Fraedrich 2003).
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Currently, most ocean initialization strategies are based

on analyses that assimilate observed temperature, salinity,

and sea level data via multivariate schemes, imposing

physical and dynamical constraints among different vari-

ables (Balmaseda et al. 2009). Accuracy in the knowledge

of the ocean initial state led to a fundamental progress

in the understanding of coupled ocean–atmosphere in-

teraction mechanisms (McPhaden et al. 1998), and the

use of assimilated subsurface temperature and salinity

profiles to initialize the ocean contributed to increase

seasonal forecast skill (Alves et al. 2004; Vidard et al. 2007;

Alessandri et al. 2010). Although anomalous conditions in

each ocean basin can have significant effects on climate

(Iwi et al. 2006), the largest source of seasonal forecast

skill is El Niño–Southern Oscillation (ENSO; Smith et al.

2012), which exerts a global influence on seasonal climate

through teleconnections (Trenberth and Caron 2000).

In the last 15 years, the role played by land surface

processes has received growing attention in the seasonal

prediction community: initial state of snow cover, soil

wetness, and other land surface variables have a major in-

fluence on seasonalmean circulation (Fennessy and Shukla

1999). There is reasonable confidence that prior knowledge

of land surface state yields significant skill in forecasting

seasonal soilmoisture and surface temperature (Koster and

Suarez 2003; Douville 2003; Jeong et al. 2008). However,

whether soil moisture can drive some predictability of

precipitation anomalies at such a time scale is still an open

question (Paolino et al. 2012). Koster and Suarez (2004)

indicate that a global model forecast of precipitation may

be greatly improved with a global initialization of soil

moisture. Other studies have suggested that in limited re-

gions of the world, referred to as ‘‘hot spots,’’ knowledge of

antecedent anomalies of the land surface state can result in

an improved forecast of seasonal precipitation anomalies

(Koster et al. 2004, 2010; Alessandri and Navarra 2008).

In addition to the role played by ocean and land sur-

face memory, the atmosphere may enhance large-scale

predictability interacting with the slowly evolving oce-

anic component (e.g., Navarra 2002; Shukla and Kinter

2006). Also, changes in planetary wave structure, de-

termined by atmospheric teleconnectivity, can propagate

climate variability on monthly time scales between dis-

tant regions of the globe (e.g., Palmer et al. 2008), and

models’ predictive skill may benefit from this in-

formation. However, Dirmeyer (2003) estimates that the

contribution to forecast skill from the atmospheric state

in a coupled land–atmosphere model with specified sea

surface temperatures (SSTs) decays in less than amonth,

with longer skill due only to land initial condition.

Ultimately, the impact of initialization is strongly

dependent on the quality of the coupled model

(Balmaseda et al. 2009) and its capacity to reproduce

observed processes. In a review on operational forecasts

for the 1997/98 El Niño, Trenberth (1998) concludes that

the systems that performed best were based on advanced

coupled dynamical models of the ocean and atmosphere.

In this study, we primarily intend to examine the quality

of seasonal forecasts obtained by the introduction of land

surface andatmosphere initial conditions in themost recent

version of theCentroEuro-Mediterraneo suiCambiamenti

Climatici (CMCC) Seasonal Prediction System, version 2

(CMCC-SPSv2; Borrelli et al. 2012). In addition, we make

an attempt to determine the relative contribution of land

surface and atmosphere to predictability at a seasonal time

scale by separating the impact of the two components.

The paper is organized as follows. Section 2 describes

the CMCC-SPS physical core, the experimental design,

and the methods used to assess of the model skill and

accuracy. Section 3 documents the improvements in the

CMCC-SPS predictive skill introduced by the initiali-

zation of land surface and atmosphere, compared with

the previous version where only the ocean state was

initialized. In section 4 we quantify the relative contri-

bution of land surface and atmosphere initialization on

the overall predictive skill of the system. Finally, con-

cluding remarks are provided in section 5.

2. The CMCC Seasonal Prediction System

a. Main components of the global model

The main components of the CMCC coupled global

circulation model are summarized in Fig. 1. The atmo-

spheric component consists of the ECHAM5.3 model

(Roeckner et al. 2003, 2006) at spectral T63 horizontal

resolution, with 19 vertical levels. The atmosphere is

directly coupled to the land surface scheme Surface In-

teractive Land Vegetation (SILVA; Alessandri et al.

2012) at the same horizontal grid.

The ocean model is Océan Parallélisé version 8.2
(OPA8.2;Madec et al. 1998), run on a standard ORCA2

grid (Madec and Imbard 1996) of about 28 and 31 ver-

tical levels. The Arctic sea ice is driven by SSTs, through

a function that determines the water freezing point.

