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Abstract— In this paper we consider the problem of tracking
reference signals modeled by splines on the output of an
uncertain linear system. The problem is cast in the hybrid
output regulation setting. We show that any spline-based signal
can be generated as the output of a linear hybrid exosystem
that experiences jumps regularly over time. Then, we design
a hybrid internal model-based regulator able to guarantee
asymptotic tracking robustly with respect to parametric un-
certainties in the plant. We show how the hybrid stabilization
task implicitly present in the problem of output regulation
hides interesting problems due to the fact that the hybrid
exosystem generating the spline is neither continuous-time
observable during flows nor discrete-time observable during
jumps. Simulation results are provided in order to show the
effectiveness of the design procedure.

I. INTRODUCTION

The problem of output regulation for hybrid linear systems
has been recently investigated in [9] (see also [10]) by
extending well-known results characterizing the theory in
the continuous-time linear [3], [5] and nonlinear settings
[8]. The proposed framework considers the class of linear
systems and exosystems that are subject to jumps according
to a known clock that satisfies a dwell-time constraint. For
this class of systems design techniques based on the notion
of a hybrid internal model have been developed and shown
to be necessary for robust regulation. Further developments
of the work [9] have been presented in [2], where the clock
variable is unknown, and in [1], where linear systems with
arbitrary relative degree are dealt with.

In this work we aim to add a further piece to the developed
theory by considering the case in which the hybrid exosys-
tem generates signals obtained by spline interpolation [11].
Spline interpolation is widely adopted in the robotic literature
([12]) in order to generate reference signals that smoothly
interpolate waypoints by avoiding Runge’s phenomenon,
which usually appears while using polynomial interpolation.
Splines have been shown to be effective in path generation of
mobile robots [7], in the aerospace domain [13], and in many
other applicative fields where efficient trajectory planning
is a key requirement. Furthermore, they have been shown
to be efficiently computable when dealing with actuation
constraints in an optimal manner, see [4].

We build upon the general theory of [9] and design
robust regulators for tracking cyclic signals obtained by
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spline interpolation through the use of a hybrid internal
model. The design problem at hand is interesting because
the so-called steady state generator is neither continuous-
time observable through the flow dynamics, nor discrete-time
observable during jump relations. For illustrative reasons we
focus on the class of continuous-time linear systems that are
minimum-phase and relative degree one.

Notation For x ∈ R, bxc denotes the largest integer such
that bxc ≤ x. For a square matrix, M , we say that M ∈ D1

if all the eigenvalues of M lie strictly within the unitary disk.
This work uses the framework, results and notation regarding
hybrid systems presented as a tutorial in [6].

II. GENERATING SPLINES THROUGH
HYBRID LINEAR EXOSYSTEMS

In this paper we focus on cyclic time reference signals
y?(t) obtained by periodically concatenating the basic signal,
B(t), with a period given by T , where

y?(t) = B(t− iT ), i =

⌊
t

T

⌋
, t ≥ 0 , T > 0,

with B : [0, T ]→ R a sufficiently smooth function. The basic
signal B(t) is thought of as being generated by using splines
that pass through N points {p1, p2, . . . , pN} at time instances
{t1, t2, . . . , tN}, namely B(tk) = pk, k = 1, . . . , N . It is
assumed that t1 = 0, tN = T − T/N and tk+1 − tk =
T/N for all k = 1, . . . , N − 1. We also assume that B(·)
is such that B(0) = B(T ) = p1 so that y? : R≥0 → R is a
continuous function.

The idea behind spline generation ([11]) is to interpolate
N polynomials Pk(t) : [tk, tk+1] → R of suitable order
to guarantee that Pk(tk) = pk, Pk(tk+1) = pk+1, k =
1, . . . , N (with tN+1 = T and pN+1 = p1) and to smooth
the time derivatives of the signal y?(t) at the times tk,
k = 1, . . . N + 1. For instance, by using polynomials of
order three, simple algebraic arguments can be used to show
that it is possible to design the four coefficients of the
N polynomials in such a way that the first and second
time derivative (velocities and accelerations) of y?(t) are
continuous at t = tk, k = 2, . . . , N + 1. Smoother signals
can be obtained by increasing the order of the polynomials
Pk. From now on, the polynomials Pk are assumed to be
fixed in order to have continuity of y?(t), ẏ?(t) and ÿ?(t)
for all t ≥ 0.