The atmosphere and the ocean models communicate

with each other through the Ocean Atmosphere Sea Ice

Soil version 3 (OASIS3) coupler (Valcke et al. 2000),

and no flux corrections are applied. Specific aspects of

the ocean–atmosphere coupling are discussed in Fogli

et al. (2009), and more details about the CMCC-SPS

physical core can be found in Borrelli et al. (2012).

b. Experimental design

A set of retrospective forecasts (hindcasts) was per-

formed for the 1989–2005 period, using three different
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configurations of the CMCC-SPS, based on distinct ini-

tialization strategies (Table 1). In CMCC-SPS version 1

(CMCC-SPSv1, hereinafter SPS1; Alessandri et al. 2010,

2011) only the ocean was initialized with a realistic state

estimate based on the CMCC–Istituto Nazionale di

Geofisica e Vulcanologia (INGV) Global Data Assim-

ilation (CIGODAS) reanalysis (Bellucci et al. 2007;

Masina et al. 2011). CIGODAS is based on an optimal

interpolator scheme, assimilating in situ temperature

and salinity profiles, and forced with fluxes from the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) operational analysis. Initial conditions

for land and atmosphere are obtained through an At-

mospheric Model Intercomparison Project (AMIP)-

type simulation, performed by forcing the atmospheric

model with observed SST from the Met Office Hadley

Centre Sea Ice and Sea Surface Temperature global

dataset, version 1.1 (HadISST1.1; Rayner et al. 2006).

Sea ice cover is empirically diagnosed at the onset of the

forecast from the SST analysis, while sea ice thickness

and snow depth over ice are set to a 1989–2008 clima-

tology derived from an historical simulation of the 1960–

2008 climate, carried out with the same dynamical

model of the SPS1 system.

To evaluate the impact of atmosphere initialization, an

additional set of seasonal forecast experiments was per-

formed,where, in addition to the ocean (initialized as in the

control SPS1 experiment), also the atmosphere is provided

with observed initial conditions. Here, the state of the at-

mosphere is given by the ECMWF Interim Re-Analysis

(ERA-Interim, hereinafter ERAI; Berrisford et al. 2009).

As for SPS1, sea ice and land surface state variables are

initialized with a model climatology and a forced AMIP-

type simulation, respectively. The corresponding system is

labeled as CMCC-SPSv1.5 (hereinafter SPS1.5).

Finally, a third set of seasonal prediction experiments,

based on the CMCC-SPSv2 (Borrelli et al. 2012, here-

inafter SPS2), was produced, where a realistic initiali-

zation for land surface conditions is provided in addition

to ocean and atmosphere. Consistently with the above

atmosphere, snow depth, soil moisture, and soil tem-

perature are initialized using the ERAI.

Snow depth and surface temperature at the interface

with the atmosphere are started with the corresponding

ERAI fields. As for soil moisture, we use the wetness of

the four soil layers included in Hydrology Tiled

ECMWF Scheme for Surface Exchanges over Land

(HTESSEL, i.e., the land surface model used in the

ECMWF reanalysis system; Balsamo et al. 2009) to es-

timate the water content into the two soil reservoirs

implemented in SILVA. The water content, relative to

saturation condition, in the upper (lower) soil layers of

SILVA is computed as the weighted average of the soil

wetness in layers 1 and 2 (3 and 4) of HTESSEL. To

match the soil moisture characteristic of the coupled

model, ERAI values were weighted over field capacity

TABLE 1. The set of experiments with indication of the initialized

component.

Initialization SPS1 SPS1.5 SPS2

Ocean CIGODAS CIGODAS CIGODAS

Atmosphere AMIP ERAI ERAI

Land surface AMIP AMIP ERAI

FIG. 1. Main components of the CMCC-SPS coupled model.
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andwilting point, in order to obtain a soil moisture index

comparable to SILVA and avoid inconsistencies.

In each of the abovementioned systems, the model is

initialized every year at four different start dates (on

the first of February, May, August, and November;

Fig. 2) and then integrated for six months. To account

for the uncertainty characterizing the initial state of the

system, an ensemble of nine perturbed atmospheric

initial conditions was prepared for each start date.

Specifically, the atmospheric condition is perturbed,

by imposing the state observed at 12 h, 24 h, and so on

up to 108 h before the start date (see Fig. 2). In this

way, the dynamical model evolves from nine different

initial states, producing an ensemble of forecasts. In

the following analysis we only focus on May and

November start dates, assessing the predictive capa-

bility of the CMCC-SPS for summer and winter sea-

sons, respectively.

c. Verification: Methodology and data

Two statistical metrics are used to quantitatively as-

sess the performance of CMCC-SPS: the anomaly cor-

relation coefficient (ACC) and the root-mean-square

error (RMSE). ACC [Eq. (1)] is used to evaluate the

forecast skill, namely the capability of the model to

make a prediction, and is defined as follows:

ACC(t)5

�
Y

y51

x0y(t)o
0
y(t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
Y

y51

x02y (t)o
02
y (t)

vuut
, (1)

where t represents the lead season (see section 3) to

which ACC refers, x0 and o0 respectively indicate pre-

dicted and observed anomalies, computed by subtracting

the respectivemonthly climatologies, and y is the forecast

year (total number of years Y 5 17).