Next, we are interested in computing y?(t) as the output
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of a hybrid linear exosystem of the form

τ̇ = 1
ẇ = Sw

}
(τ, w) ∈ [0, τmax]× Rν ,

τ+ = 0
w+ = Jw

}
(τ, w) ∈ {τmax} × Rν ,

y?(t) = Qw(t),

(1)

where Q =
[
Q1 01×N

]
, the matrices S and J are

to be defined, and τmax := T/N . The clock variable, τ ,
determines the polynomial switching times. The construction
of the exosystem is aided by breaking it into two sub-states,
w1 ∈ R4, w2 ∈ RN , with the dimension of the sub-state w1

dependent on the order of the polynomials that are used as
the basic spline functions.

Let S1 ∈ R4 × R4 be the matrix whose elements are
all zero except along the superdiagonal, which is filled with
ones, and let Q1 =

(
1 01×3

)
. Furthermore, let

Q :=


Q1

Q1S1

Q1e
S1τmax

Q1S1e
S1τmax

 , vk :=


pk
vk
pk+1

vk+1

 , k = 1, . . . , N,

with vk = limt→t+k
Ṗk(t) and vk+1 = limt→t−k+1

Ṗk(t). The
initial condition of the component w1 of the exosystem is set
to w1(t1) = Q−1v1, so that y?(t) = Q1w1(t) for t ∈ [t1, t2].

Then we have to identify the switching rule of the state
of the exosystem at times tk, k = 2, . . . , N + 1 in order
to reproduce the reference at times t > t2. To this purpose,
we observe that the value w+

1 (tk+1) needed to reproduce
Pk+1(t) with t ∈ [tk+1, tk+2], k = 1, . . . N − 1, is

w+
1 (tk+1) = Q−1vk+1. (2)

We observe that pk+1 and vk+1 can be expressed as
a function of w1(tk+1) since pk+1 = Q1w1(tk+1), and
vk+1 = Q1S1w1(tk+1). It is possible to express vk+2 as
function of pk, pk+1, pk+2, vk and vk+1, by imposing
continuity in the acceleration at time tk+1. In fact, by
imposing Q1S

2
1w1(tk+1) = Q1S

2
1w1(tk+1)+, and using

w1(tk+1) = eS1τmaxw1(tk)+ = eS1τmaxQ−1vk ,

one obtains

Q1S
2
1e
S1τmaxQ−1vk = Q1S

2
1Q−1vk+1,

which, solved for vk+2, yields

vk+2 = Γ
(
pk pk+1 pk+2 vk vk+1

)T
,

with Γ =
(
−3/τmax 0 3/τmax −1 −4

)
. By embed-

ding the previous relation in (2) we obtain

w+
1 (tk+1) = L

(
pk pk+1 pk+2 vk vk+1

)T
,

where

L =


0 1 0 0 0
0 0 0 0 1
6

τ2
max

−6
τ2
max

0 2
τmax

4
τmax

−18
τ3
max

12
τ3
max

6
τ3
max

−6
τ2
max

−18
τ2
max

 .

Now, we observe that pk = Q1e
−S1τmaxw1(tk+1),

pk+1 = Q1w1(tk+1), vk = Q1S1e
−S1τmaxw1(tk+1), vk+1 =

Q1S1w1(tk+1). To write a relation of the form w+(tk+1) =
Jw(tk) we are thus left to express pk+2 as function of the
state of the exosystem. By preserving the linearity of the
exosystem, this can be done by “enriching” the exosystem
with additional states w2 ∈ RN governed by the following
dynamics (implementing a shift register)

ẇ2 = 0,
w+

2 = J22w2,
(3)

where

J22 =

(
01×N−1 1
IN−1 0N−1×1

)
, (4)

with the initial condition w2(t1) =
(

1 01×N−1
)T

.
In this way pk+2 = Pw2(tk+1), with P =(
p3 . . . pN p1 p2

)
, and

w+
1 (tk+1) = L


Q1e

−S1τmax 0
Q1 0
0 P

Q1S1e
−S1τmax 0

Q1S1 0


(
w1(tk+1)
w2(tk+1)

)
.

Overall, the exosystem, (1), takes the form

τ̇ = 1
ẇ1 = S1w1

ẇ2 = 0

 (τ, w) ∈ [0, τmax]× Rν ,

τ+ = 0
w+

1 = J11w1 + J12w2

w+
2 = J22w2

 (τ, w) ∈ {τmax} × Rν ,

with y?=Q1w1, where

S1 =

(
03×1 I3

01×4

)
, J11=

(
I3 03×1
L1

)
, J12=

(
03×N
L2

)
,

with L1 and L2 appropriately defined, and J22 defined as in
(4). Note that the matrices S and J are implicitly defined.