RMSE is a measure of accuracy. It is defined as the

distance between the forecast and the observational

dataset:

RMSE(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Y
�
Y

y51

[x0y(t)2 o0y(t)]
2

vuut . (2)

The RMSE, in contrast to ACC, is negatively oriented

(i.e., an increasing numerical value indicates a worsen-

ing of the prediction).

The predictive skill of the system is verified versus the

ERAI, which hereafter will be simply referred to as

observations. Anomalies in both forecasts and obser-

vations are defined as deviations from the 1989–2005

climatology.

3. The impact of land–atmosphere initialization

a. Global view

In this section, the performance of SPS2 in terms of

predictive skill and accuracy is evaluated, and compared

with the skill of the control system, SPS1. Each analysis

is here computed for the ensemble mean forecast.

In Fig. 3, we show ACC maps for SPS2 surface tem-

perature. The plots refer to lead season 1, that is the

trimonthly mean starting one month after the start date

(i.e., lead season 1 for February represents the March–

May average). At first glance, the skill in the tropics

looks higher than at mid and high latitudes, and corre-

lations over the ocean are typically larger than over land.

The central equatorial Pacific is the region where SPS2

features the largest skill. Significantly high correlations

are also found over the northwestern Pacific and North

Atlantic. Over land, the strongest correlations in all the

FIG. 2. SPS2 experimental setup. Readapted from Alessandri et al. (2010).
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start dates are found in the Amazon basin. On the other

hand, there are vast continental areas featuring negative

ACC values (corresponding to no skill).

Figures 4 and 5 display differences between ACC pat-

terns for surface temperatures in SPS1 and SPS2 for May

and November start dates. Red (blue) color indicates an

increase (decrease) of ACC in SPS2 with respect to SPS1.

Each difference is based on the ensemblemean of the nine

members, which represents the deterministic realization of

the forecast probability distribution. In the maps, only

values significant at the 95% confidence level are plotted.

Compared to SPS1, SPS2 provides a remarkable im-

provement of the forecast skill at lead season 0 (i.e., the

trimonthly mean starting at the same time as the start

date; Figs. 4a, 5a). Through the realistic initialization of

the atmospheric GCM component (using ERAI),

a coupled equilibrium state between the ocean and

overlying atmosphere is reachedmore quickly. This may

contribute to improve the transient response to initiali-

zation, mitigating the spurious coupling shock which

often arises as a consequence of the full-value initiali-

zation strategy (Troccoli et al. 2008), ultimately en-

hancing the skill in the early phase of the forecast.

In many ocean regions, mainly in the November start

date, improvements are not restricted to lead season 0,

but tend to persist throughout the forecast (Figs. 5c,d).

The Pacific Ocean, with particular regard to the central

northern and southeastern tropical and subtropical

sectors, undergoes large improvements. In the autumnal

forecast, also large part of the Atlantic sector and the

Southern Ocean benefit from the upgraded initializa-

tion. In the May start date (Figs. 4c,d), durable im-

provements are remarkable in the upwelling regions off

the coasts of North and South America and in the

northern tropical Atlantic. On the other hand, SPS2

ACC is lower in the western equatorial Pacific (August

start date; not shown), central Pacific (Figs. 4c,d), and

a few sections of the Indian Ocean (Fig. 4b).

Most of the continental areas, mainly in North Amer-

ica, Asia, and generally in the Southern Hemisphere,

appear to considerably benefit from the upgraded initial

state in the initial lead season. The latter is strongly

influenced by the first forecast month (lead month 0) and

a decrease in the spatial extent of improvements is evi-

dent starting from lead season 1. Only in a few regions, in

fact, do variations driven by the different initialization

strategy seem to last throughout the forecast. Long-

lasting improvements are particularly evident in Eura-

sia, whereas in northernAfrica andAustralia the forecast

is often deteriorated by the upgraded initialization.

Figures 6 and 7 show RMSE differences between

surface temperatures in SPS1 and SPS2. In this case, the

color code is reversed with respect to ACC maps, in

order to maintain the red (blue) color as an indication

FIG. 3. ACC of surface temperature in CMCC-SPSv2 vs ERAI. All plots refer to the forecast for lead season 1.
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of improvement (deterioration) imparted by land–

atmosphere original state. The forecast accuracy is again

largely improved in the initial lead seasons because of

the contribution of the first lead month (Figs. 6a, 7a).

Differences in the global picture mirror the differences

shown in terms of ACC.

From lead season 1 onward, with the exception of the

regionsmentioned, the skill and accuracy increase/decrease

are less consistent, with frequent variations depending on

the area and the start date (Figs. 6c,d and 7c,d). An integral

description of ACC and RMSE changes, determined by

the different initialization strategies implemented in

SPS1 and SPS2, separately for land, oceans, and the

global domain is shown in Fig. 8.

At the global scale, SPS2 generally exhibits more skill

and accuracy compared to SPS1 for the entire 6-month

period, although improvements tend to decline after one

or two months and become small by the end of the

forecast. Skill amelioration is particularly pronounced

for May start date, whereas the forecast starting in Au-

gust does not benefit substantially from the observa-

tional initial condition.

On land, the large improvement in SPS2 skill and ac-

curacy at lead month 0 becomes less remarkable in the

following seasons. Here, the strongest impact of land–

atmosphere initialization is evident for the November

start date. Especially in February and May, performance

of SPS2 quickly declines after initialization, and becomes

very similar to that of SPS1. Yet, predictive skill starts

increasing again from the third month after the initializa-

tion. In the ocean, differences between SPS1 and SPS2 are

more regular throughout the entire forecast time, except

for the start date of February, which receives a remarkable

push from the realistic land and atmosphere initial state.

b. ENSO region

Since the main driver of the global interannual SST

variance is the variability in the equatorial Pacific

FIG. 4. ACC difference between SPS2 and SPS1 for the start date ofMay, lead seasons 0–3. Shaded areas indicate differences significant at

the 95% confidence level.
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associated with ENSO, the seasonal prediction skill in

this region is crucial for reliable forecasts. In both SPS

models, the central and eastern equatorial Pacific are

characterized by ACC values close to 1 up to the last

lead season, especially in the initializations of August

(not shown) and November (Fig. 3).

Skill and accuracy associated with the Niño-3.4 SST
index for SPS2, is shown in Fig. 9 (bottom and top panels,

respectively). The introduction of the atmospheric ini-

tialization improves notably the SPS2 predictive perfor-

mance, especially in the May start date (Figs. 9a,c).

Within the forecast set, the latter is the start date with the

lowest forecast skill and the largest RMSE, in reason of

the seasonal dependency of the equatorial Pacific SST

predictability: the so-called spring barrier has long been

documented in ENSO forecast as a drop of skill persis-

tence across the boreal spring (Chen et al. 2004). The

CMCC-SPS is affected by the same limitation. This is also

confirmed by the curve of persistent forecast that quickly

drops to insignificant correlation values, indicating

a disconnection to the initial state. Instead, the ACC

curve of persistence remains above 0.6 up to the sixth

month after the initializations of November (Fig. 5d),

demonstrating higher SST predictability for this forecast.

As mentioned before, the introduction of realistic

land–atmosphere initial conditions determines a re-

markable upgrade of the ENSO forecast for June–August

(JJA), statistically significant at lead season 1 (Table 2).

Improved predictive skill and accuracy of this region could

be ascribed to the intraseasonal stochastic component in-

troduced by the atmospheric initial state, as in Shi et al.

(2011), who found an important impact on predictability of

the 1997 El Niño early warming. In addition, the lack of
correct initialization could lead to the amplification of ini-
tial condition errors, especially in a system characterized by
such a coupling between ocean and atmosphere (Hudson

et al. 2011).

Differences in the Niño-3.4 index forecast between
SPS1 and SPS2 are small, but still noticeable, as shown in
Fig. 10. We show only lead season 1 for the start date of

FIG. 5. As in Fig. 4, but for the start date of November.
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November, but some differences are also found for the

other start dates (Table 2). Both the systems demonstrate

very high skill in forecasting Niño-3.4 SST anomalies up
to the end of the winter, and the relatively small spread of
the ensemble members (extrapolated by the uncertainty
bars in Fig. 10) confirms the high predictability of this

region. Both SPS models tend to overestimate the am-

plitude of the most vigorous ENSO events, such as the

1997 El Niño and the 1999 La Niña, with SPS2 being
generally closer to the observed anomalies.

4. Disentangling the relative contribution of
atmosphere and land surface on the quality of the
forecast

a. Global surface temperature

In addition to the analysis on the effect of atmosphere

and land initialization on seasonal predictability, it is

fundamental to understand the individual role of these

two components. In an effort to discriminate between

variations of the forecast due to the atmospheric or the

land surface initial state, we designed an additional set of

retrospective forecast. In this new configuration, the

dynamical model is started with the same initial state as

SPS2 for the ocean and the atmosphere, while land

surface, similarly to SPS1, is initialized through an

AMIP simulation.We label this new experiment SPS1.5.