III. THE ROBUST OUTPUT TRACKING PROBLEM AND THE
REGULATOR DESIGN PRINCIPLES

We are interested in designing controllers that force the
output of a linear system to track a spline-generated reference
signal of the form introduced in the previous section. For the
sake of simplicity we limit our attention to regulated plants
that are continuous-time and that have unitary relative degree.
It must be observed, however, that all the forthcoming results
can be extended in a quite straightforward way to deal with
general hybrid linear systems with arbitrary relative degree.
Without loss of generality, we thus focus on the systems
modeled in the Brunowsky canonical form

ż = A11z +A12y,
ẏ = A21z +A22y + bu,

(5)

in which u ∈ R and y ∈ R are, respectively, the control input
and the regulated output, while z ∈ Rn. All the matrices in
(5) have appropriate dimensions, with the high frequency
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gain, b 6= 0 and assumed positive, without loss of generality.
We associate a tracking error to the system, defined as

e = y − y? = y −Qw,
where y? is the spline-based periodic signal introduced in

Section II. Our goal is to find a hybrid regulator that only
processes the error, e, and steers it, asymptotically, to zero
despite possible parametric uncertainties in the plant, (5).

The problem at hand is a problem of hybrid linear output
regulation (see [9]) in which hybrid internal model principles
must be used to secure robust regulation. In this respect we
follow the main design principles presented in [9].

We limit the analysis to minimum-phase systems. Namely,
systems that fulfill the following assumptions.

Assumption 1 (minimum-phase) The matrix A11 is such
that exp(A11τmax) ∈ D1. /

Furthermore, in order to have z-dynamics with a well-
defined steady state, we assume the following non-resonance
condition between the zeros of system (5) and the “poles”
of the hybrid exosystem, (1).

Assumption 2 (non-resonance condition) The following
holds: eig(exp(A11τmax)) ∩ eig(Jexp(Sτmax)) = ∅. /

With assumption 2 in hand, and with [9] in mind, we
let Πz(τ) : [0, τmax] → Rn×(4+N) be the continuously
differentiable function that is the unique solution of

dΠz(τ)

dτ
= A11Πz(τ)−Πz(τ)S +A12Q,

0 = Πz(τmax)−Πz(0)J .

Furthermore we consider the change of variables

z 7→ z̃ = z −Πz(τ)w, y 7→ e = y −Qw,

which transforms the system into a hybrid system flowing
according to

τ̇ = 1, ẇ = Sw,
˙̃z = A11z̃ +A12e,
ė = A21z̃ +A22e+ b(u−R(τ)w),

(6)

whenever (τ, w, z̃, e) ∈ [0, τmax]× R4+N × Rn × R, where

R(τ) =
1

b
(QS −A22Q−A21Πz(τ) ) , (7)

and jumping according to (using Q1 =Q1J11 and Q1J12 =0)

τ+ = 0, w+ = Jw,
z̃+ = z̃, ẽ+ = e,

(8)

whenever (τ, w, z̃, e) ∈ {τmax} × R4+N × Rn × R.
The goal of the regulator is to make the set (z̃, e) = 0

globally exponentially stable for the error system, (6)-(8),
by compensating for the term R(τ)w. Note that R(τ)w is
unknown since parametric uncertainties enter in the defini-
tion of R(τ). By following the prescriptions of [9] ([10]) we
focus on a hybrid internal model-based regulator of the form

τ̇ = 1
η̇ = Fimη +Gimu

}
(τ, η) ∈ [0, τmax]× Rν ,

τ+ = 0
η+ = Σimη

}
(τ, η) ∈ {τmax} × Rν ,

u = Γim(τ)η + v,

(9)

where ν ∈ N, Fim, Gim, Σim are matrices, Γim : [0, τmax]→
R1×ν is a continuously differentiable function, and v is a
residual control input, all to be designed. The following
result provides the main guidelines for the design of (9) as
presented in [9].