As for SPS1 and SPS2, here we only show results for the

May and November start dates.

In Figs. 11 and 12 the impact of land surface initiali-

zation is highlighted, by displaying surface temperature

ACC difference maps between SPS2 and SPS1.5. Red

zones identify areas that benefit from the land surface

initial state imparted by ERAI; blue areas have higher

forecast skill in the noninitialized system. Results are

strongly dependent on the start date; however, Figs. 11e

and 12e show that, globally, the significant area of

FIG. 6. RMSE (8C) difference between SPS2 and SPS1 for the start date of May, lead seasons 0–3. Shaded areas indicate differences

significant at the 95% confidence level.

9260 JOURNAL OF CL IMATE VOLUME 27



improved skill always prevails over the area of skill re-

duction in both the forecasts. As expected, oceans are

only impacted to a moderate extent, while continents

are subject to major changes due to the land surface

initialization, implying that the nonlocal effect of land

surface is fairly small.

It is interesting to note that forecast skill and accuracy

differences remain fairly consistent over time, with little

displacement within successive lead seasons. This out-

come suggests that memory conveyed by land surface

characteristics may influence the climate system for

several months, as already discussed in many recent works

(see, e.g., Guo et al. 2011; Orth and Seneviratne 2012). This

hypothesis can be confirmed comparing these differences

to those between SPS2 and SPS1. Aside from the first lead

month, which strongly influences lead season 0, most of the

mainlandpatterns in Figs. 4b–d (Figs. 5b–d) can be found in

Figs. 11b–d (Figs. 12b–d), indicating that large part of

predictability is strictly determined by land surface

initial condition. Likewise, RMSE differences seen in

Figs. 6 and 7 are, beyond lead season 0, similar to those

between SPS2 and SPS1.5 (not shown).

In November, surface temperatures of semiarid re-

gions in central Asia and Africa benefit of the initialized

surface features for most of the prediction time, as well

as in eastern Canada (Fig. 12c). The improvement found

over eastern Canada and northeastern Asia in the No-

vember forecast (Figs. 12b–d) may be a consequence of

the initialization of snow depth, which was found to be

a predictor for winter season at high latitudes (e.g., Cohen

and Jones 2011). The Euro-Mediterranean region shows

improvements especially in the May (Figs. 11c,d) and

August (not shown) start date, most likely due to the

strong land–atmosphere coupling which characterizes the

hot season (Fischer et al. 2007), allowing for long-lasting

forecast enhancements.

In this regard, exclusively for the May start date, our

results are only partially consistent with recent studies in

FIG. 7. As in Fig. 6, but for the start date of November.
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the frame of the second phase of the Global Land–

Atmosphere Coupling Experiment (GLACE-2). In

Europe, the influence of land–atmosphere initialization

on temperature forecast is noticeable at lead season

0 and partly at lead season 1 (Figs. 4a,b), but again the

atmosphere contribution, and not the land surface, is the

strongest impacting component. The involvement of

land surface initialization comes out at lead season 2 and 3

(Figs. 11c,d). Koster et al. (2010) found that, over the

United States, realistic initialization of land surface has

a significant impact on temperature forecast up to 45 days,

and even longer in the western region. Our study as well

suggests that, out of the entireNorthAmerican region, only

theU.S.West Coast and themountain region of theUnited

States preserves part of the significant skill gained through

realistic initialization. Again though, the atmosphere,

rather than land surface, seems to be the main driver for

skill (cf. Figs. 4b and 11b). Similarly to Europe, the effect

of land surface shows up at the end of the summer

(Figs. 11c,d).

On the other hand, in Manchuria surface temperature

is more accurately predicted by SPS1.5 in the November

forecast (Figs. 12c,d). Likewise, SPS2 is significantly less

skillful in the arid region of eastern Sahara, compared to

SPS1.5. In the Southern Hemisphere, particularly in

Australia, the response to the different land initial state

is conflicting in the two start dates.

b. The evolution of soil moisture

Figure 13 shows the summer (JJA) and winter

[December–February (DJF)] climatologies of soil mois-

ture for the two forecast experiments and ERAI. More

specifically, we display a soil moisture index, that is,

a measure of wetness to which soil moisture is scaled, in

order to account for the different parameterizations of

the two models and make the two models comparable.

The SILVA land model, responsible for the SPS1.5 and

the SPS2 soil moisture output, and HTESSEL (Balsamo

et al. 2009) have different number and depth of soil layers

(see section 2b): here we compare the total moisture for

the entire soil column.

The impact of initialization is remarkable in a few

regions. The unrealistically high soil moisture, which

almost saturates the Sahara desert in SPS1.5, is for the

most part reset by the effect of the ERAI initial condi-

tions, so that forecasts for North Africa become trust-

worthy (Figs. 13c,d). Similarly, central Asia is extremely

wet in the noninitialized experiment, and a more re-

alistic state of soil moisture at the beginning of the

forecast dries out the terrain in a vast region ranging

from the Caspian Sea to China. This substantial impact

on soil moisture suggests a strong drift of the soil

moisture toward the wetter model climatology. The two

abovementioned regions show opposite responses in

FIG. 8. (a)–(c) ACC and (d)–(f) RMSE (8C) of surface temperature, for the four start dates. Area averages over (left) global domain,

(center) continental regions, and (right) oceans.
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terms of surface temperature ACC: whereas in central

Asia the land surface initialization leads to an improved

skill in the forecast of November (Fig. 12), the quality of

the May prediction is deteriorated in northeastern Af-

rica (Fig. 11).

Soil moisture anomalies for the two regions in the

start dates of interest are shown in Fig. 14. For each area,

we selected the driest (Figs. 14a,d) and the wettest

(Figs. 14b,e) initial observed conditions (i.e., ERAI soil

moisture), averaging initial states exceeding the

threshold of one standard deviation. Then we calculated

the monthly anomaly until the end of the forecast for

ERAI and the two prediction systems. As expected,

anomalies in SPS2 are initially very close to that in ob-

servations, and the covariance between the two series

remains very high for the entire forecast. In SPS1.5, the

initial deviation from the mean is generally farther from

ERAI’s, and the evolution of soil moisture does not

follow the observed.

Although progression in time of the anomalies is

similar for soil moisture in central Asia and northeastern

Africa, the response on surface temperature is the

FIG. 9. RMSE (8C) of the Niño-3.4 index for SPS2 (blue lines) and SPS1 (red lines), for (a) May and (b) November start dates. Thick
curves represent the ensemble mean of the nine members (thin curves). Also shown is the ACC of the Niño-3.4 index for SPS2 (blue lines)
and SPS1 (red lines) for (c) May and (d) November start dates. Black dashed line represents persistence.

TABLE 2. Correlation coefficients between predicted and ob-

served Niño-3.4 index in lead season 1. Two asterisks indicate that
the difference with SPS2 is statistically significant at the 95% level
(using a t test).

System start date SPS2 SPS1.5 (see section 4) SPS1

February 0.92 0.92 0.90

May 0.70 0.69 0.62**

August 0.94 0.95 0.92

November 0.98 0.97 0.97
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opposite. This might be due to the rapid drift of soil

moisture to the model climatology in the African region

(Fig. 14c), which creates an initialization shock that is

likely to affect prediction of related variables such as

surface temperatures (Dirmeyer et al. 2004). The drift

exists in the Asia domain as well, but is considerably

slower (Fig. 14f). Also, northeastern Africa is a severely

water-limited area, where coupling between land surface

and atmosphere is inhibited by the absence of the medi-

ating role of evapotranspiration (Seneviratne et al. 2010).

Therefore, surface temperature predictability in this re-

gion is plausibly independent from land initial conditions.

FIG. 10. Niño-3.4 SST anomalies as forecast in SPS1, SPS2, and observations. Lead season 1 of the November start
date is displayed.

FIG. 11. (a)–(d) As in Fig. 4, but for the difference SPS22 SPS1.5. (e) Percentage of significant variation in model skill after initialization

of land surface.
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c. Regional effect of initialization

Figures 15 and 16 summarize the impact of the dif-

ferent initialization strategies on forecast skill, examin-

ing 12 key regions covering a wide spectrum of climatic

areas. Comparing SPS1 versus SPS1.5, it is possible to

single out the contribution of the atmosphere initiali-

zation to ACC, since ocean (initialized through ocean

reanalysis) and land (resulting from an AMIP-type ex-

periment) initial states are identical in SPS1 and SPS1.5.

Analogously, the difference between SPS1.5 and SPS2

identifies the role of land surface, as atmosphere and

ocean models are identically initialized in the systems.

In the oceans, the quality of the forecast increases with

the atmosphere initialization, while the initialization of

land surface does not lead to further improvements.

Over continental regions, the skill improvement may

often be attributed to a realistic initial state of the at-

mosphere at lead season 0, when differences between

SPS1.5 and SPS2 are generally smaller than those be-

tween SPS1.5 and SPS1 (Fig. 15, e.g., southern Europe,

central Asia, and North Africa; Fig. 16, e.g., Australia

and Amazonia). Areas covered by snow at the time of

initialization (Fig. 16, e.g., Siberia, Canada, and central

Asia) benefit from the land initialization from the be-

ginning of the forecast. As time progresses, the in-

formation given by the initial land surface state becomes

more important also for the remaining continental areas

(Fig. 15, e.g., southern Europe and central Asia; Fig. 16,

North Africa and northern India).