Proposition 1: Let Assumptions 1 and 2 be fulfilled. Also,
assume that the controller (9) is designed so that for some
cont. diff. function Πη : [0, τmax]→ Rν×(4+N) the set

S={(τ, w, η) ∈ [0, τmax]×R4+N×Rν :η = Πη(τ)w} (10)

is globally exponentially stable for the hybrid system

τ̇ = 1 , ẇ = Sw
η̇ = Fimη +GimR(τ)w

}
(τ, w, η)
∈ [0, τmax]×R4+N×Rν ,

τ+ = 0 , w+ = Jw
η+ = Σimη

}
(τ, w, η)
∈{τmax}×R4+N×Rν ,

(11)

with

Γim(τ)Πη(τ) = R(τ) ∀ τ ∈ [0, τmax]. (12)

Then, there exists a κ? > 0 such that for all κ ≥ κ? the
regulator (9) with v = −κe solves the problem of hybrid
output regulation. /

As shown in [9] an internal model of the form (9)
making the set (10) globally exponentially stable for (11)
and fulfilling (12) always exists provided that the dimension
ν is taken sufficiently large and the triplet (Fim, Gim,Σim)
fulfills mild requirements. Indeed the following holds (see
Proposition 4 in [10]).

Proposition 2: Let ν ≥ N + 4 and (Fim, Gim,Σim)
be chosen such that the pair (Fim, Gim) is controllable,
eig(Σimexp(Fimτmax)) ∩ eig(Jexp(Sτmax)) = ∅, and
Σimexp(Fimτmax) ∈ D1. Then there exists a unique contin-
uously differentiable function Πη : [0, τmax] → Rν×(4+N),
that is the solution of

dΠη(τ)

dτ
= FimΠη(τ)−Πη(τ)S +GimR(τ),

0 = ΣimΠη(τmax)−Πη(0)J,
(13)

such that the set S in (10) is globally exponentially stable
for (11). Furthermore, the function Γim(τ) = R(τ)Π†η(τ),
where Π†η(τ) is the Moore-Penrose pseudo-inverse of Πη(τ),
is such that (12) is fulfilled. /

The existence of a continuously differentiable func-
tion Πη(τ) that is the solution of (13) follows from
[9] by using the fact that Σimexp(Fimτmax) ∈ D1 and
eig(Σimexp(Fimτmax))∩ eig(Jexp(Sτmax)) = ∅. While, the
fact that ν ≥ 4 + N and that the pair (Fim, Gim) is con-
trollable plays a role in proving that Γim(τ) = R(τ)Π†η(τ)
fulfills (12), as shown in Proposition 4 in [10].

Although the previous result shows that an error feedback
regulator enforcing an asymptotically zero error can always
be designed, it is not conclusive about the fact that such
a regulator is continuously differentiable. As a matter of
fact, there is no guarantee that Π†η(τ), and thus Γim(τ),
is continuously differentiable. By following [14], it turns
out that a sufficient condition under which the function
Π†η(τ), and thus Γim(τ), is continuously differentiable, is the
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existence of an r = rank(Πη(τ)), such that r ≤ 4+N for all
τ ∈ [0, τmax]. The fulfillment of such a sufficient condition
is, in general, affected by all the matrices entering in (13),
among which the pair (S, J) define the hybrid exosystem.

Interestingly enough, simulation results show that in the
case where the pair (S, J) has the specific form presented
in Section II for spline generation, the function Π†η(τ) is
not continuously differentiable for generic choices of the
matrices A11, A12, A21 and A22 of the plant, (5). Namely,
the rank(Πη(τ)) changes in the interval [0, τmax]. Simulation
results in Section VI give evidence of this fact. The design
of a continuously differentiable internal model for the spline-
based exosystem is thus more elaborate. A possible design
is presented in the forthcoming section.

IV. A τ -INDEPENDENT HYBRID INTERNAL MODEL

For illustrative reasons, we consider the case in which the
function R(τ) in (7) is τ -independent (i.e. Πz(τ) ≡ 0). Due
to the specific structure of S and Q, R can be partitioned as

R =
(
R1 01×N

)
, (14)

with R1 =
(
−A22/b 1/b 0 0

)
. Furthermore, note

that the pair (S1, R1) is observable.
This scenario is representative of cases in which the

regulated plant does not have zero dynamics, or the steady
state effect of the zero dynamics on the error dynamics
has been compensated through feed forward control actions.
We remark that even in this simplified setting the inter-
nal model prescribed by Proposition 2 is not continuously
differentiable, and thus a more elaborate design is needed.
It is worth stressing, however, that the design procedure
herewith presented can be generalized to deal with generic,
τ -dependent, R(τ) functions.

By following Proposition 2, in the following part we
design a quadruplet (Fim, Gim,Σim,Γim) such that for some
matrix Πη ∈ Rν×(4+N) the set S = {(τ, w, η) ∈ [0, τmax]×
R4+N × Rν : η = Πηw} is globally exponentially stable
for the cascade of the system1

τ̇ = 1
ẇ = Sw

}
(τ, w) ∈ [0, τmax]× R4+N ,

τ+ = 0
w+ = Jw

}
(τ, w) ∈ {τmax} × R4+N ,

uss = Rw,

(15)

that feeds, through its output, uss, the system
τ̇ = 1
η̇ = Fimη +Gimuss

}
(τ, η) ∈ [0, τmax]× Rν ,

τ+ = 0
η+ = Σimη

}
(τ, η) ∈ {τmax} × Rν ,

(16)

and such that ΓimΠη = R. The property required of system
(16) is thus to be able to asymptotically reproduce, by
its “output” Γimη, all the output signals uss(t) = Rw(t)
generated by2 (15).

1System (15) is what, in the literature on output regulation, is usually
referred to as a steady-state generator.

2This property is referred to as the (hybrid) internal model property in
the literature on output regulation.

It is apparent that the problem of designing the quadruplet
(Fim, Gim,Σim,Γim) is very much related to the problem of
observation of the state of (15) through the ”output” Rw.
Indeed, by setting Γim = R, the problem would be solved
by designing (16) as a state observer of (15). This is the
design strategy that is followed.

What makes the observation problem at hand interesting,
per se, is that due to the specific structure of S, J and R,
the steady state generator is neither dynamically observable
through the flow dynamics nor statically observable through
the jump relation. Namely, the pairs (S,R) and (J,R) are not
detectable. In particular, due to the structure of S and R, it
is apparent that the w2 component is not detectable through
the output, Rw, of the continuous-time system ẇ = Sw.
Similarly, the structures of J and R imply that (Rw)+ =
Rw. Namely the state w, and thus, in particular, w2, does
not show up on the output during jumps.

Nevertheless, denoting by w14 the fourth component of
w1 and noting that the jump rule governing w14 is given
by w+

14 = L1w1 + L2w2, it turns out that w2 shows up
during jumps by affecting the value of w14 that, in turn, is
dynamically observable by the output, R1w1, of the flow
dynamics ẇ1 = S1w1. The forthcoming proposition builds
upon this intuition in order to design an observer of (15)
using the intrinsic hybrid observability of the latter.

In order to make the previous intuition precise, we make
the following assumption without loss of generality.

Assumption 3 The pair (J22, L2) is observable. /
Indeed, if (J22, R) were not observable3, after a canon-

ical state transformation in the w2 component, a reduced
exosystem could be obtained by just replacing (J22, L2)
with its observable part, while preserving the ability of the
resulting reduced-order steady state generator to generate
all the output signals of the ”full-order” system (15). The
following proposition details a possible structure of (16).

Proposition 3: Let the pairs (S1, R1) and (J22, L2) be
observable. Let system (16) be taken of the form

τ̇ = 1
η̇1 = S1η1 +K1(R1η1 − uss)
η̇2 = 0


(τ, η1, η2) ∈ [0, τmax]× R4 × RN ,
τ+ = 0
η+1 = J11η1 + J12(η2 −K2η14)
η+2 = (J22 +K2L2)(η2 −K2η14)

+K2L1η1


(τ, η1, η2) ∈ {τmax} × R4 × RN ,

(17)

where η14 is the fourth component of η1, with K2

such that (J22 + K2L2) ∈ D1 and K1 such that
Re [eig(S1 +K1R1)] ≤ −g, with g a design parameter. Then
there exists a g > 0 such that the set S = {(τ, w, η) ∈
[0, τmax]× R4+N × R4+N : η = Πηw}, with

Πη =

(
I4 0(

K2 0
)

IN

)
,

3In this respect it is interesting to observe that for some values of the
waypoints {p1, . . . , pN}, namely of the vector P introduced in Section II,
the pair in question might be unobservable.
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is globally exponentially stable for (15), (17). Moreover, if
Γim = R, then ΓimΠη = R.