The nonlocal effect of land surface initial conditions

can be evaluated by focusing on the ocean domains.

Here, the skill of SST predictions is only minimally

influenced by the initialization of land surface. Instead,

the influence of the atmosphere is evident in regions of

active air–sea coupling, such as the tropical South Pacific

(see also section 3b). In the northern Pacific, the positive

response to the atmosphere-only initialization in the

FIG. 12. (a)–(d) As in Fig. 5, but for the difference SPS22 SPS1.5. (e) Percentage of significant variation in model skill after initialization

of land surface.
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November start date (Fig. 16; see also Fig. 5) can be also

attributed to the strong air–sea coupling taking place in

this region. Frankignoul and Sennéchael (2007) suggest
that SST anomalies force a Pacific–North American

(PNA) pattern response in the autumn. The atmo-

spheric reaction could in turn contribute to a change in

the SST pattern, so that SST anomalies resemble that

associated with the PNA.

The role of snow cover as a predictor of winter tem-

perature (see Yang et al. 2001; Allen and Zender 2011)

is examined by looking at the skill for the November

forecast (Fig. 16). The increase in skill related to land

surface initialization over eastern Canada and northern

Siberia is most likely due to improved information on

snow depth and cover, with positive repercussions on

albedo and related feedbacks acting on surface tem-

peratures. The influence on surface temperature lasts

until the beginning of the following spring, that is,

several months after initialization. At the beginning of

February (not shown) and May (Fig. 15), these two re-

gions are covered in snow in both SPS1.5 and SPS2, and

differences in forecast skill are much reduced.

In midlatitudes, a major contributor to forecast skill

has long been considered to be the soil moisture initial

state (Fennessy and Shukla 1999; Dirmeyer 2003; Koster

et al. 2004). The forecast in central Asia is affected by

both land and atmosphere initialization: although the

skill is low in this region, the quality of seasonal pre-

diction gradually improves with the degree of realism in

the initialization. A similar progressive improvement

under SPS1, SPS1.5, and SPS2 initializations is found in

southern Europe, in May (Fig. 15), when an accurate

knowledge of the land surface initial state appears de-

cisive. This information may be crucial as a predictor for

summer heat waves in these areas. Besides, an increase

in skill with time occurs in the summer forecast here. As

FIG. 13. (left) Summer (JJA) and (right) winter (DJF) soil moisture mean (shading) and standard deviation (contours), for (a),(b) SPS1.5,

(c),(d) SPS2, and (e),(f) ERAI.
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recently discussed in a study of Guo et al. (2012), during

late spring and summer there is a rebound of pre-

dictability of air temperature, because of information

stored in the land surface that emerges when the cou-

pling with atmosphere is stronger. This predictability

rebound was found for North America, but it is rea-

sonable to assume that a similar behavior affects other

temperate regions. In Australia, the state of soil mois-

ture impacts the forecast in both seasons: initial condi-

tions imparted by reanalyses lead to a decline of the

prediction skill.

5. Conclusions

We examined the influence of land–atmosphere ini-

tialization in a hierarchy of seasonal forecast experiments.

Furthermore,wehavemade a first attempt to discriminate

between the role played by atmosphere and land surface

separately on the predictive skill of the forecast. To

achieve these objectives, we compared three different

versions of the CMCC Seasonal Prediction System,

each differing for the initialization strategy.

In SPS2, the fully initialized version, forecast skill and

accuracy are improved compared with the ocean-only

initialized SPS1 system. We show that progresses in the

quality of the forecast over the oceans can be largely

attributed to the upgraded atmospheric initial condi-

tion. On the other hand, seasonal prediction skill on

continental regions is primarily driven by land surface

initialization.

The realistic initialization of air temperature and

winds allows an improved equilibrium state between the

ocean and overlying atmosphere, which possibly miti-

gates the coupling shock that often appears with the full-

value initialization strategy, and ultimately strengthens

the overall predictability. In a few specific regions, the

coupling between the two components prolongs this

positive effect throughout the whole forecast period. In

the Niño-3.4 region, the SPS models have high pre-
dictability with large skill in all of the start dates. How-
ever, the summer (JJA) forecast skill is lower than the
other seasons, possibly due to the so-called spring barrier
effect, which is known to affect seasonal predictability in
the equatorial Pacific. Nonetheless, the skill improvement
provided by SPS2 to the summer forecast is statistically
significant. Furthermore, the influence of the atmosphere
initialization is highly significant in the northern Pacific
and eastern tropical Atlantic for the November start date.
Over continental regions, the effect of atmospheric

initial conditions is observable only in the early phase of

the forecast, while most of the later changes in the

forecast skill and accuracy can be ascribed to land sur-

face initialization. In large parts of Canada, as well as

northeastern Siberia, initialization of snow cover and

depth largely determines the quality of the forecast

started in late autumn, at the beginning of snow season.