Proof: We change coordinates as w2 7→ z = w2 +
K2w14, η1 7→ η̃1 = η1 − w1 and η2 7→ η̃2 = η2 − z. By
using the fact that ẇ14 = 0, systems (15) and (17), in the
new coordinates, read as

τ̇ = 1
ẇ1 = S1w1

ż = 0

 (τ, w1, z) ∈ [0, τmax]× R4 × RN ,

τ+ = 0
w+

1 = J11w1 + J12(z −K2w14)
z+ = (J22 +K2L2)(z −K2w14) +K2L1w1


(τ, w1, z) ∈ {τmax} × R4 × RN ,

and

τ̇ = 1
˙̃η1 = (S1 +K1R1)η̃1
˙̃η2 = 0

 (τ, η̃1, η̃2) ∈ [0, τmax]× R4 × RN ,

τ+ = 0
η̃+1 = J11η̃1 + J12(η̃2 −K2η̃14)
η̃+2 = (J22 +K2L2)η̃2−(J22 +K2L2)K2η̃14+K2L1η̃1


(τ, η̃1, η̃2) ∈ {τmax} × R4 × RN .

The latter subsystem can be compactly rewritten as τ̇ = 1,
˙̃η = Heη̃ when (τ, η̃) ∈ [0, τmax] × R4+N , and τ+ = 0,
η̃+ = Jeη̃ when (τ, η̃) ∈ {τmax} × R4+N , where He and
Je are properly defined. In particular, it turns out that if
K1 is chosen such that Re [eig(S1 +K1R1)] ≤ −g with
g sufficiently large, then Jeexp(Heτmax) ∈ D1. Hence, by
standard results on sample data systems, (η̃1, η̃2) converge
to zero asymptotically by which the result follows.

In summary, the regulator (17), with u = Γimη+v replac-
ing uss, satisfies the controller requirements for Proposition
1 and allows us to solve the hybrid output regulation problem
for the spline exosystem.

V. ROBUST HYBRID INTERNAL MODELS

The internal model-based regulator obtained via the results
of Propositions 2 and 3 is not robust because Γim depends
on R, where the latter is affected by possible parametric
uncertainties of the plant. Here we sketch how a robust
regulator can be obtained. As above, we limit the analysis
to the case in which R has the form (14) by remarking that
the same ideas presented below, in principle, extend to the
general case in which R is a function of τ (see [9]).

The main intuition of the robust solution relies on the fact
that any output signal that can be generated by the (uncertain)
steady state generator (15) by varying the initial condition,
w(0), can also be generated by the extended steady state
generator

τ̇ = 1
ẇe = Sewe

}
(τ, we) ∈ [0, τmax]× R8+2N ,

τ+ = 0
w+
e = Jewe

}
(τ, we) ∈ {τmax} × R8+2N ,

uss e = Rewe

(18)

where

Se =

(
Se 1 08×2N

02N×8 02N×2N

)
, Je =

(
Je 11 Je 12

02N×8 Je 22

)
,

Re =
(
Re 1 01×2N

)
, in which Se 1 = blkdiag(S1, S1),

Je ij = blkdiag(Jij , Jij), i, j = 1, 2, Re 1 =
(
R′ R′′

)
with R′ =

(
1 0 0 0

)
and R′ =

(
0 1 0 0

)
. As

a matter of fact, any output signal of (15) generated by an
initial condition w(0) can be generated by the output of (18)
with the initial condition

we(0) =



−A22

b
I4 04×N

1

b
I4 04×N

0N×4 −A22

b
IN

0N×4
1

b
IN


w(0) .

We say that systems (15) and (18) are state-output equivalent.
Robust regulators can be thus obtained by embedding an
internal model of the extended steady state generator (18),
where the dynamics (Se, Je, Re) are not affected by the
uncertainties. The design procedure presented in Proposition
3, however, does not apply “off the shelf” if the steady state
generator (15) is replaced by the extended one (18). The
main difference lies in the fact that while the pair (S1, R1)
is observable, the pair (Se 1, Re 1) is clearly not. The main
property that allows one to recover the design procedure of
Proposition 3 in the robust framework is the fact that the
unobservability subspace of the pair (Se 1, Re 1) is invariant
under Je 1. This is formalized in the next lemma whose proof
is omitted because it follows by standard arguments.

Lemma 1: Let N (Se 1, Re 1) be the unobservability sub-
space of the pair (Se 1, Re 1). Then Je 1N (Se 1, Re 1) ⊆
N (Se 1, Re 1) . /

The previous lemma guarantees that if T ∈ R8×8 is any
nonsingular matrix such that

TSe 1T
−1 =

(
Se 1o 04×4
? ?