FIG. 14. Composite of soil moisture anomalies in the (a)–(c)May forecast for northeastAfrica and (d)–(f) November forecast for central

Asia, in the event of (left) dry and (center) wet initial conditions as measured in ERAI. (right) Full values of the 6-month forecast of soil

moisture for the two start dates in the aforesaid regions.
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In central Asia and southern Europe, the contribution of

land surface is most likely attributable to soil moisture

initialization, which is found to be a critical predictor in

midlatitudes. In these regions, the quality of the forecast

systematically improves as a consequence of upgraded

initialization, with predictive skill progressing from zero

to statistically significant positive values.

However, even though the influence of land state is

unquestionable, forecast skill and accuracy are some-

times deteriorated by the surface initialization through

ERAI. In fact, the use of full-value initialization for the

land model could generate inconsistencies that degrade

the quality of the forecast, with respect to that obtained

with the AMIP-based initial condition. It is now com-

mon practice to use the Land Data Assimilation System

approach (LDAS; see, e.g., Rodell et al. 2004), which

does not assimilate observations to update the land state

but rather lets the surface models evolve in response to

the analysis of near-surface meteorological forcing

(Yang et al. 2011). In fact, each land surface scheme has

its own climatology for soil moisture and snow cover,

which may differ substantially from another (Guo et al.

2006), and generates quite a contrasting response in the

simulation of related quantities, such as river discharge

(Materia et al. 2010). Soil moisture, above all, is

a strongly model-specific quantity, closely related to the

runoff formulation and the empirical parameters uti-

lized in the model itself (Koster et al. 2009).

Moreover, the relatively small size of the forecast

ensemble and the shortness of the hindcast period neg-

atively impact on the signal-to-noise ratio. Therefore

this analysis has to be considered with some caution: we

cannot exclude that some regional features shown in

Figs. 11 and 12 would be nonsignificant after considering

either a larger ensemble size or a longer hindcast period.

These results may also suggest that ERAI land surface

initial condition is not necessarily closer to reality than

the initial state estimate provided by the land surface

component of the coupled model (i.e., SILVA; see

Fig. 1). In fact, variables such as soil moisture and snow

cover are, in both cases, resulting from the response of

a land surface scheme forced by model-generated pre-

cipitation, which may be inaccurate. Albergel et al.

(2012) evaluated ERAI soil moisture versus 117 in situ

stations across the world and concluded that, on aver-

age, the correlation between the two time series is r 5
0.63. However, results are conditional on the biome and

the climate, with a large spatial variability across dif-

ferent regions. More reliable estimates of soil moisture

may be derived by rain gauge stations. In the GLACE-2

FIG. 15. ACC averaged in different regions for theMay start date. (bottom right) The colors refer to the three versions of the CMCC-SPS;

the bars refer to lead seasons 0–3.
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study, Koster et al. (2011) stated that significant impacts

of soil moisture on air temperature are found in many re-

gions, but the skill is limited to areas for which observa-

tional network of precipitation (used as a proxy for soil

moisture) ‘‘provides adequate coverage and thus trust-

worthy initialization.’’ Likewise, one may argue that even

ERAI surface temperature may be biased by the lack of

observations, especially in areas of the world (most of Af-

rica and interior Asia) where data coverage is still scarce.

The full-value approach for the initialization of land

state applied in this study may create some in-

consistencies, which might negatively affect the results.

Possibly, an anomaly initialization strategy, building the

initial state with observed (here, ERAI) anomalies

added to the model’s own climatology, so as to avoid the

spurious model adjustment following the initialization,

would allow, at least in some cases, an improvement of

surface temperature prediction. On the other hand, us-

ing this technique for land surface only, while keeping

the full-state initialization for the atmosphere and the

ocean, may generate some additional inconsistencies in

the transient evolution of the system. We then prefer to

maintain the standard full-value initialization for all

three components, which has the advantage of more

accurate information about land–air fluxes and the

inclusion of the associated atmosphere variability

(Balmaseda and Anderson 2009). However, our work

represents a first step in this direction, and a similar

experiment should be designed after a long run of the

land surface scheme in an offline mode, driven by

observations, in order to have a consistent soil wetness

dataset for initialization.

In conclusion, the latest version of the CMCC-SPS has

achieved a substantial improvement in the forecast skill

and accuracy. Part of the enhanced predictive potential

is due to the coupling mechanisms between the atmo-

sphere and ocean, while improvements on continental

areas appear to result from a realistic land surface initial

state. To date, reanalyses are the best product available

to set atmospheric initial conditions. For land surface,

using more accurate datasets of soil moisture, snow, and

vegetation will provide a significant step forward in the

realization of valuable seasonal predictions.
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