)
, Re 1T

−1 =
(
Re 1o 0

)
with the pair (Se 1o, Re 1o) ∈ R4×4×R1×4 being observable,
then TJe 11T−1 and TJe 12 can be expressed as

TJe 11T
−1 =

(
Je 11o 04×4
? ?

)
, TJe 12 =

(
Je 12o
?

)
,

where ? are the appropriate matrices. Now, let
(Je 22o, Je 12oo) ∈ RN×N × R1×N be the observable
part of the pair (Je 22, Je 12o). With all this in mind, it is
possible to conclude that the hybrid system,

τ̇ = 1
ẇe 1 = Se 1owe 1
ẇe 2 = 0

(τ, we)∈ [0, τmax]×R4+N ,

τ+ = 0
w+
e 1 = Je 11owe 1+Je 12oowe 2

w+
e 2 = Je 22owe 2

(τ, we)∈{τmax}×R4+N,

is state-output equivalent to system (18) and, in turn, to
system (15). In view of this, the robust internal model can be
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designed as in (17) with S1, J11, J12, J22 and R1 replaced,
respectively, by Se 1o, Je 11o, Je 12oo, Je 22o, Re 1o.

VI. SIMULATION RESULTS

In this section we provide two examples, the first is regard-
ing the τ -dependent internal model solution from Section
III while the second is regarding the τ -independent internal
model solution from Section IV.
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Fig. 1. Ratio of largest to smallest singular value of Πη(τ); R(τ)Πη(τ)†

A. τ -dependent internal model, rank issue

In this example, we provide a numerical argument that the
spline generating exosystem leads to a function Πη(τ) with
non-constant rank over τ ∈ [0, τmax]. In doing so we choose
the required regulator parameters as described in (9) with
Proposition 1 and Proposition 2 in mind.

For the purposes of simulation we use the plant (5) defined
by the parameters b = 1, A11 = A12 = 0, A21 = 1, A22 = 1.

We also choose the regulator parameters Σim = I8,

F =

[
f1 . . . f8
I7 07×1

]
, G =

[
1

07×1

]
,

where (f1, . . . , f8) are the coefficients such that the eigen-
values of F = −(1, 1, 2, 3, 5, 5, 6, 10).

Furthermore, the waypoints of the exosystem are chosen as
(−1, 1,−2, 1), these fully define the exosystem parameters.

Recall that R(τ) is determined by (7) using the parameters
already specified. These choices lead to a solution Πη(τ) to
(13), that has a non-constant rank, as shown by the ratio
of the maximum singular value of Πη(τ) to the minimum
singular value of Πη(τ). This ratio is depicted in Figure 1.
Figure 1 also shows discontinuities in R(τ)Πη(τ)†. Since
R(τ)Πη(τ)† is not a scalar function we plot one element of
it to show its discontinuity.

This result precludes the use of the τ -dependent regulator
from Section III, so a new method for designing the internal
model is needed. The results from Section IV fulfill this need.

B. τ -independent internal model
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Fig. 2. Qw, y; Error, e = y −Qw

Here we present an example using the ideas from Section
IV to build an internal model for the spline generating
exosystem. We use the same plant parameters, A11, A12,
A21, A22 and b, as in the previous example. We also use the
same exosystem waypoints. Consequently, the only change
is the choice of regulator parameters.

Here we choose the regulator as in Proposition 3, with R
as in (14) and Γim = R. We then choose K1 and K2 by
placing the poles of (J22 + K2L2) ∈ D1 and by placing
Re[eig(S1 +K1R1)] ≤ g. Here we pick eig(J22 +K2L2) =
(0.1127, 0.1815, 0.1906, 0.1913) and eig(S1 + K1R1) =
−(15, 16.5, 18, 19.5). Lastly, we choose κ = 50.

As can be seen in Figure 2, the problem of hybrid output
regulation has been solved for this system. Figure 2 shows
the spline and error tracking.

VII. CONCLUSIONS

The paper focused on the problem of robust tracking of
cyclic reference signals obtained by spline interpolation for
linear systems. The spline-based signal has been modeled
as an output of a hybrid exosystem and a hybrid internal
model-based regulator has been designed that is able to
steer the tracking error to zero despite possible parametric
uncertainties. Future works on the subject aim at formulating
the problem in a nonlinear hybrid setting.
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